Top Banner
REFERENCES (The number(s) in brackets [ ] indicates the Chapter(s) where the article is cited.) Abeles, B. (1967), Electromagnetic Excitation ofTransverse Microwave Phonons in Metals, Phys. Rev. Letters, 19,1181-1183. [0] Alers, G. A. and Bums, L. R. (1987), EMAT Design for Special Applications, Mater. Eva/., 45, 1184-1189. [0] Alers, G. and Manzanares, A. (1990), Use of Surface Skimming SH Waves to Mea- sure Thermal and Residual Stresses in Installed Railroad Tracks, in Rev. of Progress in QNDE, Vo1.9, 1757-1764. [10] Alers, G. A., Huebschen, G., Maxfield, B. w., Repplinger, w., Salzburger, H. J., Thompson, R. B., and Wilbrand, A. (1991), in Nondestructive Testing Handbook (2nd edition), Vo1.7, Ultrasonic Testing (ASNT), 326-340. [0, 13] Alers, R. B. and D. Kerr (1998), Girth WeId Inspection ofBuried Gas Pipeline Using EMATs, in Froc. of the 9th APCNDTI 1998 ASNT's Spring Conference17th Annual Research Symposium, 326-329. [13] Anastasi, R. F. and Madaras, E. I. (1999), Pulse Compression Techniques for Laser Generated Ultrasound, in 1999 IEEE Ultrasonics Sym. Prac., 813-817. [2] Anderson, A. R. and Pollard, H. F. (1979), Changes in Internal Friction and Disloca- tion Charge in Sodium Chloride Crystals Following Plastic Deformation, J Appl. Phys., 50, 5262-5265. [6] Anderson, W. A. and Mehl, R. F. (1945), Recrystallization of Aluminum in Terms ofthe Rate ofNucleation and the Rate ofGrowth, Trans. AlME, 161, 140-172. [6] Armyanov, S., Vitkova, S., and Blajiev, O. (1997), Internal Stress and Magnetic Properties of Electrodeposited Amorphous Fe-P Alloys, J Appl. Electrochemistry, 27, 185-191. [7] Auld, A. B. (1973), Acoustic Fields and Waves in Solids (John Wiley & Sons, New York). [1,2,7, 10, 12, 13] Avogadro, A., Bonera, G., and Villa, M. (1979), The Clark Method ofRecording Lineshapes, J Magn. Reso., 35,387-407. [4] Barmatz, M. and Chen, H. S. (1974), Young's Modulus and Internal-Friction in Metallic Glass Alloys from 1.5 to 300 K, Phys. Rev., B, 9, 4073-4083. [7] Barrett, C. R., Nix, W. D., and Sherby, O. D. (1966), The Influence of Strain and Grain Size on the Creep Substructure ofFe-3%Si, Trans ASM., 59, 3-15. [16] Bay, B. and Hansen, N. (1984), Recrystallization in Commercially Pure Aluminum, Metall. Trans., A, 15,287-297. [6] Beissner, R. E. (1976), Electromagnetic-Acoustic Transducers: A Study ofthe State ofthe Art, Southwest Research Institute, Report NTIAC-76-1. [1] Betjemann, A. G., Bohm, H. v., Meredith, D. 1., and Dobbs, E. R. (1967), R.F. Ultrasonic Wave Generation in Metals, Phys. Letters, A, 25, 753-755. [0] Beyer, R. T. and Letcher, S. V. (1969), Physical Ultrasonics (Academic Press, New York). [5] Bhatia, A. B. (1959), Scattering of High-Frequency Sound Waves in Polycrystalline Materials, J Acoust. Soc. Am., 31, 16-23. [14] Bhatia, A. B. and Moore, R. A. (1959), Scattering ofHigh Frequency Sound Waves in Polycrystalline Materials. II, J Acoust. Soc. Am., 31, 1140-1141. [14] Bolef, D. 1. and Miller, J. G. (1971), High-Frequency Continuous Wave Ultrasonics,
26

REFERENCES - link.springer.com3A978-1-4757-3743-1%2F1.pdf348 Referenees Measurement ofResidual Stress in Railroad Wheel by EMAT, in Residual Stress-III Seience and Technology (Elsevier),

Feb 15, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • REFERENCES

    (The number(s) in brackets [ ] indicates the Chapter(s) where the article is cited.)

    Abeles, B. (1967), Electromagnetic Excitation ofTransverse Microwave Phonons in Metals, Phys. Rev. Letters, 19,1181-1183. [0]

    Alers, G. A. and Bums, L. R. (1987), EMAT Design for Special Applications, Mater. Eva/., 45, 1184-1189. [0]

    Alers, G. and Manzanares, A. (1990), Use of Surface Skimming SH Waves to Mea-sure Thermal and Residual Stresses in Installed Railroad Tracks, in Rev. of Progress in QNDE, Vo1.9, 1757-1764. [10]

    Alers, G. A., Huebschen, G., Maxfield, B. w., Repplinger, w., Salzburger, H. J., Thompson, R. B., and Wilbrand, A. (1991), in Nondestructive Testing Handbook (2nd edition), Vo1.7, Ultrasonic Testing (ASNT), 326-340. [0, 13]

    Alers, R. B. and D. Kerr (1998), Girth WeId Inspection ofBuried Gas Pipeline Using EMATs, in Froc. of the 9th APCNDTI 1998 ASNT's Spring Conference17th Annual Research Symposium, 326-329. [13]

    Anastasi, R. F. and Madaras, E. I. (1999), Pulse Compression Techniques for Laser Generated Ultrasound, in 1999 IEEE Ultrasonics Sym. Prac., 813-817. [2]

    Anderson, A. R. and Pollard, H. F. (1979), Changes in Internal Friction and Disloca-tion Charge in Sodium Chloride Crystals Following Plastic Deformation, J Appl. Phys., 50, 5262-5265. [6]

    Anderson, W. A. and Mehl, R. F. (1945), Recrystallization of Aluminum in Terms ofthe Rate ofNucleation and the Rate ofGrowth, Trans. AlME, 161, 140-172. [6]

    Armyanov, S., Vitkova, S., and Blajiev, O. (1997), Internal Stress and Magnetic Properties of Electrodeposited Amorphous Fe-P Alloys, J Appl. Electrochemistry, 27, 185-191. [7]

    Auld, A. B. (1973), Acoustic Fields and Waves in Solids (John Wiley & Sons, New York). [1,2,7, 10, 12, 13]

    Avogadro, A., Bonera, G., and Villa, M. (1979), The Clark Method ofRecording Lineshapes, J Magn. Reso., 35,387-407. [4]

    Barmatz, M. and Chen, H. S. (1974), Young's Modulus and Internal-Friction in Metallic Glass Alloys from 1.5 to 300 K, Phys. Rev., B, 9, 4073-4083. [7]

    Barrett, C. R., Nix, W. D., and Sherby, O. D. (1966), The Influence of Strain and Grain Size on the Creep Substructure ofFe-3%Si, Trans ASM., 59, 3-15. [16]

    Bay, B. and Hansen, N. (1984), Recrystallization in Commercially Pure Aluminum, Metall. Trans., A, 15,287-297. [6]

    Beissner, R. E. (1976), Electromagnetic-Acoustic Transducers: A Study ofthe State ofthe Art, Southwest Research Institute, Report NTIAC-76-1. [1]

    Betjemann, A. G., Bohm, H. v., Meredith, D. 1., and Dobbs, E. R. (1967), R.F. Ultrasonic Wave Generation in Metals, Phys. Letters, A, 25, 753-755. [0]

    Beyer, R. T. and Letcher, S. V. (1969), Physical Ultrasonics (Academic Press, New York). [5]

    Bhatia, A. B. (1959), Scattering of High-Frequency Sound Waves in Polycrystalline Materials, J Acoust. Soc. Am., 31, 16-23. [14]

    Bhatia, A. B. and Moore, R. A. (1959), Scattering ofHigh Frequency Sound Waves in Polycrystalline Materials. II, J Acoust. Soc. Am., 31, 1140-1141. [14]

    Bolef, D. 1. and Miller, J. G. (1971), High-Frequency Continuous Wave Ultrasonics,

  • 346 Rejerences

    in Physical Acoustics, Vol.8 (Aeademic Press, New York), 95-20l. [4] Boyd, D. M. (1990), Pulsed EMAT Acoustic Measurements on a Horizontal Conti-

    nuous Caster for Internal Temperature Determination, in Intelligent Processing oj Materials (The Minerals, Metals, & Materials Soeiety), 253-266. [11]

    Bratina, W. J. and Mills, D. (1962), Study ofFatigue in Metals Using Ultrasonic Techniques, Canadian Metall. Quart., 1,83-97. [15]

    Bratina, W. (1966), Internal Friction and Basic Fatigue Mechanisms in Body-Center-ed Cubic Metals, Mainly Iron and Carbon Steels, in Physical Acoustics, Vol.3A (Academic Press, New York), 223-29l. [6, 15]

    Brugger, K. (1964), Thermodynamie Definition of Higher Order Elastie Coefficients, Phys. Rev., 133,AI611-1612. [10]

    Buck, 0, Morris, W. L., and Richardson, J. M. (1978), Aeoustic Harmonic Genera-tion at Unbonded Interfaces and Fatigue Cracks, Appl. Phys. Lett., 33, 371-373. [8, 15]

    Buess, M. L. and Petersen, G. L. (1978), Acoustic Ringing Effects in Pulsed Nuclear Magnetic-Resonance Probes, Rev. Sci. Instrum., 49,1151-1155. [0]

    Bullough, R. and Newman, R. (1962a), The Growth ofimpurity Atmospheres around Disloeations, Proc. R. Soc., A, 266, 198-208. [6]

    Bullough, R. and Newman, R. (1962b), Impurity Preeipitation on Dislocations - a Theory of Strain Aging, Proc. R. Soc., A, 266, 209-221. [6]

    Bullough, R. and Newman, R. (1970), The Kineties of Migration of Point Defects to Dislocations, Rep. Prog. Phys., 33, 101-148. [6]

    Bunge, H. J. (1982), Texture Analysis in Materials Seience (Butterworths, London). [9]

    Bungo, A., Jian, C., Yamaguchi, K., Sawada, Y., Uda, S., and Pisarevsky, Y. (1999), Analysis of Surface Acoustic Wave Properties of the Rotated V-Cut Langasite Substrate, Jpn. J App/. Phys., 38,3239-3243. [7]

    Bums, L. R., Alers, G., and MacLauchlan, D. T. (1988), A Compact EMAT Receiver for Ultrasonic Testing at Elevated Temperatures, in Rev. of Progress in QNDE, Vol.7,1677-1683. [2]

    Butenko, A. 1., Ermolov, I. N., and Shkarlet, Y. M. (1972), Eleetromagneto-Aeoustie Non-Destruetive Testing in the Soviet Union, Non-Destr. Test., 5, 154-159. [0]

    Cadek, J. (1988), Creep in Metallic Materials (Elsevier, Amsterdam). [16] Cahn, R. W., and Haasen, P. (1996), Physical Metallurgy, Vol.3 (Elsevier,

    Amsterdam). [6] Cantrell, J. H. and Yost, W. T. (1994), Acoustic Harmonie Generation from Fatigue-

    Induced Dislocations Dipoles, Phi/. Mag., A, 69, 315-326. [8] Chick, B. B. (1999), Research Instruments and Systems, in Physical Acoustics,

    Vol.24 (Aeademic Press, New York), 347-36l. [4] Chikazumi, S. (1964), Physics ojMagnetizm (Wiley-Interscience, New York). [1] Clark, A. v., Fortunko, C. M., Lozev, M. 0., Schaps, S. R., and Renken, M. C.

    (1992), Determination of Sheet Steel Formability Using Wide Band Electro-magnetic-Acoustic Transducers, Res. Nondest. Evai., 4, 165-182. [ 9]

    Clark, W. G. (1964), Pulsed Nuclear Resonance Apparatus, Rev. Sei. Instrum., 35, 316-333. [4]

    Cottrell, A. H. and Bilby, B. A. (1949), Disloeation Theory ofYielding and Strain Aging ofiron, Proc. Phys. Soc., A, 62, 49-62. [6]

    Cottrell, A. H. and Aytekin, V. (1950), The Flow of Zinc under Constant Stress, J Inst. Met., 77, 389-422. [6]

    Crecraft, D. I. (1967), The Measurement of Applied and Residual Stresses in Metals Using Ultrasonic Waves, J Sound Vib., 5, 173-192. [10]

  • References 347

    Davies, G. J., Goodwill, D. J., and KaUend, J. S. (1972), Elastic and Plastic Aniso-tropy in Deep-Drawing Steels, Metall. Trans., 3,1627-1631. [9]

    Davis, B. M., Seidman, D. N., Moreau, A., Ketterson, J. B., Mattson, 1., and Grimsditch, M. (1991), Supermodulus Effect in CU/Pd and CulNi Superlattices, Phys. Rev., B, 43, 9304-9307. [7]

    Demarest, Jr., J. H. (1971), Cube Resonance Method to Oetermine the Elastic Con-stants ofSolids, J. Acoust. Soc. Am., 49, 768-775. [7]

    Dever, D. J. (1972), Temperature Dependence ofthe Elastic Constants in a-Iron Single Crystals: Relation to Spin Order and Diffusion Anomalies, J. Appl. Phys., 43,3293-330l. [ll]

    Dieter, Jr., G. E. (1961), Mechanical Metallurgy (McGraw-Hill, New York). [16] Dobbs, E. R. (1970), Electromagnetic Generation ofUltrasonic Waves in Metals, J.

