Top Banner
Reference Governor 1
115

Reference Governor - LIRMM

Dec 23, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Reference Governor - LIRMM

Reference Governor

1

Page 2: Reference Governor - LIRMM

โ€ข Reference governor is an add-on safety supervisor for the

existing/legacy controllers

โ€ข Monitors and modifies commands if necessary to ensure

constraints are satisfied

Nominal closed-loop system with

an existing/legacy controller

2

Reference Governor

Page 3: Reference Governor - LIRMM

๐‘ก โ‹… ๐‘‡๐‘ 

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

3

Reference Governor

Page 4: Reference Governor - LIRMM

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

4

Reference Governor

Page 5: Reference Governor - LIRMM

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

5

y(t)

Reference Governor

Page 6: Reference Governor - LIRMM

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

6

v(t+๐‘˜)=

y(t)

Reference Governor

Page 7: Reference Governor - LIRMM

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

7

v(t+๐‘˜)=

y(t)

v(t)

Reference Governor

Page 8: Reference Governor - LIRMM

Basic idea: Compute ๐‘ฃ(๐‘ก) so that if constantly applied it would not lead to constraint violations

๐‘ก โ‹… ๐‘‡๐‘ 

8

v(t+๐‘˜)=

y(t)

v(t)

Reference Governor

Page 9: Reference Governor - LIRMM

EXPERIMENTS Plant: Inverted Pendulum

Control Law: Linear Quadratic Regulator

LQR๐‘ข

๐‘ฅ

๐‘ฃ

๐‘Ÿ

๐‘Ÿ

๐‘ฃ ๐‘ฃ

9Slides from 2014 IEEE CDC Workshop by E. Garone, S. Di Cairano, and I.V. Kolmanovsky

Page 10: Reference Governor - LIRMM

EXPERIMENTS Plant: Inverted Pendulum

Control Law: Linear Quadratic Regulator

๐‘Ÿ

LQR๐‘ข

๐‘ฅ

RG

๐‘Ÿ๐‘ฃ

๐‘ฃ

10Slides from 2014 IEEE CDC Workshop by E. Garone, S. Di Cairano, and I.V. Kolmanovsky

Page 11: Reference Governor - LIRMM

subject to

Maximize ๐œ…(๐‘ก)

๐‘ฃ(๐‘ก)๐‘ฅ(๐‘ก)

โˆˆ ๐‘ƒ โŠ† ๐‘‚โˆž

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐œ… ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 ,

0 โ‰ค ๐œ…(๐‘ก) โ‰ค 1

11

Scalar Reference Governor

Page 12: Reference Governor - LIRMM

โ€ข ๐‘‚โˆž is the set of safe pairs of initial states, ๐‘ฅ 0 , and

constant commands, ๐‘ฃ ๐‘ก โ‰ก ๐‘ฃ, which do not cause

subsequent constraint violation

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ, ๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ โˆˆ ๐‘Œ โ‡’

๐‘‚โˆž = แˆผ ๐‘ฃ, ๐‘ฅ(0) : ๐ถ๐ด๐‘ก๐‘ฅ(0) + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต๐‘ฃ + ๐ท๐‘ฃ โˆˆ ๐‘Œ,๐‘ก = 0,1,โ‹ฏ ,โˆž }

โ€ข Example: For asymptotically stable observable linear system:

12

Safe Set

Page 13: Reference Governor - LIRMM

13

โ€ข Finitely determined inner approximation is obtained by

slightly tightening the โ€œsteady-stateโ€ constraints

เทจ๐‘‚โˆž = แˆผ ๐‘ฃ, ๐‘ฅ 0 : (๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท)๐‘ฃ โˆˆ 1 โˆ’ ํœ€ ๐‘Œ, ๐ถ๐ด๐‘ก๐‘ฅ 0 + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท๐‘ฃ โˆˆ ๐‘Œ,๐‘ก = 0,1,โ‹ฏ , ๐‘กโˆ—} โŠ‚ ๐‘‚โˆž

Implementation based on subsets

Page 14: Reference Governor - LIRMM

14

โ€ข If the constraint set is polyhedral, then เทจ๐‘‚โˆž is polyhedral

Safe Sets

๐‘Œ = ๐‘ฆ:๐ป๐‘ฆ โ‰ค โ„Ž โ‡’

เทจ๐‘‚โˆž = ๐‘ฃ, ๐‘ฅ 0 :

๐ป๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท 0๐ป๐ท

๐ป๐ถ๐ต + ๐ป๐ท๐ป๐ถ๐ป๐ถ๐ด

โ‹ฎ๐ป๐ถ ๐ผ โˆ’ ๐ด๐‘˜ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ป๐ท

โ‹ฎ

โ‹ฎ๐ป๐ถ๐ด๐‘˜

โ‹ฎ

๐‘ฃ๐‘ฅ(0) โ‰ค

1 โˆ’ ํœ€ โ„Žโ„Žโ„Žโ‹ฎโ„Žโ‹ฎ

โ€ข Redundant and โ€œalmost redundantโ€ inequality constraints are

eliminated while remaining constraints are tightened to obtain

a simply represented ๐‘ƒ โŠ† เทจ๐‘‚โˆž

Page 15: Reference Governor - LIRMM

Computing ๐‘ท

Page 16: Reference Governor - LIRMM

Computing ๐œฟ

Page 17: Reference Governor - LIRMM

17

Example

Model:

๐‘ฅ1 ๐‘ก + 1 = ๐‘ฅ1 ๐‘ก + 0.1๐‘ฅ2 ๐‘ก ,๐‘ฅ2(๐‘ก + 1) = ๐‘ฅ2 ๐‘ก + 0.1๐‘ข(๐‘ก)

Constraints:

|๐‘ฅ1| โ‰ค 1,|๐‘ฅ2| โ‰ค 0.1,

|๐‘ข| โ‰ค 0.1

Nominal closed-loop:

๐‘ข = โˆ’0.917 ๐‘ฅ1 โˆ’ ๐‘Ÿ โˆ’ 1.636๐‘ฅ2,

Reference command

๐‘Ÿ ๐‘ก = 0.5.