    Phys. Chem. Solids, 31, 1657-1667. [0] Dubois, M., Moreau, A, Militzer, M., and Bussit!re, J. F. (\ 998), Laser-Ultrasonic

    Monitoring ofPhase Transformations in Steels, Scripta Mater., 39, 735-74l. [11] Dubois, M., Militzer, M., Moreau, A, and Bussiere, 1. F. (2000), A New Technique

    for the Quantitative Real-Time Monitoring of Austenite Grain Growth in Steel, Scripta Mater., 42, 867-874. [14]

    Dubois, M., Moreau, A, and Bussiere, 1. F. (2001), Ultrasonic Velocity Measure-ments During Phase Transformations in Steels Using Laser Ultrasonics, J. Appl. Phys., 89, 6487-6495. [11]

    Dunn, M. L. and Ledbetter, H. (1995a), Elastic Moduli of Composites Reinforced by Multiphase Particles, J. Appl. Mech., 62, 1023-1028. [7]

    Dunn, M. L. and Ledbetter, H. (l 995b), Poisson 's Ratio of Porous and Microcracked Solids: Theory and Application to Oxide Superconductors, J. Mater. Res., 10, 2715-2722. [7]

    Ounn, M. L. and Ledbetter, H. (1997), Elastic-Plastic Behavior ofTextured Short-Fiber Composites, Acta Mater., 45, 3327-3340. [7]

    Eer Nisse, E. P. (1967), Variational Method for Electroelastic Vibration Analysis, IEEE Trans. Sonic .. Ultrason., SU-14, 153-160. [7]

    Eringen, A C. and $uhubi, E. S. (1975), Elastodynamics (Academic Press, New York). [2, 10]

    Eshelby, J. D. (1957), The Determination ofthe Elastic Field of an Ellipsoidal Inclusion and Related Problems, Prac. Roy. Soc. London, A, 241, 376-396. [7]

    Fei, G., and Zhu, Z. (1993), The Relation between the Variation of Stress, Energy Loss, Ultrasonic Attenuation, and Dislocation Configuration in Aluminum during Early Stages ofFatigue, Phys. Stat. Sol. (a), 140, ll9-l26-329. [15]

    Filimonov, S. A., Budenkov, B. A, and Glukhov, N. A (1971), Ultrasonic Contact-less Resonance Testing Method, Sov. J. Nondestruct. Test. (translated from Defektoskopiya), No.l, 102-104. [0]

    Flynn, C. (1972), Point Defects and Diffusion (Oxford, New York). [6] Fortunko, C. M., Petersen, G. L., Chick, B. B., Renken, M. c., and Preis, AL.

    (1992), Absolute Measurement of Elastic-Wave Phase and Group Velocities in Lossy Materials, Rev. Sei. Instrum., 63, 3477-3486. [4, 10]

    Fujisawa, K. and Nakanishi, A. (1989), Hardening Oepth Measurement by Using Ultrasonic Backscattering, Nondestr. Test. Comm., 4, 131-136. [12]

    Fujisawa, K., Murayama, R., Fukuoka, H., and Hirao, M. (1991), Oevelopment of EMAT Monitoring System of Formability in Cold-Rolled Sheets, in Nondest-ructive Characterization of Materials, Vo1.5, 623-634. [9]

    Fujisawa, K., Murayama, R., Yoneyama, and Sakamoto, H. (1992), Nondestructive

  • 348 Referenees

    Measurement ofResidual Stress in Railroad Wheel by EMAT, in Residual Stress-III Seience and Technology (Elsevier), 328-333. [10]

    Fukuoka, H. and Toda, H. (1977), Preliminary Experiment on Acoustoelasticity, Areh. Meeh., 29, 673-686. [6]

    Fukuoka, H., Toda, H., Hirakawa, K., Sakamoto, H., and Toya, Y. (1985), Nondestructive Assessment of Residual Stresses in Railroad Wheel Rim by Acoustoelasticity, Trans. ASMEJ Engr. Industry, 107,281-287. [10]

    Fukuoka, H., Hirao, M., Yamasaki, 1'., Ogi, H., Petersen, G. L., and Fortunko, C. M. (1993), Ultrasonic Resonance Method with EMAT for Stress Measurement in Thin Plate, in Rev. ofProgress in QNDE, Vo1.12, 2129-2136. [0,4]

    Gaerttner, M. R., Wallace, W. D., and Maxfield, B. W. (1969), Experiments Relating to the Theory ofMagnetic Direct Generation ofUltrasound in Metals, Phys. Rev., 184,702-704. [0,1]

    Garr, K. and Sosin, A. (1967), Recovery ofElectron-Irradiated Aluminum and Aluminum Alloys. H. Stage H, Phys. Rev., 162,669-681. [6]

    Goebbels, K. (1980), Structure Analysis by Scattered Ultrasonic Radiation, in Res. Tech. in NDT, Vo1.4 (Academic Press, London), 87-157. [5, 16]

    Good, M. S. (1984), Effective Case Depth Measurement by an Ultrasonic Back-scatter Technique, MetalslMaterials Technology Series #8408-003, ASM Metals Congress, 1-6. [12]

    Granato, A. and Lücke, K. (1956), Theory of Mechanical Damping Due to Disloca-tions, J Appl. Phys., 27, 583-593. [6, 15, 16]

    Granato, A., Hikata, A., and Lücke, K. (1958), Recovery of Damping and Modulus Changes Following Plastic Deformation, Aeta Metall., 6, 470-480. [6]

    Green, Jr., R. E. (1973), Ultrasonic Investigation of Mechanical Properties (Acadernie Press, New York). [10]

    Gremaud, G., Bujard, M., and Benoit, W. (1987), The Coupling Technique: A Two-Wave Acoustic Method for The Study ofDislocation Dynamics, J. Appl. Phys., 61, 1795-1805. [6]

    Grimes, C. C. and Buchsbaum, S. J. (1964), Interaction between Helicon Waves and Sound Waves in Potassium, Phys. Rev. Letters, 12, 357-360. [0]

    Hall, E. O. (1970), Yield Point Phenomena in Metals and Alloys (Plenum Press, New York). [14]

    Harn, F. (1959), Stress-Assisted Precipitation on Dislocations, J Appl. Phys., 30, 915-926. [6]

    Harper, S. (1951), Precipitation ofCarbon and Nitrogen in Cold-WorkedAlpha-Iron, Phys. Rev., 83, 709-712. [6]

    Hartley, C. and Wilson, R. (1963), Dislocation Pinning Effects in Unalloyed Molybdenum, Acta Metall., 11,835-845. [6]

    Hasegawa, T., Ikeuchi, Y. and Karashima, S. (1972), Internal Stress and Dislocation Structure during Sigmoidal Transient Creep of a Copper-16%at.-%Aluminium Alloy, Metal Sei. J, 6, 78-85. [16]

    Hearmon, R. F. S. (1966), Elastische, piezoelektrische, piezooptische und elektro-optische Konstanten von Kristallen, in Landolt-Bärnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie; Gruppe 3, Kristall-und Festkorperphysik ; Bd. 1 (Springer, Berlin). [7]

    Herring, C. (1950), Diffusional Viscosity of a Polycrystalline Solid, J. Appl. Phys., 21,437-445. [6]

    Herzer, R., Frotsher, H., Schillo, K., Bruche, D., and Schneider, E. (1994), Ultra-

  • References

    sonic Set-up to Characterize Stress States in Rims ofRailroad Wheels, in Non-destruetive Charaeterization of Materials, Vo1.6, 699-706. [10]

    349

    Heyliger, P. (2000), Traction-Free Vibration ofLayered Elastic and Piezoelectric Rectangular Parallelepipeds, J Aeoust. Soe. Am., 107, 1235-1245. [7]

    Heyman, J. S. (1977), A CW Ultrasonic Bolt-Strain Monitor, Exp. Meeh., 17, 183-187. [10]

    Hikata, A., Truell, R., Granato, A., Chick, B., and Lücke, K. (1956), Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation and Recovery inAluminum, J Appl. Phys., 27, 396-404. [6]

    Hikata, A., Chick, B., and Elbaum, C. (1965), Dislocation Contribution to the Second Harmonie Generation ofUltrasonic Waves, J Appl. Phys., 36, 229-236. [8, 15]

    Hikata, A. and Elbaum, C. (1966), Generation ofUltrasonic Second and Third Harmonics Due to Dislocations. I, Phys. Rev., 144,469-477. [8]

    Hikata, A., Sewell, Jr., F. A., and Elbaum, C. (1966), Generation ofUltrasonic Second and Third Harmonics Due to Dislocations. 11, Phys. Rev., 151,442-449. [8]

    Hiki, Y. and Granato, A. (1966), Anharmonicity in Noble Metals; Higher Order Elastic Constants, Phys. Rev., 144,411-419. [6]

    Hirao, M., Fukuoka, H., Toda, H., Sotani, Y., and Suzuki, S. (1983), Non-Destructive Evaluation of Hardening Depth U sing Surface-Wave Dispersion Pattems,J Mech. Work. Tech., 8, 171-179. [12]

    Hirao, M., Aoki, K., and Fukuoka, H. (1987), Texture ofpolycrystalline Metals Characterized by Ultrasonic Velocity Measurements, J Aeoust. Soc. Am., 81, 1434-1440. [9]

    Hirao, M., Hara, N., Fukuoka, H., and Fujisawa, K. (1988), Ultrasonic Monitoring ofTexture in Cold-Rolled Steel Sheets, J Acoust. Soc. Am., 84, 667-672. [9]

    Hirao, M. and Fukuoka, H. (1989a), Dispersion Relations of Plate Modes in Aniso-tropic Polycrystalline Sheets, J Aeoust. Soe. Am., 85, 2311-2315. [9]

    Hirao, M., Fukuoka, H., Fujisawa, K., and Murayama, R. (1989b), Characterization ofFormability in Cold-Rolled Steel Sheets Using Electromagnetic Acoustic Transducers, Metall. Trans., A, 20,2385-2392. [9]

    Hirao, M., Tanimoto, N., and Fukuoka, H. (1990), Nondestructive Evaluation of Hardening Depth on Cylindrical Surface Using Dispersive Rayleigh Wave, in Rev. ofProgress in QNDE, Vo1.9, 1603-1609. [12]

    Hirao, M., Ogi, H., and Fukuoka, H. (1993a), Resonance EMAT System for Acoustoelastic Stress Evaluation in Sheet Metals, Rev. Sei. Instrum., 64, 3198-3205. [0,4, 10]

    Hirao, M., Fukuoka, H., Fujisawa, K., and Murayama, R. (1993b), On-Line Measurement ofSteel Sheet r -Value Using Magnetostrictive-Type EMAT, J Nondestr. Eva!., 12,27-32. [9]

    Hirao, M., Ogi, H., and Fukuoka, H. (1994), Advanced Ultrasonic Method for Measuring Rail Axial Stresses with Electromagnetic Acoustic Transducer, Res. Nondestr. Eva!., 5, 211-223. [10]

    Hirao, M. and Ogi, H. (1999), An SH-Wave EMAT Technique for Gas Pipeline Inspection, NDT & E International, 32, 127-132. [13]

    Hirao, M., Ogi, H., Suzuki, N., and Ohtani, T. (2000), Ultrasonic Attenuation Peak During Fatigue ofPolycrystalline Copper, Acta Mater., 48, 517-524. [15]

    Hirao, M., Ogi, H., and Minami, Y. (2001a), Contactless Measurement ofInduction-Hardening Depth by an Axial-Shear-Wave EMAT, in Nondestruetive Charaeter-ization ofMaterials, Vo1.10, 379-386. [2,12]

  • 350 References

    Hirao, M., Ogi, H., and Yasui, H. (2001b), Contaet1ess Measurement ofBolt Axial Stress Using a Shear-Wave EMAT, NDT & E International, 34, 179-183. [10]

    Holland, R. (1968), Resonant Properties ofPiezoeleetrie Ceramic Reetangular Parallelepipeds, J Acoust. Soc. Am., 43, 988-997. [7]

    Houek, J. R., Bohm, H. v., Maxfield, B. w., and Wilkins, J. W. (1967), Direet Eleetromagnetic Generation of Aeoustie Waves, Phys. Rev. Letters, 19,224-227. [0]

    Howland, R. C. 1. (1930), On the Stresses in the Neighborhood of a Cireular Hole in a Strip under Tension, Phis. Trans. R. Soc. London, A, 229, 49-86. [10]

    Hsu, N. N. (1974), Aeoustieal Birefringenee and the Use of Ultrasonie Waves for Experimental Stress Analysis, Expr. Mech., 14, 169-176. (10]

    Huang, H. and Spaepen, F. (2000), Tensile Testing ofFree-Standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers, Acta Mater., 48, 3261-3269. [7]

    Hughes, D. S. and Kelly, J. L. (1953), Seeond-Order Elastie Deformation of Solids, Phys. Rev., 92, 1145-11549. [6, 10]

    Hull, D. and Baeon, D. J. (1984), Introduction to Dislocations (Pergamon Press, New York). [6]

    Humphreys, F. 1. and Hatherly, M. (1995), Recrystallization and Related Annealing Phenomena (Elsevier, Tarrytown, New York). [6]

    Hyun, S. K., Murakami, K., and Nakajima, H. (2001), Anisotropie Meehanieal Properties ofPorous Copper Fabrieated by Unidireetional Solidifieation, Mater. Sei. Eng., A, 299, 241-248. [7]

    Hyun, S. K. and Nakajima, H. (2001), Fabrication ofLotus-Struetured Porous Iron by Unidireetional Solidifieation under Nitrogen Gas, in Cellular Metals and Metal Forming Technology, (MIT-Verlag, Bremen), 181-186. [7]

    Iehitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., and Nakajima, H. (2002a) Anisotropie Elastie Constants of Lotus-Type Porous Copper: Measurements and Mieromeehanies Modeling, Acta Mater., 50,4105-4115. [7]

    Iehitsubo, T., Ogi, H., Hirao, M., Tanaka, K., Osawa, M., Yokokawa, T., Kobayashi, T., and Harada, H. (2002b), Elastie Constant Measurement ofNi-Base Superalloy with the RUS and Mode Seleetive EMAR Methods, Ultrasonics, 40, 211-215. [7]

    Idris, A., Edwards, c., and Palmer, S. B. (1994), Aeoustie Wave Measurements at Elevated Temperature Using a Pulsed Laser Generation and an Eleetromagnetic Aeoustie Transdueer Deteetor, Nondestr. Test. Eval., 11, 195-213. [11]

    IEEE (1984), IEEE Standard on Piezoelectricity, Part 11, IEEE Trans. Sonic. Ultras on. ,SV31. [7]

    Iizuka, Y. (1998), High Signal-to-Noise Ratio Ultrasonie Testing System Using Chirp Pulse Compression, Insight, 40, 282-285. [2]

    IJ'in, I. V. and Kharitonov, A. V. (1981), Theory ofthe EMA Method ofDeteeting Rayleigh Waves for Ferromagnetie and Ferrimagnetie Materials, Sov. J Nondestr. Test, 16, 549-554. [1]

    IJyaev, A., Umarov, B., Shabanova, L., and Dubovik, M. (1986), Temperature Dependenee ofEleetromeehanieal Properties ofLGS Crystals, Phys. Stat. Sol. (a), 98, K109-KI14. [7]

    Inoue, K. and Sato, K. (1998), Propagation Charaeteristies of Surfaee Aeoustie Waves on Langasite, Jpn. J Appl. Phys., 37, 2909-2913. [7]

    Isaak, D., Cames, 1., Anderson, 0., and Oda, H. (1998), Elastieity ofFused Siliea Spheres under Pressure Using Resonant Ultrasound Speetroseopy, J Acoust. Soc. Am., 104,2200-2206. [7]

    Iwashimizu, Y. and Kubomura, K. (1973), Stress-Indueed Rotation of Polarization Direetions of Elastie Waves in Slightly Anisotropie Materials, Int. J Solids Struct.,

  • References 351

    9,99-114. [10] Jansson, S., Deve, H. E., and Evans, A G. (1991), The Anisotropie Mechanical

    Properties of a Ti Matrix Composite Reinforced with SiC Fibers, Metall. Trans., A, 22, 2975-2984. [7]

    Johnson, G. C. (1982), Acoustoelastic Response of Polycrystalline Aggregates Exhibiting Transverse Isotropy, J. Nondestr. Eva!., 3, 1-8. [6, 10]

    Johnson, W., Norton, S., Bendec, F., and Pless, R., (1992), Ultrasonic Spectroscopy ofMetallic Spheres Using Electromagnetic-Acoustic Transduction, J. Acoust. Soc. Am., 91, 2637-2642. [0,6] ,

    Johnson, W, Auld, B. A, and Alers, G. A. (1994), Application ofResonant Modes of Cylinders to Case Depth Measurement, in Rev. ofProgress in QNDE, Vo1.l3, 1603-1610. [0,2,12]

    Johnson, W (1996), Trapped Torsional Modes in Solid Cylinders, J. Acoust. Soc. Am., 100,285-293. [2]

    Johnson, W (1998), Ultrasonic Damping in Pure Aluminum at Elevated Tempera-tures, J. Appl. Phys., 83, 2462-2468. [6]

    Johnson, W, Kim, S., and Lauria, D. (2000), Anelastic Loss in Langatate, in Proc. IEEE/ElA Int. Freq. Contr. Symp. and Exhib., 186-190. [7]

    Johnson, W (2001), Ultrasonic Dislocation Dynamics in Al (0.2 at.% Zn) after Elastic Loading, Mater. Sei. Eng., A, 309-310, 69-73. [6]

    Kaminskii, A, Silvestrova, 1., Sarkisov, S., and Denisenko, G. (1983), Investigation ofTrigonal (Laj.xNdx)3GasSiOj4 Crystals, Phys. Stat. So!. (a), 80, 607-620. [7]

    Kawashima, K. (1976), Experiments with Two Types ofElectromagnetic Ultrasonic Transducers, J. Acoust. Soc. Am., 60, 365-373. [1]

    Kawashima, K., Murota, S., Nakamori, Y., Soga, H., and Suzuki, H. (1979), Electro-magnetic Generation of Ultrasonic Waves in Absence of External Magnetic Field and its Applications to Steel Productions Lines, in Prac. 9th World Conf. on Non-Destructive Testing, 4H-3, 1-8. [11]

    Kawashima, K. (1985), Electromagnetic Acoustic Wave Source and Measurement and Calculation of Vertical and Horizontal Displacements of Surface Waves, IEEE Trans. on Sonics and Ultrasonics, SU-32, 514-522. [1]

    Kawashima, K. (1990), Nondestructive Characterization ofTexture and Plastic Strain Ratio of Metal Sheets with Electromagnetic Acoustic Transducers, J. Acoust. Soc. Am., 87, 681-690. [0,9]

    Kawashima, K. and Wright, O.B. (1992), Resonant Electromagnetic Excitation and Detection ofUltrasonic Waves in Thin Sheets, J. App!. Phys., 72, 4830-4839. [0]

    Kim, J. 0., Achenbach, J. D., Shinn, M., and Barnett, S. A (1992), Effective Elastic Constants and Acoustic Properties of Single-Crystal TiNlNbN Superlattices, J. Mater. Res., 7,2248-2256. [7]

    King, R. B. and Fortunko, C. M. (1983), Determination ofin-Plane Residual Stress States in Plates Using Horizontally Polarized Shear Waves, J. App!. Phys., 54, 3027-3035. [10]

    Kino, G. S. (1987), Acoustic Wave: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs). [2]

    Kinoshita, N. and Mura T., (1971), Elastic Fields oflnclusions in Anisotropie Media, Phys. Stat. Sol. (a), 5, 759-768. [7]

    KIesnil, M. and Lukas, P. (1980), F atigue of Metallic Materials (Elsevier, New York). [15]

    Klinman, R. and Stephenson, E. T. (1981), Ultrasonic Prediction of Grain-Size and Mechanical-Properties in Plain Carbon-Steel, Mater. Evai., 39, 116-1120. [14]

    Kröner, E. (1978), Self-Consistent Scheme and Graded Disorder in Polycrystal

  • 352 Re/erenees

    Elasticity, J. Phys., F, 8,2261-2267. [7] Kuang, 0. and Zhu, Z. (1994), A Study of Dislocation Movement during Push-Pull

    Fatigue by Ultrasonic Attenuation, Phys. Stat. Sol. (a), 142,357-363. [6] Kuokkala, Y.-T. and Schwarz, R. B. (1992), The Use ofMagnetostriction Film

    Transducers in the Measurement ofElastic Moduli and Ultrasonic Attenuation of Solids, Rev. Sei. Instrum., 63, 3136-3142. [7]

    Kurz, Wand Lux, B. (1969), Die Schallgeschwindigkeit von Eisen und Eisenlegie-rungen im festen und flüssigen Zustand, High Temp.-High Press ures, 1, 387-399, in Germany. [11]

    K wun, H. and Teller, C. M. (1994), Detection of Fractured Wire in Steel Cables Using Magnetostrictive Sensors, Mater. Evai., 52, 503-507. [2]

    Kwun, H. and Barteis, K. A. (1998), Magnetostrictive Sensor Technology and its Applications, Ultrasonics, 36, 171-178. [2]

    Landau, L. D. and Lifshitz, E. M. (1956), Theory 0/ Elasticity (Pergamon, Oxford). [10]

    Lankford, W T., Snyder, S. c., and Bauscher, J. A. (1950), New Criteria for Predicting the Press Performance of Deep Drawing Sheets, Trans. ASM, 42, 1197-1232. [9]

    Larsen, P. K. and Saermark, K. (1967), Helicon Excitation of Acoustic Waves in Aluminum, Phys. Letters, A, 24, 374-375, 668-669. [0]

    Lauzier, J., Hillairet, 1., Vieux-Champagne, A., Benoit, W, and Gremaud, 0. (1989), The Vacancies, Lubrication Agents of Dislocation Motion in Aluminum, J. P hys.: Condens. Matter., 1,9273-9282. [6]

    Lauzier, J., Hillairet, J., Gremaud, 0., and Benoit, W (1990), Lubrication Agents of Dislocation Motion at Very Low Temperature in Cold-Worked Aluminum, J. Phys.: Condens. Matter., 2, 9247-9256. [6]

    Ledbetter, H., Fortunko, C. M., and Heyliger, P. (1995a), Orthotropic Elastic Constants of a Boron-Aluminum Fiber-Reinforced Composite: An Acoustic-Resonance-Spectroscopy Study, J. Appl. Phys., 78, 1542-1546. [7]

    Ledbetter, H., Fortunko, C. M., and Heyliger, P. (l995b), Elastic Constants and Internal Friction of PolycrystaUine Copper, J. Mater. Res., 10, 1352-1353. [7]

    Ledbetter, H., Dunn, M., Couper, M. (1995c), Calculated Elastic Constants of Alumina-Mullite Ceramic Particies, J. Mater. Sei., 30, 639-642. [7]

    Ledbetter, H. (2003), Acoustic Studies of Composite-Materials Interfaces, in Nondestructive Characterization 01 Materials, Vol.l I , 689-696. [7]

    Lei, M., Ledbetter, H., and Xie, Y. (1994), Elastic Constants of a Material with Orthorhombic Symmetry: An Alternative Measurement Approach, J. Appl. Phys., 76,2738-2741. [7]

    Leisure, R. G. and Willis, F. A. (1997), Resonant Ultrasound Spectroscopy, J Phys. Condens. Mat., 9, 6001-6029. [7]

    Lernent, B.S. (1956), Distortion in Tool Steels, ASM. [12] Lentz, D., Edenhofer, B., and Lücke, K. (1971), On a Dislocation-Pinning Memory-

    Effect in y-Irradiated and Stress-Annealed Copper, Scripta Metall., 5, 387-393. [6]

    Levy, S. and Truell, R. (1953), Ultrasonic Attenuation in Magnetic Single Crystals, Rev. Mod. Phys., 25, 140-145. [14]

    Li, Y. and Thompson, R.B. (l990a), Relations between Elastic Constants Ci} and ODCs for Hexagonal Materials, J. Appl. Phys., 67,2663-2665. [9]

    Li, Y. and Thompson, R.B. (1990b), Influence of Anisotropy on the Dispersion Characteristics ofGuided Ultrasonic Plate Modes, J. Acoust. Soc. Am., 87, 1911-1931. [9]

  • References

    Logan, J. andAshby, M. F. (1974), Mechanical Properties of2 Metallic Glasses, Acta Metall., 22, 1047-1054. [7]

    353

    Ludwig, R. and Dai, X.-W. (1990), Numerical and Analytical Modeling of Pulsed Eddy Currents in a Conducting Half-Space, IEEE Trans. Magn., 26, 299-307. [2]

    Ludwig, R. and Dai, X.-w. (1991), Numerical Simulation ofElectromagnetic Acoustic Transducer in the Time Domain, J. Appl. Phys., 69, 89-98. [2]

    Malocha, D., Cunha, M., Adler, E., Smythe, R., Frederick, S., Chou, M., Helmbold, R., and Zhou, Y. (2000), Recent Measurements of Material Constants versus Temperature for Langatate, Langanlte and Langasite, in 2000 IEEE/EIA Int. Freq. Contr. Symp. and Exhib., 200-205. [7]

    Maruyama, K. and Oikawa, H., (1987), An Extrapolation Procedure of Creep Data for SI Determination - with Special Reference to Cr-Mo-V Steel, Trans. ASME. J. Press ure Vessel Tech., 109, 142-146. [16]