0 20 40 60 80-0.1

0

0.1

0.2

0.3

0.4

0.5

t

x1

x2

u

Response without reference governor

Page 18: Reference Governor - LIRMM

18

Example (contโ€™d)

๐‘ข = โˆ’0.917 ๐‘ฅ1 โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1.636๐‘ฅ2 , ๐‘ฃ(๐‘ก) = ๐‘…๐บ(๐‘ฃ ๐‘ก โˆ’ 1 , ๐‘ฅ ๐‘ก )

Response with reference governor

Page 19: Reference Governor - LIRMM

19

Example (contโ€™d)

Cross-sections of ๐‘ƒ = เทจ๐‘‚โˆž :

Page 20: Reference Governor - LIRMM

1 DOF spacecraft with flexible appendage

Page 21: Reference Governor - LIRMM

1 DOF spacecraft with flexible appendage

Page 22: Reference Governor - LIRMM

Almost redundant constraint elimination

Vahidi, A., Kolmanovsky, I.V., and Stefanopolou, A., "Constraint handling in a fuel cell system: A fast reference

governor approach," IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 86-98, January, 2007.

Page 23: Reference Governor - LIRMM

More general sets ๐‘ท, nonlinear systemsโ€ฆ

Page 24: Reference Governor - LIRMM

Scalar reference governor

Page 25: Reference Governor - LIRMM

Using ๐‘ท without actually computing it

Page 26: Reference Governor - LIRMM

Response prediction based on linear model

Page 27: Reference Governor - LIRMM

Online prediction-based reference governor

Nicotra, M., Garone, E., and Kolmanovsky, I.V., โ€œA fast reference governor for linear systems,โ€ AIAA

Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 460-464, 2017.

Page 28: Reference Governor - LIRMM

โ€ข Linear and nonlinear systems with set-bounded

disturbances and parameter uncertainties can be treated

โ€ข Feasibility at initial time implies constraint adherence and

recursive feasibility for all future times

โ€ข Finite-time convergence of ๐‘ฃ(๐‘ก) to ๐‘Ÿ(๐‘ก) or nearest steady-

state feasible value for constant ๐‘Ÿ(๐‘ก)

โ€ข Similar convergence results for ``nearly constantโ€™โ€™ and

slowly-varying ๐‘Ÿ(๐‘ก)

โ€ข Enlarged constrained domain of attraction

28

Remarks on existing theory

Page 29: Reference Governor - LIRMM

Survey paper

Page 30: Reference Governor - LIRMM

Reference governor extensions

Page 31: Reference Governor - LIRMM

Reference governor extensions

Page 32: Reference Governor - LIRMM

Reference governor extensions

Page 33: Reference Governor - LIRMM

Implementing Linear

Design on a

Nonlinear System

33

Page 34: Reference Governor - LIRMM

Adopting linear design to a nonlinear system

12/15/2014

โ€ข Consider a disturbance-free nonlinear system

๐›ฟ๐‘ฅ ๐‘ก + 1 = ๐ด๐›ฟ๐‘ฅ ๐‘ก + ๐ต๐›ฟ๐‘ฃ(๐‘ก) โˆˆ ๐‘Œ

๐›ฟ๐‘ฅ ๐‘ก = ๐‘ฅ โˆ’ ๐‘ฅ๐‘œ๐‘,

๐›ฟ๐‘ฃ ๐‘ก = ๐‘ฃ โˆ’ ๐‘ฃ๐‘œ๐‘,

๐‘“ ๐‘ฅ๐‘œ๐‘, ๐‘ฃ๐‘œ๐‘ = 0

๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก = ๐ถ ๐›ฟ๐‘ฅ ๐‘ก + ๐ท ๐›ฟ๐‘ฃ ๐‘ก

โ€ข Let a linearization of the nonlinear model at an operating

point (๐‘ฅ๐‘œ๐‘, ๐‘ฃ๐‘œ๐‘, ๐‘ฆ๐‘œ๐‘) be given by

๐‘ฅ ๐‘ก + 1 = ๐‘“ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก

๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก = ๐‘” ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

34

Page 35: Reference Governor - LIRMM

Adopting linear design to a nonlinear system

โ€ข Main idea: Correct the linear model prediction into the future

by a disturbance term by ๐‘‘(๐‘ก)

เทœ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก + ๐‘˜|๐‘ก = ๐‘ฆ๐‘œ๐‘ + ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก + ๐‘˜ ๐‘ก + ๐‘‘ ๐‘ก

เทจ๐‘‚โˆž,๐‘Ž๐‘ข๐‘” = แˆผ ๐›ฟ๐‘ฃ, ๐›ฟ๐‘ฅ 0 , ๐‘‘ :

๐ถ๐ด๐‘ก๐›ฟ๐‘ฅ 0 + ๐ถ ๐ผ โˆ’ ๐ด๐‘ก ๐ผ โˆ’ ๐ด โˆ’1๐ต๐›ฟ๐‘ฃ + ๐ท๐›ฟ๐‘ฃ + ๐‘‘ โˆˆ ๐‘Œ~แˆผ๐‘ฆ๐‘œ๐‘},๐‘ก = 0,1,โ‹ฏ ,โˆž }โ‹‚ฮ“โˆž

Vahidi, K, Stefanopoulou, IEEE TCST 15 (1), 86-98 (2007)

โ€ข Let ๐‘‘ ๐‘ก = ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™ ๐‘ก โˆ’ ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘œ๐‘ be the output deviation

from the output predicted by the linear model at current time

โ€ข Define

35

Page 36: Reference Governor - LIRMM

Adopting linear design to a nonlinear system

๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ๐‘œ๐‘๐›ฟ๐‘ฅ(๐‘ก)๐‘‘(๐‘ก)

โˆˆ เทจ๐‘‚โˆž,๐‘Ž๐‘ข๐‘”

๐›ฝ ๐‘ก โ†’ max ๐‘ ๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ 0 โ‰ค ๐›ฝ ๐‘ก โ‰ค 1

โ€ข Reference governor logic:

๐‘‘ ๐‘ก = ๐‘ฆ๐‘›๐‘œ๐‘›๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘™๐‘–๐‘› ๐‘ก โˆ’ ๐‘ฆ๐‘œ๐‘

๐‘Ž๐‘›๐‘‘

36

Page 37: Reference Governor - LIRMM

Discussion

โ€ข The proposed technique is motivated by a similar scheme in

MPC

โ€ข It is heuristic but has been shown to work well in several

applications

โ€ข The study of its theoretical properties remains an open

research problem

โ€ข Extensions to command governor and extended command

governor cases are feasible

37

Page 38: Reference Governor - LIRMM

Controller state and reference governor (CSRG)

Controller PlantCSRG

K. McDonough and I.V. Kolmanovsky, โ€œController state and reference governors for discrete-time

linear systems with pointwise-in-time state and control constraints,โ€ Proceedings of 2015 American

Control Conference, Chicago, IL, pp. 3607-3612, 2015.

Page 39: Reference Governor - LIRMM

Gas turbine engine

Page 40: Reference Governor - LIRMM

Command

CSRG modified

command

Fan speed

Constraints

Linear model simulations

Page 41: Reference Governor - LIRMM

โ€ข Trim point to trim point transition feasibility is

determined based on set of states that can be

recovered by CSRG

โ€ข The actual transitions are controlled by CSRG

Envelope-aware flight management system

Di Donato, P.F.A., Balachandran, S., McDonough, K., Atkins, E., and Kolmanovsky, I.V., โ€œEnvelope-

aware flight management for loss of control prevention given rudder jam,โ€ AIAA Journal of Guidance,

Control, and Dynamics, vol. 40, pp. 1027-1041, 2017.

Page 42: Reference Governor - LIRMM

Chance constrained reference governor

Kalabic, U., Vermillion, C., and Kolmanovsky, I.V. โ€œConstraint enforcement for a lighter-than-air wind-energy

system: An application of reference governors with chance constraints,โ€ Proceedings of 20th IFAC World

Congress, Toulouse, France, IFAC-PapersOnLine, vol. 50, no. 1, pp. 13258-13263, July 2017.

Page 43: Reference Governor - LIRMM

Formation control

Frey, G., Petersen, C., Leve, F., Garone, E., Kolmanovsky, I.V. and Girard, A., โ€œParameter governors for

coordinated control of n-spacecraft formations,โ€ AIAA Journal of Guidance, Control, and Dynamics, vol. 40,

no. 11, pp. 3020-3025, November, 2017.

Page 44: Reference Governor - LIRMM

Concluding remarks

Controller PlantReference

governor

โ€ข Augment rather than replace nominal controller

โ€ข Inactive if no danger of constraint violation

โ€ข Easy to implement / fast online computations

โ€ข Special properties

โ€ข Much room for future research and applications

Page 45: Reference Governor - LIRMM

BACKUP SLIDES

45

Page 46: Reference Governor - LIRMM

The Extended Command

Governor (ECG)

46

Page 47: Reference Governor - LIRMM

Agenda

โ€ข Extended Command Governor (ECG)

โ€ข Design of ancillary dynamical system

โ€ข Response properties

โ€ข Interpretation as a form of Model Predictive Controller (MPC)

โ€ข Application examples

โ€ข Command governor and vector reference governor

47

Page 48: Reference Governor - LIRMM

Extended command governor

(Gilbert and Ong, Automatica, Vol. 47, pp. 334-340, 2011)

Motivation:

โ€ข Enlarge constrained region of attraction

โ€ข Provide faster response

โ€ข Increase robustness to unmodeled dynamics

48

Page 49: Reference Governor - LIRMM

Extended command governor

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

โ€ข Auxiliary โ€œcommand generatingโ€ subsystem:

โ€ข System:

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

โ€ข Requirement: าง๐ด is asymptotically stable (Schur)

Page 50: Reference Governor - LIRMM

Auxiliary command generator

๐œŒ(0)

๐‘ฃ ๐‘ก = าง๐ถ าง๐ด๐‘ก ๐‘ฅ 0 + ๐œŒ(0)

0 ๐‘ก

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

๐‘ฃ ๐‘ก

โ€ข Auxiliary โ€œcommand generatingโ€ subsystem:

50

Page 51: Reference Governor - LIRMM

Augmented system

าง๐‘ฅ ๐‘ก + 1 = าง๐ด าง๐‘ฅ ๐‘ก

๐œŒ ๐‘ก + 1 = ๐œŒ ๐‘ก

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + าง๐ถ าง๐‘ฅ ๐‘ก

โ€ข Combined system:

โ€ข Constraints:

51

Page 52: Reference Governor - LIRMM

Augmented system

๐‘ฆ ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก โˆˆ ๐‘Œ

โ€ข Augmented system with constraints

าง๐‘ฅ(๐‘ก + 1)๐‘ฅ(๐‘ก + 1)

= ๐ด๐‘Žาง๐‘ฅ(๐‘ก)๐‘ฅ(๐‘ก)

+ ๐ต๐‘Ž ๐œŒ ๐‘ก

๐ด๐‘Ž =าง๐ด 0

๐ต าง๐ถ ๐ด, ๐ต๐‘Ž =

0๐ต

๐ถ๐‘Ž = ๐ท าง๐ถ ๐ถ ๐ท๐‘Ž = ๐ท

52

Page 53: Reference Governor - LIRMM

Strictly steady-state admissible commands

โ€ข Set ฮ“โˆž of steady-state admissible constant references:

ฮ“โˆž = แˆผ ๐œŒ 0 , าง๐‘ฅ 0 , ๐‘ฅ(0) : ๐œŒ(0) โˆˆ โ„›}

โ€ข Tightened set of steady-state feasible commands:

๐‘Ÿ โˆˆ โ„› โ‡’ ๐ป๐‘Ÿ โˆˆ 1 โˆ’ ๐œ– ๐‘Œ

โ€ข Static gain ๐ป = ๐ถ ๐ผ โˆ’ ๐ด โˆ’1๐ต + ๐ท

0 โˆˆ ๐‘–๐‘›๐‘ก ๐‘Œ, ๐‘Œ is compact, 0 < ๐œ– < 1

53

Page 54: Reference Governor - LIRMM

The set ๐‘ถโˆž

๐‘‚โˆž = แˆผ ๐œŒ 0 , าง๐‘ฅ 0 , ๐‘ฅ(0) : ๐‘ฆ(๐‘ก) โˆˆ ๐‘Œ, ๐‘ก = 0,1,โ‹ฏ ,โˆž}

โ€ข Safe set

54

Page 55: Reference Governor - LIRMM

The set เทฉ๐‘ถโˆž

โ€ข Safe set is tightened in steady-state

เทจ๐‘‚โˆž = ๐‘‚โˆž โ‹‚ฮ“โˆž

โ€ข Properties (under suitable assumptions):

โ€ข ๐‘Ÿ โˆˆ โ„› โ‡’ (๐‘Ÿ, 0, ๐‘ฅ๐‘ ๐‘  ๐‘Ÿ ) = (๐‘Ÿ, 0, ๐ป๐‘Ÿ) โˆˆ ๐‘–๐‘›๐‘ก ๐‘‚โˆž

โ€ข เทจ๐‘‚โˆž is positively invariant for augmented system

โ€ข เทจ๐‘‚โˆž is finitely-determined

55

Page 56: Reference Governor - LIRMM

โ€ข Suppose ๐‘Œ is a polytope: ๐‘Œ = แˆผ๐‘ฆ: ฮ›y โ‰ค ๐œ†}

๐ป๐œŒ,๐‘ก ๐œŒ + ๐ป าง๐‘ฅ,๐‘ก าง๐‘ฅ 0 +๐ป๐‘ฅ,๐‘ก ๐‘ฅ 0 โ‰ค ๐œ†

๐ปโˆž๐œŒ โ‰ค (1 โˆ’ ๐œ–)๐œ†

๐ป าง๐‘ฅ,๐‘ก, ๐ป๐‘ฅ,๐‘ก = ฮ›๐ถ๐‘Ž๐ด๐‘Ž๐‘ก ,

๐ป๐œŒ,๐‘ก = ฮ›(๐ถ๐‘Ž ๐ผ โˆ’ ๐ด๐‘Ž๐‘ก ๐ผ โˆ’ ๐ด๐‘Ž

โˆ’1๐ต๐‘Ž + ๐ท๐‘Ž)

๐ปโˆž = ฮ›(๐ถ๐‘Ž ๐ผ โˆ’ ๐ด๐‘Žโˆ’1๐ต๐‘Ž + ๐ท๐‘Ž)

The set เทฉ๐‘ถโˆž

โ€ข Then เทจ๐‘‚โˆž is defined by affine inequalities on ๐œŒ, าง๐‘ฅ 0 , ๐‘ฅ 0 :

โ€ข Consider the disturbance-free case (๐‘Š = 0)

โ€ข Inequalities for all ๐‘ก sufficiently large (๐‘ก โ‰ฅ ๐‘กโˆ—) are redundant

and need not be included

(๐‘ก = 0,12,โ‹ฏ )

(0 < ๐œ– โ‰ช 1)

56

Page 57: Reference Governor - LIRMM

subject to

๐œŒ ๐‘ก , าง๐‘ฅ ๐‘ก , ๐‘ฅ(๐‘ก) โˆˆ เทจ๐‘‚โˆž

๐ฝ = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) + าง๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† าง๐‘ฅ(๐‘ก) โ†’ ๐‘š๐‘–๐‘›๐œŒ(๐‘ก), าง๐‘ฅ(๐‘ก)

Extended command governor

โ€ข Optimization problem:

โ€ข Command computation based on าง๐‘ฅ(๐‘ก) and ๐œŒ(๐‘ก):

๐‘ฃ ๐‘ก = าง๐ถ าง๐‘ฅ ๐‘ก + ๐œŒ(๐‘ก)

57

Page 58: Reference Governor - LIRMM

Extended command governor

าง๐ด๐‘‡ าง๐‘† าง๐ด โˆ’ าง๐‘† < 0, าง๐‘†๐‘‡ = าง๐‘† > 0

โ€ข Assumption 2: The weight าง๐‘† in the cost function must satisfy

โ€ข Assumption 1: The weight ๐‘† in the cost function satisfies

๐‘†๐‘‡ = ๐‘† > 0

โ€ข Observation: If ๐œŒ ๐‘ก โˆ’ 1 , าง๐‘ฅ(๐‘ก โˆ’ 1) are feasible at time ๐‘ก โˆ’ 1,

then

๐œŒ ๐‘ก = ๐œŒ ๐‘ก โˆ’ 1 , ๐‘ฅ ๐‘ก = าง๐ด าง๐‘ฅ(๐‘ก โˆ’ 1)

are feasible at time ๐‘ก and

๐‘ฅ๐‘‡ ๐‘ก าง๐‘† ๐‘ฅ ๐‘ก โ‰ค าง๐‘ฅ๐‘‡ ๐‘ก โˆ’ 1 าง๐‘† าง๐‘ฅ(๐‘ก โˆ’ 1)

58

Page 59: Reference Governor - LIRMM

Observations

โ€ข Suppose ๐‘Ÿ ๐‘ก = ๐‘Ÿ(๐‘ก โˆ’ 1)

โ€ข Let ๐ฝโˆ—(๐‘ก) denote the optimal cost. Then:

๐ฝโˆ— ๐‘ก = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก + าง๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† าง๐‘ฅ ๐‘ก

= ๐ฝโˆ— ๐‘ก โˆ’ 1

โ‰ค ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก + ๐‘ฅ ๐‘ก ๐‘‡ าง๐‘† ๐‘ฅ ๐‘ก

โ‰ค ๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐‘Ÿ ๐‘ก โˆ’ 1๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐‘Ÿ ๐‘ก โˆ’ 1