    Maruyama, K., Tanaka, c., and Oikawa, H., (1990), Long-Term Creep Curve Prediction Based on the Modified 8-Projection Concept, Trans. ASME. J. Press ure Vessel Tech., 112,92-97. [16]

    Mason, W. P. (1958), Physical Acoustics and Properties ofSolids (Van Nostrand, Princeton). [2,5,6, 14]

    Mason, W. P. (1965), Effect ofImpurities and Phonon Process on the Ultrasonic Attenuation ofGermanium, Crystal Quartz, and Silicon, in Physical Acoustics, Vol. 3B (Academic Press, New York), 235-286. [7]

    Matsuura, K. and Itoh, Y. (1991), Estimation ofThree-Dimensional Grain Size Distribution in Polycrystalline Material, Mater. Trans., JIM,32, 1042-1047. [14]

    Maxfield, B. W. and Fortunko, C. M. (1983), The Design and Use ofElectro-magnetic Acoustic Wave Transducers (EMATs), Mater. Evai., 41, 1399-1408. [0, 1]

    Maynard, J. (1992), The Use ofPiezoelectric Film and Ultrasound Resonance to Determine the Complete Elastic Tensor in One Measurement, J. Acoust. Soc. Am., 91, 1754-1762. [7]

    Maynard, J. (1996), Resonant Ultrasound Spectroscopy, Phys. Today, 49, 26-31. [7] McSkimin, H. J. (1960), Empirical Study of the Effect of Diffraction on Velocity of

    Propagation ofHigh-Frequency Ultrasonic Waves, J. Acoust. Soc. Am., 32, 1401-1404. [5]

    Meeker, T. R. and Meitzler, A. H. (1964), Guided Wave Propagation in Elongated Cylinder and Plates, in Physical Acoustics, Vol.IA (Academic Press, New York), 111-167. [13]

    Migliori, A., Sarrao, J., Visscher, M. w., Bell, T., Lei, M., Fisk, Z., and Leisure, R. (1993), Resonant Ultrasound Spectroscopy Techniques for Measurement of the Elastic Moduli of Solids, Physica, B183, 1-24. [7]

    Migliori, A. and Sarrao, J. (1997), Resonant Ultrasound Spectroscopy (Wiley-Interscience, New York). [0, 7]

    Mital, S. K. (1994), Micro-Fracture in High-Temperature Metal-Matrix Laminates, Composite Science and Technology, 50, 59-70. [7]

    Miyazaki, T., Nakamura, K., and Mori, H. (1979), Experimental and Theoretical Investigations on Morphological Changes of y' Precipitates in Ni-Al Single-Crystals during Uniaxial Stress-Annealing, J. Mater. Sei., 14, 1827-1837. [7]

    Moehizuki, E. (1987), Applieation of Group Theory to Free Oseillations of an Anisotropie Reetangular Parallelepiped, J. Phys. Earth, 35, 159-170. [7]

    Mondolfo, L. F. (1976), Aluminum Alloys, Structure and Properties (Butterworths, Boston). [6]

  • 354 References

    Moon, F. C. (1984), Magneto-Solid Mechanics (Wiley-Interscience, New York). [1] Moreau, A, Ketterson, J. B., and Huang, J. (1990), 3 Methods for Measuring the

    Ultrasonic Velocity in Thin Films, Mater. Sei. Eng., A, 126, 149-154. [7] Mori, T. and Tanaka, K. (1973), Average Stress in Matrix and Average Elastie

    Energy ofMaterials with Misfitting Inclusions, Acta Metall., 21, 571-574. [7] Morris, P. R. and Heckler, A J. (1968), Crystallite Orientation Analysis for Rolled

    Cubic Materials, in Advances in X-Ray Analysis, Vol. 11 (Plenum Press, New York), 454-472. [9]

    Morris, P. R. (1969), Averaging Fourth-Rank Tensors with Weight Functions, J Appl. Phys., 40,447-448. [9]

    Morris, P. R. and Flowers, 1. W. (1981), Texture and Magnetic Properties, Texture of Crystalline Solids, 4, 129-141. [9]

    Morris, W. L., Buck, 0., and Inman, R. V. (1979), Acoustic Harmonie Generation due to Fatigue Damage in High-Strength Aluminum, J Appl. Phys., 50, 6737-6741. [8, 15]

    Mould, P. R. and Johnson, Jr., T. E. (1973), Rapid Assessment of Drawability of Cold-Rolled Low-Carbon Steel Sheets, Sheet Metal Industries, 50, 328-333. [0]

    Mozurkewich, G. (1989), Transducer and Bond Corrections for Velocity Measure-ments Using Continuous-Wave Ultrasound, J Acoust. Soc. Am., 86, 885-890. [4]

    Mughrabi, H., Ackermann, F., and Hertz, K. (1979), Persistent Slip Bands in Fatigued Face-Centered and Body-Centered Cubie Metals, in Fatigue Mechanics, ASTM-STP 675,69-105. [15]

    Mura, T. (1987), Micromechanics ofDefects in Solids (2nd edition), (Martinus Nijhoff, The Hague). [7]

    Mumaghan, F. D. (1951), Finite Deformation of an Elastic Solid (Dover, New York). [10]

    Murray, T. w., Baldwin, K. C., and Wagner, J. W. (1997), Laser Ultrasonic Chirp Sources for Low Damage and High Detectability without Loss of Temporal Resolution, J Acoust. Soc. Am., 102,2742-2746. [2]

    Musgrave, M. J. P. (1970), Crystal Acoustics (Holden-Day, San Francisco). [10] Nagashima, S., Taketi, H., and Kato, H.(1965), Plastie Anisotropy of PolycrystaUine

    Iron with Rolling Texture, J Jpn. Inst. Met., 29, 393-398, in Japanese. [9] Nagy, P. B. and Rose, 1. (1993), Surface Roughness and the Ultrasonic Detection of

    Subsurface Scatterers, J Appl. Phys., 73, 566-580. [14] Nagy, P. B. (1998), Fatigue Damage Assessment by Nonlinear Ultrasonic Materials

    Characterization, Ultrasonics, 36, 375-381. [8] Newman, Jr., J. C. and Elber, W. (1988), Mechanics ofFatigue Crack Closure,

    ASTM-STP 982. [15] Nicoletti, D., Bilgutay, N., and Onaral, B. (1992), Power-Law Relationship between

    the Dependence ofUltrasonic Attenuation on Wavelength and the Grain Size Distribution, J Acoust. Soc. Am., 91, 3278-3284. [14]

    Nikiforenko, Z. G., Glukhov, N. A, and Averbukh, I. I. (1971), Measurement ofthe Speed of Elastic Waves and Acoustic Anisotropy in Plates, Sov. J Nondestruct. Test. (translated from Defektoskopiya), No.4, 427-432. [0]

    Ogi, H., Hirao, M., and Fukuoka, H. (1994), Grain Size Measurement in Carbon Steels with Electromagnetic Acoustic Resonance, Trans. Japan. Soc. Mech. Eng., A, 60, 258-263, in Japanese. [5]

    Ogi, H., Hirao, M., Honda, T., and Fukuoka, H. (1995a), Absolute Measurement of Ultrasonic Attenuation by Electromagnetic Acoustic Resonance, in Rev. of Progress in QNDE, Vo1.14, 1601-1608. [0,5]

    Ogi, H., Hirao, M., and Honda, T. (1995b), Ultrasonic Attenuation and Grain Size

  • References 355

    Evaluation Using Electromagnetic Acoustic Resonance, J. Acoust. Soc. Am., 98, 458-464. [0,5, 14]

    Ogi, H., Hirao, M., Honda, T., and Fukuoka, H. (1995c), Ultrasonic Diffraction from a Transducer with Arbitrary Geometry and Strength Distribution, J. Acoust. Soc. Am., 98,1191-1198. [5]

    Ogi, H., Minoura, K., and Hirao, M. (1996a), Bulk-Wave Generation in a Ferro-magnetic Metal by Electromagnetic Acoustic Transduction, Trans. of Japan. Soc. Mech. Eng., A. 62, 1955-1962, in Japanese. [2, 5]

    Ogi, H., Hirao, M., and Minoura, K. (1996b), Generation ofAxial Shear Acoustic Resonance by Magnetostrictively Coupled EMAT, in Rev. of Progress in QNDE, Vo1.l5, 1939-1944. [2]

    Ogi, H. and Hirao, M. (1996c), Ultrasonic Measurement of Bending Stress in Electric Resistance Welded Pipe by Electromagnetic Acoustic Resonance, in Prac. of 14th World Conference on Non-Destructive Testing (14th WCNDT), 875-878. [10]

    Ogi, H., Hirao, M., and Fukuoka, H. (1996d), Noncontacting Ultrasonic Measure-ment of Bolt Axial Stress with Electromagnetic Acoustic Transducer, in Proc. 1st US-Japan Symposium on Advances in NDT, 37-42. [10]

    Ogi, H. (1997 a), Field Dependence of Coupling Efficiency between Electromagnetic Field and Ultrasonic Bulk Waves, J. Appl. Phys., 82, 3940-3949. [0, 1]

    Ogi, H., Hirao, M., and Minoura, K. (l997b), Noncontact Measurement of Ultrasonic Attenuation during Rotating Fatigue Test ofSteel, J Appl. Phys., 81, 3677-3684. [13, 15]

    Ogi, H. and Hirao, M. (1998a), Electromagnetic Acoustic Spectroscopy in the BoIt Head for Evaluating the Axial Stress, in Nondestructive Characterization of Materials, Vo1.8, 671-676. [2, 10]

    Ogi, H., Hirao, M., and Ohtani, H. (1998b), Line-Focusing ofUltrasonic SV Wave by Electromagnetic Acoustic Transducer, J Acoust. Soc. Am., 103,2411-2415. [2]

    Ogi, H., Suzuki, N., and Hirao, M. (1998c), Noncontact Ultrasonic Spectroscopy on Deforming Polycrystalline Copper; Dislocation Damping and Acoustoelasticity, Metall. Mater. Trans., A, 29, 2987-2993. [6]

    Ogi, H., Hirao, M., and Ohtani, T. (l999a), Line-Focusing Electromagnetic Acoustic Transducers for Detection of Slit Defects, IEEE Trans. on Ultrasonics, Ferra-electrics, and Frequency Control, UFFC-46, 341-346. [2,13]

    Ogi, H., Tsujimoto, A., Hirao, M., and Ledbetter, H. (1999b), Stress-Dependent Recovery ofPoint Defects in Deformed Aluminum: An Acoustic-Damping Study, Acta Mater., 47,3745-3751. [6]

    Ogi, H., Ledbetter, H., Kim, S., and Hirao, M. (I 999c), Contactless Mode-Selective Resonance Ultrasound Spectroscopy: Electromagnetic Acoustic Resonance, J. Acoust. Soc. Am., 106, 660-665. [7]

    Ogi, H., Takashima, K., Ledbetter, H., Dunn, M. L., Shimoike, 0., Hirao, M., and Bowen, P., (1999d), Elastic Constants and Internal Friction of an SiC-Fiber-Reinforced Ti-AlIoy-Matrix Crossply Composite: Measurement and Theory, Acta Mater., 47, 2787-2796. [7]

    Ogi, H., Hamaguchi, T., and Hirao, M. (2000a), UItrasonic Attenuation Peak in Steel and Aluminum Alloy During Rotating Bending Fatigue, Metall. Mater. Trans., A, 31, 1121-1128. [2, 15]

    Ogi, H., Dunn, M., Takashima, K., and Ledbetter, H. (2000b), Elastic Properties ofa SiCp'Ti unidirectional Composite: Acoustic Resonance Measurements and Micro-mechanics Predictions, J Appl. Phys., 87, 2769-2774. [7]

    Ogi, H., Hirao, M., andAoki, S. (2001a), Noncontact Monitoring ofSurface-Wave

  • 356 References

    Nonlinearity for Predicting the Remaining Life ofFatigued Steels, 1. Appl. Phys., 90,438-442. [2,8, 15]

    Ogi, H., Ledbetter, H., Takashima, K., Shimoike, 0., and Hirao, M. (2001b), Elastic Properties of a Crossply SiCtiTi Composite at Elevated Temperatures, Metall. Mater. Trans., A, 32, 425-429. [7]

    Ogi, H., Shimoike, 0., Hirao, M., Takashima, K., and Higo, Y (2002a), Anisotropic Elastic-Stiffness Coefficients of an Amorphous Ni-P Film, 1. App/. Phys., 91, 4857-4862. [4, 7]

    Ogi, H., Shimoike, 0., Takashima, K., 'and Hirao, M. (2002b), Measurement of Elastic-Stiffness Tensor of an Anisotropic Thin Film by Electromagnetic Acoustic Resonance, Ultrasonics, 40, 333-336. [7]

    Ogi, H., Minami, Y, and Hirao, M. (2002c), Acoustic Study ofDislocation Rearrangement at Later Stages ofFatigue: Noncontact Prediction ofRemaining Life,1. App/. Phys., 91, 1849-1854. [15]