+ าง๐‘ฅ ๐‘ก โˆ’ 1 ๐‘‡ าง๐‘† าง๐‘ฅ ๐‘ก โˆ’ 1

โ€ข The optimal cost is non-increasing, ๐ฝโˆ— ๐‘ก โ‰ค ๐ฝโˆ—(๐‘ก โˆ’ 1)

59

Page 60: Reference Governor - LIRMM

Comments [1]

โ€ข ECG plans a recovery command sequence as an output of

a stable auxiliary system to avoid constraint violation and

minimize interference with the system operation

โ€ข The first element of the recovery sequence, ๐‘ฃ ๐‘ก , is

applied to the system

โ€ข If เทจ๐‘‚โˆž is polyhedral, the ECG optimization problem is a

Quadratic Program (QP) with linear inequality constraints

โ€ข This QP can be solved online by a QP solver [such as

PQP, GPAD, Qpkwik, CVX,โ€ฆ] or explicitly by multi-

parametric solvers (MPT or hybrid toolbox)

60

Page 61: Reference Governor - LIRMM

Comments [2]

โ€ข ECG achieves large constrained domain of attraction

(= ๐‘ƒ๐‘Ÿ๐‘œ๐‘—๐‘ฅ เทจ๐‘‚โˆž). It is typically larger than that of RG

โ€ข ECG achieves faster response, i.e., faster

convergence of ๐‘ฃ(๐‘ก) to ๐‘Ÿ, in particular, for systems with

actuator rate limits

โ€ข Improved robustness to model uncertainty observed in

simulations

61

Page 62: Reference Governor - LIRMM

Theoretical results

โ€ข Suppose a feasible solution exists at time 0 and ๐‘Ÿ ๐‘ก = ๐‘Ÿ๐‘ 

for all ๐‘ก โ‰ฅ ๐‘ก๐‘ . Define ๐‘Ÿ๐‘ โˆ— = argmin

๐‘Ÿโˆˆโ„›๐‘Ÿ โˆ’ ๐‘Ÿ๐‘ 

2be the

nearest feasible reference

โ€ข Then there exists a ๐‘ก๐‘“ โˆˆ ๐‘+ such that ๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘ โˆ— for all ๐‘ก โ‰ฅ ๐‘ก๐‘“ .

โ€ข Given ๐œ– > 0, there exists a ๐‘ก๐œ– โˆˆ ๐‘+ such that

๐‘ฅ ๐‘ก โˆˆ ๐นโˆž ๐‘Ÿ๐‘ โˆ— + ๐œ–๐ต๐‘› for all ๐‘ก โ‰ฅ ๐‘ก๐œ–

(Gilbert and Ong, 2011)

62

Page 63: Reference Governor - LIRMM

Sketch of the proof

โ€ข ๐ฝโˆ—(๐‘ก) is monotonically non-increasing, hence

๐ฝโˆ— ๐‘ก โˆ’ 1 โˆ’ ๐ฝโˆ— ๐‘ก โ†’ 0

โ€ข Using the properties of minimum norm projection on a closed

and convex set, it is shown that

าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 โˆ’ าง๐‘ฅ ๐‘กาง๐‘†

2+ ๐œŒ(๐‘ก โˆ’ 1) โˆ’ ๐œŒ ๐‘ก

๐‘†

2โ‰ค ๐ฝโˆ— ๐‘ก โˆ’ 1 โˆ’ ๐ฝโˆ—(๐‘ก)

โ€ข Henceาง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 โˆ’ าง๐‘ฅ ๐‘ก โ†’ 0

๐œŒ ๐‘ก โˆ’ 1 โˆ’ ๐œŒ ๐‘ก โ†’ 0 as ๐‘ก โ†’ โˆž

63

Page 64: Reference Governor - LIRMM

Sketch of the proof

โ€ข Apply Lemma with

๐‘ง = าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 , ๐œŒ ๐‘ก โˆ’ 1 , ๐‘ง๐‘œ๐‘ = าง๐‘ฅ ๐‘ก , ๐œŒ ๐‘ก ,

๐‘ง๐‘  = 0, ๐‘Ÿ , ๐‘„ = ๐‘‘๐‘–๐‘Ž๐‘”( าง๐‘†, ๐‘†)

64

Page 65: Reference Governor - LIRMM

Sketch of the proof

๐‘ง๐‘œ๐‘

๐‘ง๐‘ 

๐‘ง๐‘Ž

๐‘๐‘

๐‘Ž2 + ๐‘2 โ‰ค ๐‘2 since ๐œƒ โ‰ฅ ๐œ‹/2

๐‘

๐œƒ

โ‡’ ๐‘Ž2 โ‰ค ๐‘2 โˆ’ ๐‘2

65

Page 66: Reference Governor - LIRMM

Sketch of the proof

โ€ข Thus าง๐‘ฅ ๐‘ก = าง๐ด าง๐‘ฅ ๐‘ก โˆ’ 1 + ๐œ‚(๐‘ก), and ๐œ‚ ๐‘ก โ†’ 0 as ๐‘ก โ†’ โˆž.

โ€ข Since าง๐ด is Schur, าง๐‘ฅ ๐‘ก โ†’ 0.

โ€ข Thus ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 โ†’ 0 and ๐‘ฅ ๐‘ก โ†’ ๐‘ฅ๐‘ ๐‘  ๐‘ก

โ€ข The proof is finalized by strict constraint admissibility in

steady-state. Formally, we demonstrate that for large ๐‘กand ํœ€ > 0 sufficiently small,

๐œŒ ๐‘ก โˆ’ ํœ€๐œŒ ๐‘ก โˆ’๐‘Ÿ๐‘ 

๐œŒ ๐‘ก โˆ’๐‘Ÿ๐‘ , าง๐‘ฅ(๐‘ก) = 0

are feasible.