    Ogi, H., Goda, E., and Hirao, M. (2003a), Increase ofEfficiency ofMagnetostriction SH-Wave EMAT by Angled Bias Field: Piezomagnetic Theory and Measurement, Jpn. 1. App/. Phys., 42, 3020-3024. [1,2]

    Ogi, H., Kai, S., Ichitsubo, T., Hirao, M., and Takashima, K. (2003b), Elastic-Stiff-ness Coefficients of a Silicon-Carbide Fiber at Elevated Temperatures: Acoustic Spectroscopy and Micromechanics Modeling, Phil. Mag., A, 83, 503-512. [2, 7]

    Ogi, H., Nakamura, N., Sato, K., Hirao, M., and Uda, S. (2003c), Elastic, Anelastic, and Piezoelectric Coefficients·ofLangasite (La3GasSiOI4): Resonance Ultrasound Spectroscopy with Laser-Doppler Interferometry, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 50, 553-560. [7]

    Ohno, 1. (1976), Free Vibration of a Rectangular Parallelepiped Crystal and its Application to Determination ofElastic Constants ofOrthorhombic Crystals, 1. Phys. Earth, 24, 355-379. [7]

    Ohno, 1. (1990), Rectangular Parallelepiped Resonance Method for Piezoelectric Crystals and Elastic Constants of Alpha-Quartz, Phys. Chern. Mine., 17,371-378. [7]

    Ohtani, T., Ogi, H., and Hirao, M. (2000), Ultrasonic Attenuation Monitoring of Fatigue Damage in Low Carbon Steels with Electromagnetic Acoustic Resonance (EMAR),1. Alloys and Cornpounds, 310, 440-444. [15]

    Ohtani, T., Ogi, H., and Hirao, M. (2001), Change ofUltrasonic Attenuation and Microstructure Evolution in Crept Stainless Steel, in Nondestructive Character-ization of Materials, Vol.1 0,403-410. [16]

    Ohtani, T., Ogi, H., and Hirao, M. (2002), Change ofUltrasonic Attenuation and Microstructure Evolution in Crept 2.25%Cr-l %Mo Steels, 1. Soc. Mater. Sci. Japan, 51, 195-201, in Japanese. [16]

    Orlova, A. and Cadek, J., (1973), Some Substructure Aspects of High Temperature Creep in Metals, Phi/. Mag., 28, 891-899. [16]

    Okada, K. (1980), Stress-Acoustic Relations for Stress Measurement by Ultrasonic Technique,1. Acoust. Soc. Japan (E), 1, 193-200. [10]

    Pao, Y-H., Sachse, W., and Fukuoka, H. (1984), Acoustoelasticity and Ultrasonic Measurements of Residual Stresses, in Physical Acoustics, Vol.17 (Academic Press, New York), 61-143. [6, 10]

    Papachristos, V. D., Panagopoulos, C. N., Christoffersen, L. w., and Markaki, A. (2001), Young's Modulus, Hardness and Scratch Adhesion ofNi-P-W Multi-layered Alloy Coatings Produced by Pulse Plating, Thin Solid Films, 396, 173-182. [7]

    Papadakis, E. P. (1961), Grain-Size Distribution in Metals and Its Influence on

  • References 357

    UltrasonieAttenuation Measurements,J. Acoust. Soc. Am., 33,1616-1621. [14] Papadakis, E. P. (1963), From Micrograph to Grain-Size Distribution with Ultra-

    sonic Applications, J. Acoust. Soc. Am., 35, 1586-1594. [14] Papadakis, E. P. (1965), Ultrasonic Attenuation Caused by Scattering in Polycrystal-

    line Metals, J. Acoust. Soe. Am., 37, 711-717. [14] Papadakis, E. P. (1966), Ultrasonie Diffraction Loss and Phase Change in Aniso-

    tropie Materials, J. Aeoust. Soe. Am., 40, 863-876. [5, 14] Papadakis, E. P., Lynnworth, L. C., Fowler, K. A., and Camevale E. H. (1972),

    Ultrasonic Attenuation and Velocity' in Hot Specimen by the Momentary Contact Method with Pressure Coupling, and Some Results on Steel to 1200°C, J. Aeoust. Soe. Am., 52,850-857. [11]

    Papadakis, E. P. (1984), Absolute Measurements ofUltrasonic Attenuation Using Damped Nondestructive Testing Transducers, J. Test. Evai., 12,273-279. [5]

    Parkinson, J. G. and Wilson, D. M. (1977), Non-Contact Ultrasonics, British J. NDT., 19,178-184. [11]

    Pawlowski, Z. (1964), Ultrasonie Attenuation During Cyclie Straining, in Proe. Fourth Int. Corif. on Nondestr. Test. (Butterworths, London), 192-195. [15]

    Peraud, S., Pautrot, S., Villechaise, P., Mendez, 1., and Mazot, P. (1997), Determina-tion ofYoung's Modulus by aResonant Technique Applied to Two Dynamically Ion Mixed Thin Films, Thin Solid Films, 292, 55-60. [7]

    Petersen, G. L., Chick, B. B., and Fortunko, C. M. (1992), A Versatile Ultrasonic Measurement System for Flaw Detection and Material Property Characterization in Composite Materials, in Nondestruetive Charaeterization of Materials, Vo1.5, 847-856. [4]

    Petersen, G. L., Chick, B. B., Fortunko, C. M., and Hirao, M. (1994), Resonance Techniques and Apparatus for Elastic-Wave Velocity Determination in Thin Metal Plates, Rev. Sei. Instrum., 65, 192-198. [0, 4]

    Phillips, D. C. and Pratt, P. L. (1970), The Recovery ofInternal Friction in Sodium Chloride, Phi!. Mag., 21, 217-243. [6]

    Pineau, A. (1976), Influence ofUniaxial Stress on Morphology Coherent Precipitates during Coarsening - Elastic Energy Considerations, Acta Metall., 24, 559-564. [7]

    Pohl, K., Mayr, P., and Macherauch, E. (1980), Persistent Slip Bands in the Interior ofa Fatigued Low Carbon Steel, Scripta Metall., 14, 1167-1169. [15]

    Randall, R. H., Rose, F. C., and Zener, C. (1939), Intercrystalline Thermal Currents as a Source of Internal Friction, Phys. Rev., 56, 343-348. [0]

    Rayleigh, L. (1894), Theory ofSound (Macmillan, London). [14] Reddy, J. N. (1987), A Generalization of Displacement-Based Laminate Theories,

    Commun. Appl. Numer. Mech., 3, 173-181. [7] Richardson, J. M. (1977), Estimation ofSurface Layer Structure from Rayleigh

    Wave Dispersion: Dense Data Case, J Appl. Phys., 48, 498-512. [12] Richardson, J. M. (1979), Harmonie Generation at an Unbonded Interface - 1. Planar

    Interface Between Sem i-Infinite Elastic Media, Inf. J Eng. Sei., 17,73-85. [8, 15]

    Ritchie, 1. G. and Fantozzi, G. (1992), Internal Friction due to the Intrinsic Properties ofDislocations in Metals, in Dislocations in Solids, Vo1.9 (North- Holland, Amsterdam), 57-133. [5]

    Roe, R.-1. (1965), Description of Crystalline Orientation in Polycrystalline Materials. IlI. General Solution to Pole Figure Inversion, J. Appl. Phys., 36, 2024-2031. [9]

    Roe R.-1. (1966), Inversion of Pole Figures for Materials Having Cubic Crystal

  • 358 References

    Symmetry, J App!. Phys., 37, 2069-2072. [9] Sakai, S., Tanimoto, H., and Mizubayashi, H. (1999), Mechanical Behavior of High-

    Density Nanocrystalline Gold Prepared by Gas Deposition Method, Acta Mater., 47,211-217. [7]

    Sakata, K., Daniel, D., Jonas, 1. J., and Bussiere, J. F. (1990), Acoustoelastic Determination ofthe Higher-Order Orientation Distribution Function Coefficients up to 1=12 and their Use for the On-Line Prediction ofr-Value, Metall. Trans., A, 21,697-706. [9]

    Sakharov, S., Senushencov, P., Medvedev, A., and Pisarevsk, Yu. (1995), New Data on Temperature Stability and Acoustical Losses of Langasite Crystals, in Proc. IEEE Freq. Contr. Symp., 647-652. [7]

    Salama, K. and Alers, G. (1967), Third-Order Elastic Constants of Copper at Low Temperature, Phys. Rev., 161,673-680. [6]

    Salzburger, H. J. and Repplinger, W. (1983), Automatic In-Motion Inspection of the Head ofRailway Wheels by E.M.A. Excited Rayleigh Waves, in Conf. Proc. of Ultrasonic International (Butterworths London), 497-501. [13]

    Sayers, C. M. (1982), Ultrasonic Velocities in Anisotropic Polycrystalline Aggre-gates, J Phys. D: App!. Phys., 15,2157-2167. [9]

    Schenck, H., Schmidtmann, E., and Kettler, H. (1960), Einfluß einer Verformung-salterung auf die Vorgänge bei der Wechelbeanspruchung von Stahl, Arch. für Einsenhüttenwesen, 31, 659-669, in Germany. [15]

    Schramm, R. E., Shull, P. 1., Clark, Jr., A. v., and Mitrakonic, D. V. (1989), EMATs for Roll-by Crack Inspection ofRailroad Wheels, in Rev. of Progress in QNDE, Vo1.8, 1083-1089. [13]

    Schramm, R. E., Clark, A. v., McGuire, T. J., Filla, B. 1., Mitrakovi6, D. v., and Purtscher, P. T. (1993), Noncontact Ultrasonic Inspection ofTrain Rails for Stress, in RaU Quality and Maintenance for Modern Railway Operation (Kluwer Academic Press, Dordrecht), 99-108. [10]

    Segerlind, L. J. (1984), Applied Finite Element Analysis (Wiley-Interscience, New York). [2]

    Seki, H., Granato, A., and Truell, R. (1955), Diffraction Effects in the Ultrasonic Field of a Piston Source and Their Importance in the Accurate Measurement of Attenuation, J Acoust. Soc. Am., 28, 230-238. [5]

    Sil'vestrova, 1., Pisarevskii, Y., Senyushchenkov, P., and Krupnyi, A. (1986), Temperature Dependence ofthe Properties ofLaJGasSiO14 Single Crystal, Sov. Phys. Solid State, 28, 1613-1614. [7]

    Simmons, G. and Wang, H. (1971), Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (2nd edition), (The M.I.T. Press, Cambridge, Massachusetts). [11]

    Simone, A. E. and Gibson, L. 1. (1996), The Tensile Strength of Porous Copper Made by the GASAR Process, Acta Metall., 44,1437-1447. [7]

    Smith, A. D. (1953), The Effect of Small Amounts of Cold-Work on Young's Modulus, Phi!. Mag., 44, 453-466. [6]

    Smith, L. (1987), Ultrasonic Materials Characterization, NDT&E International, 20, 43-48. [14]

    Smith, R. and Welsh, F. (1971), Temperature Dependence ofthe Elastic, Piezo-electric, and Dielectric Constants ofLithium Tantalate and Lithium Niobate, J App!. Phys., 42, 2219-2230. [7]

    Spicer, J. B. (1997), In situ Laser-Ultrasonic Monitoring of Stainless Steel Micro-structural Evolution During Heat Treatment, High Temp. Mater. Sei., 37, 23-41. [11 ]

  • Relerences 359

    Stickels, C. A. and Mould, P. R. (1970), The Use ofYoung's Modulus for Predicting the Plastic-Strain Ratio ofLow-Carbon Steel Sheets, Metall. Trans., 1, 1303-1312. [9]

    Stouffer, D. C. and Dame, L. T (1996), Inelastic Deformation of Metals (John Wiley, New York). [16]

    Sullivan, C. P., Webster, G. A., and Piearcey, B. J. (1968), Effect ofStress Cycling on Creep Behaviour of a Wrought Nickel-Base Alloy at 955°C, J Inst. Metals, 96, 274-281. [7]

    Sumino, Y., Ohno, 1., Goto, T., and Kumazawa, M. (1976), Measurement ofElastic Constants and Internal Friction in Single-Crystal MgO by Rectangular Parallel-epiped Resonance, J Phys. Earth, 24, 263-273. [7]

    Suresh, S. (1998), Fatigue 01 Materials (2nd edition), (Cambridge Univ. Press, Cambridge). [15]

    Szabo, T L. (1975), Obtaining Subsurface Profiles from Surface-Acoustic-Wave Velocity Dispersion, J App!. Phys., 46,1448-1454. [12]

    Takada, H., Ichikawa, F., Kitaoka, H., Momoo, A., and Nishikawa, H. (1989), Detection of Liquid Crater End in Strand Cast Slab by Shear Wave EMATs, in Proc. CAMP-ISIJ, 2, 1214, in Japanese. [11]

    Takashima, K., Ogura, A., Ichikawa, Y., Shimojo, M., and Higo, Y. (2000), Anisotropic Fracture Behavior ofElectroless Deposited Ni-P Amorphous Alloy Thin Films, in MRS 2000 Fall Meeting Abst., 574-579. [7]

    Takashima, K., Shimojo, M., Higo, Y., and Swain, M. V. (2001), Fracture Behavior ofMicro-Sized Specimens with Fatigue Pre-Crack Prepared from a Ni-P Amorphous Alloy Thin Film, in ASTM STP-1413, 72-81. [7]

    Tanaka, K. and Koiwa, M. (1996a), Single-Crystal Elastic Constants oflntermetallic Compounds, Intermetallics, 4, S29-S39. [7]

    Tanaka, K., Okamoto, K., Inui, H., Minonishi, Y., Yamaguchi, M., and Koiwa, M. (1996b), Elastic Constants and their Temperature Dependence for the Inter-metallic Compound ThAI, Phi!. Mag., A, 73, 1475-1488. [7]

    Tanaka, K., Ichitsubo, T, Inui, H., Yamaguchi, M., and Koiwa, M. (l996c), Single-Crystal Elastic Constants ofy-TiAI, Phi!. Mag. Letters, 73, 71-78. [7]

    Thompson, R. B., Alers, G. A. and Tennison, M. A. (1972), Application ofDirect Electromagnetic Lamb Wave Generation to Gas Pipeline Inspection, in IEEE Ultrasonic Symp. Proc., 91-93. [13]

    Thompson, R. B. (1973), A Model for the Electromagnetic Generation and Detec-tion ofRayleigh and Lamb Waves, IEEE Trans. on Sonics and Ultrasonics, SU-20, 340-346. [0, 1]

    Thompson, R. B. (1977), Mechanism of Electromagnetic Acoustic Generation and Detection ofUltrasonic Lamb Waves in Iron-Nickel Alloy Polycrystals, J Appl. Phys., 48, 4942-4950. [1]

    Thompson, R. B. (1978), A Model for the Electromagnetic Generation ofUltrasonic Guided Waves in Ferromagnetic Metal Polycrystals, IEEE Trans. on Sonics and Ultrasonics, SU-25, 7-15. [1]

    Thompson, R. B. (1979), Generation of Horizontally Polarized Shear-Waves in Ferromagnetic Materials Using Magnetostrictively Coupled Meander-Coil Electromagnetic Transducers, App!. Phys. Letters, 34,175-177. [1]

    Thompson, R. B., Lee, S. S., and Smith, J. F. (1984), Microstructure Independent Acoustoelastic Measurement of Stress, Appl. Phys. Letters, 44, 296-298. [10]

    Thompson, R. B. (1990), Physical Principles ofMeasurements with EMAT Transducers, in Physical Acoustics, Vol. 19 (Academic Press, New York), 157-

  • 360 References

    200. [0, 1, 2] Thompson, R. B. (1997), Experiences in the U se of Guided Ultrasonic Waves to

    Scan Structures, in Rev. olProgress in QNDE, Vol. 16, 121-128. [13] Thurston, R. N. (1964), Wave Propagation in Fluids and Normal Solids, in Physical

    Acoustics, Vol.lA (Academic Press, New York), 1-110. [10] Thurston, R. N. (1974), Waves in Solids, in Encyclopedia ofPhysics, VoI.VIa/4

    (Springer-Verlag, Berlin), 109-308. [10] Tien, J. K. and Copley, S. M. (1971), Effect ofUniaxial Stress on Periodic

    Morphology of Coherent Gamma Prime Precipitations in Nickel-Base Superalloy Crystals, Metall. Trans., 2, 215-219. [7]

    Tittmann, B. R., Ahlberg, L. A., Richardson, J. M., and Thompson, R. B. (1987), Determination of Physical Property Gradients from Measured Surface Wave Dispersion, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-34, 500-507. [12]

    Toupin, R. A. and Bernstein, B. (1961), Sound Waves in Deformed Perfectly Elastic Materials, Acoustoelastic Effect, J. Acoust. Soc. Am., 33,216-225. [10]

    Truell, R. and Hikata, A. (1957), Fatigue and Ultrasonic Attenuation, in ASTM-STP 213,63-70. [15]

    Truell, R., Elbaum, c., and Chick, B. B. (1969), Ultrasonic Methods in Solid State Physics (Academic Press, New York). [5,6, 11, 14, 15, 16]

    Tzannes, N. S. (1966), Joule and Wiedemann Effects - The Simultaneous Generation of Longitudinal and Torsional Stress Pulses in Magnetostrictive Materials, IEEE Trans. Sonics and Ultrasonics, SU-13, 33-41. [2]

    Urashima, c., Sugino, K., and Nishida, S., (1992), Generation Mechanism of Residual Stress in Rails, in Residual Stress-I II Science and Technology (Elsevier), 1489-1494. [10]

    Wadley, H. N. G., Norton, S. 1., Mauer, E, and Droney, B. (1986), Ultrasonic Mea-surement ofIntemal Temperature Distribution, Phi!. Trans. R. Soc. London, A, 320,341-361. [11]

    Wadsworth, J. and Froes, F. H. (1989), Developments in Metallic Materials for AerospaceApplications,J. Metals, 41,12-19. [7]

    Wallace, P. W., Hultman, K. L., Holder, J, and Granato, A. V. (1985), Migration of the Interstitial-Impurity Mixed (100) Dumbbell Configuration in AI-Zn, J. Physique, 46, 59-61. [6]

    Wegei, R. L. and Walther, H. (1935), Internal Dissipation in Solids for Small Cyclic Strains, Physics, 6,141-157. [0]

    Whittington, K. R. (1978), Ultrasonic Inspection of Hot Steel, British J. NDT., 20, 242-247. [11]

    Wilbrand, A. (1983), EMUS-Probes for Bulk Waves and Rayleigh Waves. Model for Sound Field and Efficiency Calculations, in New Procedures in Nondestructive Testing (Springer-Verlag, Berlin), 71-80. [1]

    Wilbrand, A. (1987), Quantitative Modeling and Experimental Analysis of the Physical Properties ofElectromagnetic-Ultrasonic Transducers, in Rev. 01 Progress in QNDE, Vol.7, 671-680. [1]

    Yamaguchi, H., Fujisawa, K., Murayama, R., Hashimoto, K., Nakanishi, R., Kato, A., Ishikawa, H., Kadokawa, T., and Sato, I. (1986), Development of Hot Seamless Tube Wall Thickness Gauge by Electromagnetic Acoustic Transducer, Trans. ISIJ, 26,61-68. [11]

    Yamasaki, T., Tamai, S., and Hirao, M. (1996), Electromagnetic Acoustic Trans-

  • References 361

    ducers for Flaw Detection in Stee1 Pipes and Wires, in Proc. 1st US-Japan Sympo-sium on Advances inNDT, 117-122. [2]

    Yamasaki, T., Tamai, S., and Hirao, M. (1998), Arrayed-Coil EMAT for Longi-tudinal Waves in Steel Wire, in 1998 IEEE Ultrasonic Symposium, 789-792. [2]

    Ying, C. F. and Truell, R. (1956), Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid, J Appl. Phys., 27, 1086-1097. [14]

    Yoshida, T., Atsumi, T., Ohashi, w., Ka,gaya, K., Tsubakihara, 0., Soga, H., and Kawashima, K. (1984), On-Line Measurement of Solidification Shell Thickness and Estimation of Crater-End Shape of CC-S!abs by Electromagnetic Ultrasonic Method, Tetsu to Hagane (Iron and Steel), 70, 1123-1130, in Japanese. [11]

    Zhu, Z. and Fei, G. (1994), Variation in Interna! Friction and Ultrasonic Attenuation in Aluminum during the Early Stage ofFatigue Loading, J Alloys Compound, 211/212,93-95. [6,15]

  • INDEX

    A

    absorption 86,93, 193,299-300 acoustic nonlinearity 193 acoustoelasticity

    acoustoelastic birefringence formula 222,236

    acoustoelastic constant 110-3, 120, 221,224,246,253-4,257-8,273

    acoustoelastic effect 110, 199, 218-9, 222,247,254,256

    birefringence acoustoelasticity 217, 220,225,231,236,245

    combined acoustoelastic constant 254

    activation energy 123, 129-30 activation volume 117, 122-4 aging ofmetals 337 air gap (see also liftoff) 4,7,69,210 air-coupled transducer 4, 8 AI-Zn alloy (see materials) Ampere's law 14 amplitude enhancement 10 amplitude loss 96, 98-9, 299 amplitude spectrum 89-90, 248-9 analog integration 87 anelasticity 60, 194 anisotropy 168,175,199,222

    elastic anisotropy 161-2, 165, 170, 183-6,203,217,226

    magnetic anisotropy 14, 199 plastic anisotropy 199-200, 204

    anisotropy factor 203 Arrhenius expression 129 A-scope display 271 aspect ratio 172, 185 attenuation 93,105,262,299 attenuation coefficient a 94-5, 101,

    106-7 attenuation peak 114-5,308,311-3,

    315-6,319,321-2,324-5,327-8,331, 336,341

    Auld's perturbation theory 274,276 austenitic stainless steel (see materials) axial load assessment 226, 245 axial shear wave 52, 55, 194, 256, 272,

    317-9

    axial-shear-wave resonance 55, 256, 271,275,279,324

    B

    backscattering signal 271 Barkhausen noise 210 Bessel function 54,60, 129,272 birefringence (see acoustoelasticity) body force 13-4, 42 bolt 55,245 buckling load 226-7 bulk modulus (see elastic constants) Burgers vector 105, 122, 124

    Cantal line 63 carburizing 273

    c

    case depth 274-6,279-80 cavities 341 chirp signal 10, 49-52, 69 Christoflel equation 220 circular piston-source transducer 98-9 coils

    handmade coil 71 meander-line coil 15, 17,34,47,49,

    52, 55-6, 69, 76, 194, 210, 277, 292, 318

    pancake coil 40, 263 printed sheet coil 70-1 solenoid coil 43, 52-3, 55, 63-4, 124,

    130,137-40,187-90,194,277,317 spiral elongated coil 69, 71, 97 unidirectionally coil 15 variable-spacing coil 49-50,56-7,

    292 cold working 273 complex resonance frequency 142 constitutive relation 14, 32, 140, 219 contact transducers 2, 299 continuous annealing line 213 continuous casting 262 continuous measurement 1, 265, 308-10,

    331 corrosion 1,271,283-4,291 Cottrell-Bilby model 117 Coulomb force 20

  • 364

    crack crack closure 327 crack coalescence 327 crack density 325,327 crack growth 183,308,327-8,330,

    336 crack nucleation 193,316,325,329 crack-tip zone 328,330-1,333

    crater end 266 creep 2,9, 173,337-44 creep curve 338,340 critical resolved shear stress 204 cross-ply composite 149, 155, 160, 165,

    167 crystallite' orientation distribution

    function (CODF) w 201,204,207 crystallographic symmetry

    cubic symmetry 145, 170, 173-5, 201-3,215,219

    hexagonal symmetry 154, 175 orthorhombic (orthotropic) symmetry

    136,151,201,203,217,220-1,236 tetragonal symmetry 151,154,161,

    174-5 transverse isotropy 154, 161, 163,

    175, 183-4 trigonal symmetry 186

    cuboidal precipitates 173-4 Curie temperature 72,261-2 current density J 14 cut-offfrequency 61 cut-off thickness tc 286-7

    D

    dead time (zone) 269,283,294 decrement p 131-3 derailment 226,281 dielectric coefficients Eij 140, 186-9 diffraction correction 96, 210, 304, 306 diffraction, ultrasonic 93-4,96,98-101,

    155,249,287,291,302,315 diffusion coefficient D 117, 120, 123,

    129 diffusion equation 41 diffusion ofpoint defects 117, 127 dilute-strain-concentration factor 159 directivity 56, 58, 292-4 disbonding 166 dislocations

    annihilation 116, 118,337

    Index

    cell 313, 316, 325, 328-30 cross-slip 133 density A 105, 109, 115, 119, 133-4,

    196,307,342 depinning from point defects (break

    away) 113-5, 119, 128 dislocation damping 105, 109-10,

    11~ 124, 14~ 155,300,315-~ 32~ 331,337,341-2

    effective dislocations 114, 315, 328, 342

    glide 133, 328 mobility 93, 105, 113, 116, 308, 316,

    327,337,344 multiplication 114,195,315,337,

    344 pinning by point defects 113-9, 123,

    128, 148, 156,328,342 rearrangement 116, 118, 328-9, 331 segment (line) length L 105, 109,

    113-5, ]]9-21, 313, 315, 328, 342 wall 313,316,325,328,330

    dispersion relation (curve) 61-2,206, 276,284-7

    displacement current 15 double refraction (see acoustoelasticity)

    216 drawability (see r-value)

    E

    easy axis 15, 23 eddy current 5, 13,40,57, 137,263 eddy-current loss 35, 93-4 effective length ratio (bolt) ß 246,253 eigenstrain 23, 158 elastic constants

    bulk modulus B 148, 156, 161-2, 164, 183

    diagonal elastic constants 153 in-plane Young's modulus 176, 180,

    183 Lame constants A, ~ 202,218 longitudinal modulus 146 out-of-plane Young's modulus 180 second-order elastic constants 110,