โ€ข This is only possible if ๐œŒ ๐‘ก = ๐‘Ÿ๐‘  and hence ๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘ 

66

Page 67: Reference Governor - LIRMM

Choices of เดฅ๐‘จ, เดฅ๐‘ช

โ€ข Shift register of length ๐‘› าง๐‘ฅ:

าง๐ด =

0 ๐ผ0 0

0 โ‹ฏ๐ผ โ‹ฏ

โ‹ฎ โ‹ฎ0 0

โ‹ฎ โ‹ฎโ‹ฏ ๐ผ

, าง๐ถ = ๐ผ 0 โ‹ฏ 0

โ€ข Auxiliary system outputs a recovery sequence โ€œstoredโ€ in าง๐‘ฅ(0)

โ€ข ๐‘ฃ(๐‘ก) converges to a constant, ๐œŒ 0 , in ๐‘› าง๐‘ฅ steps

67

Page 68: Reference Governor - LIRMM

Example

โ€ข Example: ๐‘ฃ โˆˆ ๐‘…1, ๐‘› าง๐‘ฅ = 3

โ€ข Augmented state

๐‘ฃ ๐‘› าง๐‘ฅ + ๐‘˜ = ๐œŒ 0 , ๐‘˜ โ‰ฅ 0

าง๐‘ฅ =าง๐‘ฅ1าง๐‘ฅ2าง๐‘ฅ3

โ€ข Generated command sequence:

๐‘ฃ 0 = ๐œŒ 0 + าง๐‘ฅ1 0 ,๐‘ฃ 1 = ๐œŒ 0 + าง๐‘ฅ2 0 ,๐‘ฃ 2 = ๐œŒ 0 + าง๐‘ฅ3 0

68

Page 69: Reference Governor - LIRMM

Choices of เดฅ๐‘จ, เดฅ๐‘ช

โ€ข Laguerre Sequence Generator:

าง๐ด =

ํœ€๐ผ ๐›ฝ๐ผ โˆ’ํœ€๐›ฝ๐ผ ํœ€2๐›ฝ๐ผ โ‹ฏ

0 ํœ€๐ผ ๐›ฝ๐ผ โˆ’ํœ€๐›ฝ๐ผ โ‹ฏ00โ‹ฎ

00โ‹ฎ

ํœ€๐ผ0โ‹ฎ

๐›ฝ๐ผํœ€Iโ‹ฎ

โ‹ฏโ‹ฏโ‹ฑ

,

าง๐ถ = ๐›ฝ ๐ผ โˆ’ํœ€I ํœ€2๐ผ โˆ’ํœ€3๐ผ โ‹ฏ โˆ’ํœ€ ๐‘โˆ’1๐ผ

where ๐›ฝ = 1 โˆ’ ํœ€2, and 0 โ‰ค ํœ€ โ‰ค 1 is a selectable parameter that

corresponds to the time constant of the fictitious dynamics. Note that

with ํœ€ = 0, this is the shift register.

(Kalabic et. al., Proc. of 2011 MSC)

69

Page 70: Reference Governor - LIRMM

Command governor

subject to

๐‘ฃ ๐‘ก , ๐‘ฅ(๐‘ก) โˆˆ เทจ๐‘‚โˆž

๐ฝ = ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) โ†’ ๐‘š๐‘–๐‘›๐‘ฃ(๐‘ก)

โ€ข Command Governor (ECG) is a special case of ECG with ๐‘› าง๐‘ฅ =0.

โ€ข Optimization problem:

โ€ข Lower dimensional optimization problem versus ECG,

smaller constrained domain of attraction

70

Page 71: Reference Governor - LIRMM

Command governor

โ€ข Lower dimensional optimization problem versus ECG

โ€ข Define constrained domain of attraction as the domain of all

states which can be recovered without constraint violation

โ€ข CG has the same domain of recoverable states as RG, which

is smaller than that of ECG

โ€ข In cases when ๐‘›๐‘ฃ > 1 (multiple command channels that need

to be coordinated), CG is faster than conventional scalar RG

71

Page 72: Reference Governor - LIRMM

Vector Reference Governor (VRG)

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ฮš ๐‘ก (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

ฮš ๐‘ก =

๐œ…1(๐‘ก) 0 00 โ‹ฑ 00 0 ๐œ…๐‘›๐‘ฃ(๐‘ก)

0 โ‰ค ๐œ…๐‘– ๐‘ก โ‰ค 1, ๐‘– = 1,โ‹ฏ , ๐‘›๐‘ฃ

โ€ข Vector Reference Governor uses a vector gain to

independently adjust each channel

โ€ข Optimization problem: ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘†(๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก ) โ†’ min

๐‘ฃ t

subject to ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ฮš ๐‘ก (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

๐‘ฃ ๐‘ก , ๐‘ฅ ๐‘ก โˆˆ เทจ๐‘‚โˆž72

Page 73: Reference Governor - LIRMM

MPC format for ECG

โ€ข ECG with the shift register can be re-formulated as a

special variant of MPC controller

โ€ข Let ๐‘ฃ ๐‘ก = ๐œŒ ๐‘ก + ๐‘ข ๐‘ก

โ€ข Introduce notation commonly used in predictive control

๐‘ฃ ๐‘ก + ๐‘˜ ๐‘ก = ๐œŒ ๐‘ก + ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก , ๐‘˜ = 0,โ‹ฏ ,๐‘๐‘ โˆ’ 1

โ€ข Consider the disturbance-free case with ๐‘Š = 0

73

Page 74: Reference Governor - LIRMM

MPC format for ECG

โ€ข Optimization problem:

๐ฝ ๐‘ก = ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก๐‘‡๐‘† ๐œŒ ๐‘ก โˆ’ ๐‘Ÿ ๐‘ก +

๐‘˜=0

๐‘๐‘โˆ’1

๐‘ข ๐‘ก + ๐‘˜ ๐‘ก ๐‘‡ าง๐‘†๐‘˜๐‘ข ๐‘ก + ๐‘˜ ๐‘ก โ†’ min๐œŒ ๐‘ก ,๐‘ข(๐‘ก+โ‹…|๐‘ก)

subject to

๐‘ฅ ๐‘ก + ๐‘˜ + 1 ๐‘ก = ๐ด๐‘ฅ ๐‘ก + ๐‘˜ ๐‘ก + ๐ต(๐œŒ ๐‘ก + ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก )

๐‘ฅ ๐‘ก ๐‘ก = ๐‘ฅ ๐‘ก ,

๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก โˆˆ ๐‘Œ, ๐‘˜ = 0,1,โ‹ฏ ,๐‘๐‘ โˆ’ 1,

๐œŒ ๐‘ก , ๐‘ฅ ๐‘ก + ๐‘๐‘ ๐‘ก โˆˆ เทจ๐‘‚โˆž ( เทจ๐‘‚โˆž = เทจ๐‘‚โˆž๐‘…๐บ )

74

Page 75: Reference Governor - LIRMM

MPC format for ECG

โ€ข Condition that must hold: าง๐‘†๐‘˜ โ‰ฅ าง๐‘†๐‘˜โˆ’1 โ‰ฅ โ‹ฏ โ‰ฅ าง๐‘†0> 0

โ€ข ECG theory provides recursive feasibility and finite-time

convergence results for this special class of MPC

controllers, i.e., it guarantees that

๐œŒ ๐‘ก = ๐‘Ÿ ๐‘ก , ๐‘ข ๐‘ก + ๐‘˜ ๐‘ก = 0, ๐‘˜ = 0,โ‹ฏ ,๐‘๐‘ โˆ’ 1

for all ๐‘ก โ‰ฅ ๐‘ก๐‘  and for constant, strictly constraint

admissible, ๐‘Ÿ ๐‘ก = ๐‘Ÿ๐‘ .

75

Page 76: Reference Governor - LIRMM

Extended Command Governor (f16aircraft_ecg.m)

% --------- Construct appended system for ECG -----

nh = 5;

[sys_app, sys_full] = ecg_appdyn(nh, ss(A,B,C,D,dT),'laguerre', 0.4);

Abar = sys_app.A;

Cbar = sys_app.C;

nb = size(Abar, 1);

Secg = dlyap(Abar,0.1*eye(nb)); % weight matrix on xbar

โ€ฆ

Recg = diag([1,1]); % weighting matrix on rho

โ€ฆ

for i = 1:t_sim,

...

[v(:,i+1),p(:,i+1),rho(:,i+1)] = gov_ecg(Recg, Secg, Hx, Hp, Hr, h,x_gov(:,i+1),

r(:,i+1), sys_app.c, p(:,i), rho(:,i));

โ€ฆ

end76

Page 77: Reference Governor - LIRMM

Response with Extended Command Governor

Pitch angle

Flight path angle

๐‘Ÿ๐œƒ๐‘ฃ๐œƒ๐œƒ

๐‘Ÿ๐›พ๐‘ฃ๐›พ๐›พ

โ€ข Response with tightened rate limits

โ€ข ECG is faster than RG

โ‰ค 0 โ‡’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก๐‘  ๐‘ ๐‘Ž๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘‘

Constraints

77

Page 78: Reference Governor - LIRMM

The Set เทฉ๐‘ถโˆž (with disturbances, ๐‘พ is polyhedral)

๐ป๐œŒ,๐‘ก ๐œŒ + ๐ป าง๐‘ฅ,๐‘ก าง๐‘ฅ 0 +๐ป๐‘ฅ,๐‘ก ๐‘ฅ 0 โ‰ค ๐œ†๐‘ก

๐ปโˆž๐œŒ โ‰ค ๐œ†โˆž

๐‘Œ๐‘ก = ๐‘ฆ: ฮ›๐‘ฆ โ‰ค ๐œ†๐‘ก = ๐‘Œ โˆผ ๐ท๐‘ค๐‘Š โˆผ ๐ถ๐ต๐‘ค๐‘Š โˆผ โ‹ฏ โˆผ ๐ถ๐ด๐‘กโˆ’1๐ต๐‘ค๐‘Š

๐œ†๐‘ก = ๐œ†๐‘กโˆ’1 โˆ’maxแˆผ๐‘Š ๐‘–

ฮ›๐ถ๐ด๐‘กโˆ’1๐ต๐‘ค๐‘Š๐‘– }, ๐‘ก > 1

๐‘Œโˆž = ๐‘ฆ: ฮ›๐‘ฆ โ‰ค ๐œ†โˆž , 0 < ๐œ†โˆž < inf๐‘ก๐œ†๐‘ก

โ€ข เทจ๐‘‚โˆž is defined by affine inequalities on ๐œŒ, าง๐‘ฅ 0 , ๐‘ฅ 0 :

๐œ†0 = ๐œ† โˆ’maxแˆผ๐‘Š ๐‘–

ฮ›๐ท๐‘ค๐‘Š๐‘– }

๐‘Š = ๐‘๐‘œ๐‘›๐‘ฃโ„Žแˆผ๐‘Š(๐‘–), ๐‘– = 1,โ‹ฏ , ๐‘›๐‘ค}

(๐‘ก = 0,12,โ‹ฏ )

78

Page 79: Reference Governor - LIRMM

Reference Governors for

Nonlinear Systems

79

Page 80: Reference Governor - LIRMM

Nonlinear systems with pointwise-in-time

constraints

Control objectives

โ€ข Tracking: ๐‘ง ๐‘ก โ‰ˆ ๐‘Ÿ(๐‘ก)โ€ข Satisfy pointwise-in-time state/control constraints: ๐‘ฆ ๐‘ก โˆˆ ๐‘Œโ€ข Robustness to disturbances/uncertainties: ๐‘ค ๐‘ก โˆˆ ๐‘Š โˆ€๐‘ก โ‰ฅ 0โ€ข Optimality

โ€ข obstacle avoidance

โ€ข actuator limits

โ€ข safety limits

โ€ข โ€ฆ

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ โˆ€๐‘ก โ‰ฅ 0

80

Page 81: Reference Governor - LIRMM

Nonlinear systems with constraints,

disturbances, and commands

โ€ข Stationary disturbances ๐‘ค ๐‘ก :

โ€ข Nonlinear system with constraints, disturbances and

commands

๐‘ฅ ๐‘ก + 1 = ๐‘“(๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก , ๐‘ค ๐‘ก )

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ โ‡” (๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก ) โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

Gilbert and Kolmanovsky, Automatica (38) 2063-2073 (2002)