    112, 215, 219 shear modulus 35, 105, 146, 176,

    178,183,217,272 temperature derivatives 164-5 third-order elastic constants 11 0,

  • 112-3,215-6,219 Young's modulus E 5,44, 146, 170,

    172, 175,246 elastic misfit 173 elastic strain energy 215,275 elastic symmetry (see crystallographic

    symmetry) elasto-plastic deformation 106 electric field E 14,20,31,140-1,187 electric flux density D 14, 140 electric potential 141 electrical conductivity 11 7, 14,32,94,

    98 electric-resistance-welded (ERW) pipes

    231,233,245,285 electroless-plating method 181 electromagnet 43, 66, 72-3, 210, 264,

    267 electromagnetic loss 35, 93 electron-ion collision 20 ellipsoidal inclusion 158, 172 electromagnetic acoustic resonance

    (EMAR) 8,83-6 EMAR spectrum 91, 108, 144-5, 152,

    163,171,182,189,194,224,228,233, 241,248,257,278,303,319

    electromagnetic acoustic transducers (EMATs) arrayed-coil EMAT 10, 45 axial-shear-wave EMAT 52-4, 193,

    273,317,331 bulk-wave EMAT 2, 39-42, 69, 72,

    78,93,98,101,106-7,181 dual-mode EMAT 40-1 208 240

    242,244 ", EMAT without static field 21 264 high-temperature EMAT 63-7, 264,

    267 in-rail EMATs 281 line-focusing EMAT 56-9, 292 meander-line-coil EMAT 33,47, 76,

    210 periodic-permanent-magnet (PPM)

    EMAT 47,210,284-6 Rayleigh-wave EMAT 55-6, 282 shear-wave EMAT 40,224,227,

    230-1,238,242-3,245,252,254, 302,308,338

    SH-wave EMAT for resonance in bolt head 55,256

    trapped-mode EMAT 59, 125

    Index

    tunnel-type EMAT 267 energy leakage (see transducer loss) energy product BH 72

    365

    equation of motion 14, 20, 52, 141, 206, 218,285

    Eshelby tensor Sijk/ 158 continuous circular cylinder 158 for anisotropic matrix 161 oblate-ellipsoidal inclusions 185

    Eshelby's equivalent-inclusion method 158

    Euler angles 200-1

    F

    failure cycle number 319, 321, 324, 331 Faraday's law of induction 14 fast Fouriertransform (FFT) 87,101 fatigue

    rotating ben ding 307-8,316-8,322, 333,336

    tension-compression 331,333-5 zero-to-tension 308-10

    FEM calculation 41-2,55,98,256-7 ferromagnetic material 13-5,21-2,25,

    32, 35, 40, 42, 52 Fe-Si alloy 199 field test 261, 266, 281 flaw detection 1,8,44,49,281,292 focalline 56-9, 292-4, 296-7 foil-fiber-foil stacking technique 150,

    154, 160 formability (see r-value) Fourier series 18, 135 fourth-power law 299, 305 fracture toughness 183,299 Frank-Read source 114 free-decay measurement 93, 155, 191 free vibration 9,63-5,135-8,140-1,

    146,149,151,176,178,180-3,187-8

    G

    y-TiAI 135 y-y' interfaces 173 gas pipeline 283 generation mechanism 13, 40 geometrical nonlinearity 216 germanium 191 grain scattering 2, 262, 300, 306, 315 grain size 5, 93, 106, 150, 199, 299-306,

  • 366

    341 grain-size distribution 299-300, 302 Granato-Hikata-Lücke (GHL) theory

    117,119-22, 126 Granato-Lücke theory 105, 117,328,

    342 group velocity 287 Grüneisen parameter 216 guided waves 10, 13, 43, 206, 283-6

    Hall sensor 35 halo ring 181

    H

    heat-affected zone 232-4,236 helicon wave 6 hexagonal rod 55,257 Heyliger's method 179-80 high temperature measurements 7,63-4,

    67,72, 163-7,263,265,268, higher-order elasticity 112, 215 Hili average 170, 202-3 Hooke's law 157-8,218 hybrid laser/EMAT combination 261 hysteretic phenomena 163, 193, 261 hysteresis loss 35

    impedance matching 69, 73-80 imperfect interfaces 155-6, 193 in situ monitoring 105,307,309 incomplete cohesive regions 183 incubation period 193, 307 induction hardening 271,276-8 inertia resistance 177-8 initial anisotropy, acoustoelastic, Bo

    221-2,230,233-8,240,243-4 initial guess 145, 153-4 interatomic potential 193, 215 interference 52, 83-4, 88, 90, 217,

    291-2 intermediate frequency (IF) 88-9 internal friction Q-I 1,4-5,59,94, 124,

    12~ 147-8, 155, 167, 187,337 internal-friction tensor Q;/ 142, 147,

    151, 156, 189-91 interstitial-free steel (see materials) interstitials 105, 118, 121, 123, 130,

    307,331,337 inverse calculation 135-6,140, 153, 163,

    Index

    180,276 iteration caIculation 99-100

    J

    Joule heating 73,269

    K

    Kröner's method 146

    L1 2 structure 173 Lagrangian 141

    L

    Lagrangian interpolation polynomials 178-9

    Lame constants (see elastic constants) laminar structure 173 langasite (La3GasSiOI4) (see materials) Laplace's equation 16 laser ultrasound 4, 8, 66-7, 261-2, 306 lattice anharmonicity 190, 193-4 lattice parameter 120 Laue back-refection technique 175 layered material 176-8, 181-2 leakage of acoustic energy 2, 59, 93 least-squares procedure 133-4, 140, 143,

    180-1 Legendre polynomials 135-6,141-2,

    188,201 liftoff 19,69,106,196,210,212,

    229-30,244,264,269,294,297 limiting drawing ratio 199 liquid-solid interface 261 lithium niobate (LiNb03) 186 L-matching network 73-4 longitudinal/shear velocity ratio 224,

    254 Lorentz force 4-5, 7, 20-22, 30, 39-42,

    47,55,60,137-9,211 Lorentzian function 92, 248 lotus-type porous copper (see materials) capacitance measurement 186, 188

    M

    magnetic domain 15,23-4,32,35,60, 210

    magnetic field H 4, 14-9,22-3,33-8, 43-4,48,53,63,66

    magnetic flux density B 13-5, 32, 94,

  • 139 magnetic susceptibility X 15, 35-6 magnetic transition 261,269 magnetic vector potential 41 magnetization 14, 22-4, 41, 199, 210 magnetization force 13,21-2,33-4,42 magnetostriction 23

    isovolume magnetostriction 15, 26 magnetostriction curve (e-H) 24-7,

    34-5,43-4 magnetostriction force 22, 26, 29-30,

    33-4,37,40-2,47,55,58 magnetostriction stress 25-6 spontaneous magnetostriction 23

    magnets (permanent) 5, 13,40-1,47, 52-3,55-6,60,63,72, 124, 130, 132, 138, 163,256 Nd-Fe-B magnet 72,281,285 Sm-Co magnet 72

    martensite 301, 304 martensitic transformation 273,276,

    279 materials (studied)

    AI-Zn alloy 124 aluminum 116, 130 aluminum alloys 3,241,254,333 austenitic stainless steel 224,337 carbon steels 102, 195, 223, 228, 235,

    253,257,263,268,277-8,300-4, 317-21,335-6,344

    copper (monocrystal) 146-7 cop per (polycrystal) 110,308 interstitial-free steel 34-5,49,208 langasite (La3GasSiOI4) 186-7,

    189-91 lotus-type porous copper 168-173 Ni-base superalloy 173-5 Ni-P amorphous alloy 181-4 SiC/Ti-6AI-4V 149-50, 154 silicon-carbide (SiC) fiber 160-1,

    164 Ti-6AI-4V 161,164 titanium (monocrystal) 64, 180 titanium (polycrystal) 162,223

    material's nonlinearity 193, 216 Maxwell's equations 14 meander-line spacing 50, 57, 210, 277,

    292,297 metal-matrix composite (MMC) 149,

    162 micromechanics 156, 164-5, 172, 183-4

    Index 367

    mode conversion 149,254-5,286-9 mode identification 56, 135-7, 144, 154,

    181 mode selection 135-6, 139, 163,279 modified 8-function 340 monocrystal a-Fe 205 Mori-Tanaka's mean-field approximation

    158-9

    N

    neutron diffraction 216 Ni3Al 173 Ni-base superalloy (see materials) Ni-P amorphous alloy (see materials) nitriding 273 nodal point (node) 4-5,342 noncontact ultrasonic measurements 1-4 nondestructive stress determination 216 nonlinear elasticity 194, 215, 219 nonlinearity peak 320,324-5,327-9 nuclear-magnetic resonance (NMR) 4,

    86-7 n-value 204

    o oblate-ellipsoidal microcracks 185 oblique magnetic field 35-7,48-9 Ohm's law 14 on-line measurement (inspection,

    monitoring) 49, 199, 206, 208, 210, 261,266,268-9,271

    orientation distribution coefficients (ODCs) W1nlll 201-8,219,222,225

    p

    penetration depth 318, 330-1 permeability Ilij 15,32,98 persistent slip band (PSB) 328 phase (angle) 58,83,85,88-92,96,98,

    216,230,247,249-54,287-92 phase transformation 64-5, 236, 261-2,

    271 phonon-phonon interaction 190-2 photoe\asticity 216 piezoelectric coefficients eijk 140, 186-7,

    189 piezoelectric material 25, 140-1, 186-7 piezoelectric transducer 2-4,7,35, 73,

  • 368

    85,101-2,135,217,261 piezomagneticity 13, 25, 32

    d(Mk

    S) (MS) piezomagnetic coefficients lj , eijk

    25-7,32,34,36-7,43 pig 283 p1astic strain ratio 200 plasticity-induced c10sure 327 point defects 105, 116-24, 127-30,307,

    331,342 pole density 209 polycrystalline aggregate 170, 200, 202,

    299-301 polyimide sheet 51,69,292 porosity 168-73 preferred orientation (see texture ) preload 245 principal stress 216,220-2,225,240-4 printing-circuit technique 47, 51, 57,69,

    277,292 proof stress 338, 344 pulse-echo method 3,101-2,151,153-4,

    269 pure attenuation 299

    Q

    Q value (see internal friction) quadrature phase-sensitive detection 89 quartz 6, 186, 191

    R

    rafted structure 173-5 railroad rail 226-30, 281-2 railroad wheel 230-1,244,281-2 Rayleigh scattering 299-300, 306, 341 Rayleigh wave 56,69,276,281 Rayleigh-Ritz method 141 receiving mechanism 31-3 reciprocal theorem of elasticity 274 recovery 117-8, 124, 128, 130-3 recovery parameter (attenuation) ß

    117-124 recrystallization 116, 124, 130-2,236,

    244 relaxation time 95-6, 191 remaining life 307-8,322,327,338 remanent flux density 72 replica method 313,325 resonance (see EMAR and RUS)

    Index

    resonance frequency 5,54,61,85,90-2, 176-7,225,272

    resonance peak width (sharpness) 9,90, 96, 148

    resonance spectrum (see EMAR spectrum)

    resonant ultrasound spectroscopy (RUS) 9,135-7,143-9,151-4

    resonance-antiresonance measurement 186

    Reuss average 170, 202 reversed Lorentz-force mechanism 31,

    94 reversed magnetostriction mechanism

    32 ring-down curve 95-6,99, 101, 108,

    148,155,303,309,319 rod-resonance method 137, 149 rotation of spins 23-4 rule of mixture 207 rupture parameter 340 r-value 5, 9, 199-200, 204, 206-8, 210,

    213

    S

    So-plate wave 206-7,210-1,283 sampled-CW technique 86 scattering cross-section 341 scattering factor S 300, 302-3, 305, 341 seamless tub es (pipes) 7,261,266 second-harmonic generation 194-5, 320,

    325,327 second-power law 194-5 shear-horizontal (SH) waves 35,47-8,

    217 plate SH wave 33-6, 48-52, 206,

    283-91 surface-skimming SH wave 69, 226

    shear-vertical (SV) wave 10,56-8, 292-4

    shrink-fit 230-1, 234-5 SiCtlTi-6AI-4V (see materials) silicon-carbide (SiC) fiber (see materials) single line source 58 skin depth, electromagnetic, I) 7, 17, 98 slip band 307,313,315-6 slip systems 204 slit defects 295 solidification-shell thickness 262-5 specific damping constant 105

  • specific heat 193,216 steel sheets 9, 199-200, 208 stiffening 127, 129, 189 strain-concentration factor A 159-60 strain-gauge method 233-8, 245 stress

    applied stress 109, 123, 156,244 axis-symmetric stress field 234 bending stress 23 1, 233, 3 1 7 bolt axial stress 245-6, 259 internal stress 133, 158 principal stresses 216, 220-2, 225,

    240,242-4 residual stress 199, 229-31, 234-8,

    244,271,273,281,327 two-dimensional stress field 242-3

    stress concentration 168, 170, 330, 336 stress tensor cri} 14, 140-1,218 stress-induced anisotropy 219, 222, 240 string model (see Granato-Lücke theory) Struve function 129 subgrain 337,342-4 superheterodyne signal processing 86-7,

    92,247,279,285,294 surface modification 273 surface roughness 294, 30 I, 306 surface-skimming longitudinal wave

    226

    T

    texture 161-2, 170-1, 199-209 texture-induced anisotropy 9, 202, 217,

    221-2 thermal expansion coefficient 216 thermal-mode phonons 191 thermoelastic effects 299 thermomechanical process 199, 299,

    236,244,261 thickness resonance (oscillation) 85,

    106,176,303,309 thin film 175,177,181,184,188 third-order elastic constants (see elastic

    constants) Ti-6AI-4V (see materials) titanium (see materials)

    Index 369

    torque-wrench technique 245 torsional mode 5, 59-60, 132 transducer loss 2, 93 transducer/buffer/specimen system 101 transfer efficiency 7-10,39,47,73,86,

    218,283 transformation tensor Gi} 170,201 transmission electron microscopy (TEM)

    314,326,329,343 transverse isotropy (see crystallographic

    symmetry) trapped mode 59, 124 twins 316,342

    u unidirectional composite 149-51, 154-6,

    160-1 unidirectional solidification 168

    v vacancies 105,118,121,123,130,331,

    337 vibration group 136, 139-40, 143, 163,

    182-3, 188 Vickers hardness 277,280 Voigt average 113, 170, 202 voltage step-up ratio 75 volume fraction 150,157,174,185,301

    w weldment 236-9 work hardening 114, 204, 316

    X

    X-ray diffraction 169-70, 173-4,208-9

    y

    yield stress cry 107-8, 114, 132,236-7, 299,317

    Young's modulus (see elastic constants)

  • PERMISSIONS Figures 7.28, 7.29, 7.30, and 7.32; and Table 7.13 are reprinted with permission from

    OGI, H., SHIMOIKE, G., HIRAO, M., TAKASHIMA, K., AND HIGO, Y., (2002), ANISOTROPIC ELASTIC-STIFFNESS COEFFICIENTS OF AN AMORPHOUS Ni-P FILM, JOURNAL OF APPLIED PHYSICS, 91, 4857-4862. Copyright 2002, American Institute ofPhysics.

    Figures 15.8, 15.9, 15.12, 15.13, 15.15, 15.17,15.18, and 15.19; and Table 15.1 are reprinted with perm iss ion from OGI, H., MINAMI, Y., AND HIRAO, M. (2002), ACOUSTIC STUDY OF DISLOCATION REARRANGEMENT AT LATER STAGES OF FATIGUE: NONCONTACT PREDICTION OF REMAINING LIFE, JOURNAL OF APPLIED PHYSICS, 91,1849-1854. Copyright 2002, American Institute of Physics.

    Figures 2.17, 8.1, 8.2, 15.11, and 15.16 are reprinted with permission froin OGI, H., AOKI, S., AND HIRAO, M. (2001), NONCONTACT MONITORING OF SURF ACE-W A VE NONLINEARITY FOR PREDICTING THE REMAINING LlFE OF FATIGUED STEELS, JOURNAL OF APPLIED PHYSICS, 90, 438-442. Copyright 2001, American Institute ofPhysics.

    Figure 11.1 is reprinted with permission from DUBOIS, M., MOREAU, A., AND BUSSIEERE, J. F. (2001), ULTRASONIC VELOCITY MEASUREMENTS DURING PHASE TRANSFORMATION IN STEELS USING LASER UL TRASONICS, JOURNAL OF APPLIED PHYSICS, 89, 6487-6495. Copyright 2001, American Institute of Physics.

    Figures 7.8 and 7.11 are reprinted with permission from OGI, H., DUNN, M., TAKASHIMA, K., AND LEDBETTER, H. (2000), ELASTIC PROPERTIES OF A SICF/Ti UNIDIRECTIONAL COMPOSITE: ACOUSTIC RESONANCE MEASUREMENTS AND MICROMECHANICS PREDICTIONS, JOURNAL OF APPLIED PHYSICS, 87, 2769-2774. Copyright 2000, American Institute of Physics.

    Figures 6.17, 6.18, and 6.19 are reprinted with permission from JOHNSON, W. (1998), ULTRASONIC DAMPING IN PURE ALUMINUM AT ELEVA TED TEMPERATURES, JOURNAL OF APPLIED PHYSICS, 83, 2462-2468. Copyright 1998, American Institute of Physics.

    Figures 4.4,10.18,10.19,10.20, and 10.21 are reprinted with permission from HIRAO, M., OGI, H., FUKUOKA, H. (1993), RESONANCE EMAT SYSTEM FOR ACOUSTOELASTIC STRESS EVALUATION IN SHEET METALS, REVIEW IN SCIENTIFIC INSTRUMENTS, 64, 3198-3205. Copyright 1993, American Institute ofPhysics.

    Figures 7.3, 7.4, 7.5, and 7.6; Tables 7.2, 7.3, and 7.4 are reprinted with perm iss ion from OGI, H., LEDBETTER, H., KIM, S., AND HIRAO, M. (1999), CONT ACTLESS MODE-SELECTIVE RESONANCE ULTRASOUND SPECTROSCOPY: ELECTROMAGNETIC ACOUSTIC RESONANCE, THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 106,660-665. Copyright 1999, Acoustical Soeiety of Ameriea.

    Figure 2.21 is reprinted with permission from OGI, H., HIRAO, M., AND OHTANI, H., (1998), LlNE-FOCUSING OF ULTRASONIC SV WAVE BY ELECTROMAGNETIC ACOUSTIC TRANSDUCER, THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 103, 2411-2415. Copyright 1998, Aeoustieal Society of Ameriea.

    Figures 2.26, 2.28, and 2.29 are reprinted with permission from JOHNSON, W. (1996), TRAPPED TORS ION AL MODES IN SOLID CYLINDERS, THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 100,285-293. Copyright 1996, Acoustical Society of America.

    Figures 5.3 and 5.4 are reprinted with permission [rom OGI, H., HONDA, T., FUKUOKA, H., AND HIRAO, M. (1995), ULTRASONIC DIFFRACTION FROM A TRANSDUCER WITH ARBITRARY GEOMETRY AND STRENGTH DISTRIBUTION, THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 98,1191-1198. Copyright 1995, Acoustical Society of Ameriea.

    Figures 5.2, 5.5, 5.6, 14.2, 14.3, 14.4, 14.5 are reprinted with permission from OGI, H., HlRAO, M., AND HONDA, T. (1995), ULTRASONIC ATTENUATION AND GRAIN SIZE EVALUATION USING ELECTROMAGNETIC ACOUSTIC RESONANCEUL TRASONIC DIFFRACTION FROM A TRANSDUCER WITH ARBITRARY GEOMETRY AND STRENGTH DISTRIBUTION, THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 98,458-464. Copyright 1995, Acoustical Society of America.

    Figures 7.19, 7.20, 7.22, and 7.23; and Tables 7.9 and 7.10 are reprinted from Ichitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., and Nakajima, H. (2002) Anisotropie Elastic Constants ofLotus-Type Porous Copper: Measurements and Micromechanics Modeling, Acta Mater., SO, 4105-4115, Copyright (2002), with permission from Elsevier.

    Figures 7.24, and 7.25; and Tables 7.11 and 7.12 are reprinted from Ichitsubo, T., Ogi, H., Hirao, M.,

  • 372 Pr;rmissions

    Tanaka, K., Osawa, M., Yokokawa, T., Kobayashi, T., and Harada, H. (2002), Elastic Constant Measurement ofNi-Base Superalloy with the RUS and Mode Selective EMAR Methods, Ultrasonics, 40,211-215, Copyright (2002), with permission from Elsevier.

    Figures 6.12, 6.13, 6.14, 6.15, and 6.16 are reprinted from Johnson, W. (2001), Ultrasonic Oislocation Dynamics in AI (0.2 at.% Zn) after Elastic Loading, Mater. Sci. Eng. A, 309-310, 69-73, Copyright (2001), with permission from Elsevier.

    Figures 10.22, 10.23, 10.24, 10.25, and 10.26 are reprinted from Hirao, M., Ogi, H., and Yasui, H. (2001), Contactless Measurement ofBolt Axial Stress Using a Shear-Wave EMAT, NOT & E International, 34,179-183, Copyright (2001), with permission from Elsevier.

    Figures 12.2, 12.3, 12.5, and 12.6 are reprinted'from Hirao, M., Ogi, H., and Minami, Y. (2001), Contactless Measurement ofInduction- Hardening Oepth by an Axial-Shear-Wave EMAT, in Nondestructive Characteization ofMaterials, Elsevier, Vol.IO, 379-386, Copyright (2001), with perm iss ion from EIsevier.

    Figures 16.1, 16.2, 16.3,16.4, and 16.5 are reprinted from Ohtani, T., Ogi, H., and Hirao, M. (2001), Change ofUltrasonic Attenuation and Microstructure Evolution in Crept Stainless Steel, Nondestructive Characterization ofMaterials, Elsevier, Vo1.10, 403-410, Copyright (2001), with perm iss ion from Elsevier.

    Figures 15.1, 15.2, 15.3, 15.4, 15.5, 15.6, and 15.7 are reprinted from Hirao, M., Ogi, H., Suzuki, N., and Ohtani, T. (2000), Ultrasonic Attenuation Peak Ouring Fatigue of Polycrystalline Copper, Acta Mater.. 48,517-524, Copyright (2000), with permission from Elsevier.

    Figure 15.22 is reprinted from Ohtani, T., Ogi, H., and Hirao, M. (2000), UItrasonic Attenuation Monitoring of Fatigue Oamage in Low Carbon Steels with Electromagnetic Acoustic Resonance (EMAR),1. Alloys and Compounds, 310, 440-444, Copyright (2000), with perm iss ion from Elsevier.

    Figures 6.7, 6.8, 6.9, 6.10, 6.11 are reprinted from Ogi, H., Tsujimoto. A., Hirao, M., and Ledbetter, H. (1999), Stress-Oependent Recovery of Point Oefects in Oeformed Aluminum: An Acoustic-Oamping Study, Acta Mater., 47, 3745-3751, Copyright (1999), with permission from Elsevier.

    Figure 7.9 is reprinted from Ogi, H., Takashima, K., Ledbetter, H., Ounn, M. L., Shimoike, G., Hirao, M., and Bowen, P., (1999), Elastic Constants and Internal Friction of an SiC-Fiber- Reinforced Ti-AlIoy-Matrix Crossply Composite: Measurement and Theory, Acta Mater., 47, 2787-2796, Copyright (1999), with permission from Elsevier.

    Figures 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, and 13.9 are reprinted from Hirao, M. and Ogi, H. (1999), An SH-Wave EMAT Technique for Gas Pipeline Inspection, NOT & E International, 32,127-132, Copyright (1999), with permission from Elsevier.

    Figures 7.35 and Table 7.15 are reprinted from Ogi, H., Nakamura, N., Sato, K., Hirao, M., and Uda, S. (2003), Elastic, Anelastic, and Piezoelectric Coefficients ofLangasite (La,Ga,SiO,.): Resonance Ultrasound Spectroscopy with Laser-Doppler Interferometry, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Contro!, 50, 553-560, Copyright (2003), with permission from IEEE.

    Figures 2.22, 2.24, 2.25,13.10,13.11,13.12,3.13, and 13.14; and Table 13.1 are reprinted from Ogi, H., Hirao, M., and Ohtani, T. (1999), Line-Focusing Electromagnetic Acoustic Transducers for Oetection of Slit Oefects, IEEE Trans. on Ultrasonics, Ferro- electrics, and Frequency Control, UFFC-46, 341-346, Copyright (1999), with permission from IEEE.

    Figures 2.9 and 2.10 are reprinted from Yamasaki, T., Tamai, S., and Hirao, M. (1998), Arrayed-Coil EMAT for Longi- tudinal Waves in Steel Wire, 1998 IEEE UItrasonic Symposium, 789-792, Copyright (1998), with permission from IEEE.

    Figures 10.7, 10.8, and 10.9 are reprinted from Hirao, M., Ogi, H., and Fukuoka, H. (1994), Advanced Ultrasonic Method for Measuring Rail Axial Stresses with Electromagnetic Acoustic Transducer, Res. Nondestr. Eval., 5, 211-223, Copyright (1994), with permission from Springer-Verlag.

    Figures 2.30,7.13,7.14, and 7.15; Tables 7.8, 7.6, and 7.7 are reprinted from Ogi, H., Kai, S., Ichitsubo, T., Hirao, M., and Takashima, K. (2003), Elastic-Stiff- ness Coefficients of a Silicon-Carbide Fiber at Elevated Temperatures: Acoustic Spectroscopy and Micromechanics Modeling, Phil. Mag., A, 83, 503-512, with permission from Taylor & Francis Journals (http://www.tandf.co.uk).

    Figures 11.4 and 11.5 are original published in Transactions oflSIJ Vol.26 (1986) No. 1.