- set-bounded

- set-bounded and rate bounded

- parametric uncertainties

- โ€ฆ

12/14/2014

๐‘ค โ‹… โˆˆ ๐•Ž โ‡’ ๐‘ค โ‹… +๐œŽ โˆˆ ๐•Ž ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐œŽ โˆˆ ๐‘+

81

Page 82: Reference Governor - LIRMM

Functional description of safe set of

states and constant commands

โ€ข Safe set* of initial states and constant commands

เดค๐‘‰ ๐‘ฅ(0), ๐‘ฃ(0) โ‰ค 0 โ‡’ ๐‘ฅ ๐‘ก , ๐‘ฃ 0 โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

- เดค๐‘‰ is continuous (can be non-smooth)

- Strong returnability:

เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(0) โ‰ค โˆ’๐œ– for some ๐‘ก โˆˆ ๐‘+

๐‘ฅ ๐‘ก = ๐‘ฅ ๐‘ก ๐‘ฅ 0 , ๐‘ฃ ๐‘˜ = ๐‘ฃ 0 , ๐‘˜ = 1,โ‹ฏ , ๐‘ก โˆ’ 1

โ€ข Technical assumptions

เดค๐‘‰ ๐‘ฅ(0), ๐‘ฃ(0) โ‰ค 0 โ‡’

*Safe set is not required to be positively invariant82

Page 83: Reference Governor - LIRMM

Functional description of safe set of

states and constant commands

83

Page 84: Reference Governor - LIRMM

Scalar reference governor

subject to

โ€ข Maximize ๐›ฝ(๐‘ก)

เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(๐‘ก) โ‰ค 0,

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 ,

โ€ข ๐›ฝ ๐‘ก = 0 if no feasible solution exists

โ€ข Accept small increments, ๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 , only if เดค๐‘‰ ๐‘ฅ(๐‘ก), ๐‘ฃ(๐‘ก โˆ’ 1) โ‰ค โˆ’๐œ–

0 โ‰ค ๐›ฝ(๐‘ก) โ‰ค 1

โ€ข Solution via bisections or grid search, explicit in some cases (e.g., if เดค๐‘‰ is quadratic)

โ€ข Solution within a known tolerance is sufficient for subsequent theoretical results to hold.

84

Page 85: Reference Governor - LIRMM

Reference governor: basic approach

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ(๐‘ก) โ‰ค 0

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ(๐‘ก + 4) โ‰ค 0

85

Page 86: Reference Governor - LIRMM

Definitions

ฮ  ๐‘ž = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ, ๐‘ž โ‰ค 0} is a โ€œsafeโ€ set with ๐‘ฃ ๐‘ก = ๐‘ž

ฮ ๐œ€ ๐‘ž = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ, ๐‘ž โ‰ค โˆ’๐œ–}

โ€ข Let ๐‘† be a compact and convex set such that for ๐‘ฃ โˆˆ ๐‘†technical assumptions hold

โ€ข For ๐‘ž โˆˆ ๐‘† define:

86

Page 87: Reference Governor - LIRMM

Acceptance Logic

โ€ข Let ๐›ฝโˆ—(๐‘ก) denote the solution to the optimization problem. If

๐›ฝโˆ— ๐‘ก ๐‘Ÿ(๐‘ก) โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1โˆž< ๐›ฟ

whileเดค๐‘‰ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆ’ 1 > โˆ’ํœ€

โ‡’ ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 (maintain the last command)

โ€ข Practical guidelines:

๐›ฟ โ‰ค 10โˆ’2max๐‘Ÿ,๐‘ฃโˆˆ๐‘†

๐‘Ÿ โˆ’ ๐‘ฃโˆž

Select ํœ€ so that ฮ ๐œ€ ๐‘ž is between 0.9 and 0.99 of ฮ (๐‘ž)

87

Page 88: Reference Governor - LIRMM

Reference Governor Response Properties

โ€ข Constraint satisfaction:

๐‘ฅ 0 โˆˆ ฮ  ๐‘ฃ 0 โ‡’ ๐‘ฅ ๐‘ก , ๐‘ฃ ๐‘ก โˆˆ ๐ถ โˆ€๐‘ก โˆˆ ๐‘+

โ€ข It is possible to handle any initial state such that

๐‘ฅ 0 โˆˆ ฮ IS =แˆซ

๐‘žโˆˆ๐‘†

ฮ (๐‘ž)

โ€ข Finite time convergence property for constant reference

inputs

๐‘Ÿ ๐‘ก = ๐‘Ÿ0 โˆˆ ๐‘† for all ๐‘ก โ‰ฅ ๐‘ก0 โ‡’ โˆƒ ว๐‘ก โ‰ฅ ๐‘ก0 such that ๐‘ฃ ๐‘ก = ๐‘Ÿ0for all ๐‘ก โ‰ฅ ว๐‘ก

88

Page 89: Reference Governor - LIRMM

Reference Governor Response Properties

โ€ข Response properties for non-constant inputs:

๐‘Ÿ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก โ‰ฅ ๐‘ก0, ๐‘Ÿ0 โˆˆ ๐‘†, and 0 < ๐›ฟ0 <

1

2๐›ฟ,

Then if ๐›ฟ is sufficiently small โ‡’ ๐‘ฃ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก

sufficiently large

โ€ข Under additional assumptions,

๐‘ฃ ๐‘ก = ๐‘Ÿ(๐‘ก) if ๐‘Ÿ ๐‘ก โˆ’ ๐‘Ÿ0 โˆžโ‰ค ๐›ฟ0 for all ๐‘ก โ‰ฅ ๐‘ก0, r0 โˆˆ ๐‘†

โ€ข Can handle additional constraints

๐‘ฃ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1โˆžโ‰ค ๐›ฟ๐‘š๐‘Ž๐‘ฅ

89

Page 90: Reference Governor - LIRMM

Constructing เดฅ๐‘ฝ

โ€ข Closed-loop Lyapunov or ISS-Lyapunov functions

- Define เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ๐‘‰ ๐‘ฅ, ๐‘ฃ โˆ’ ๐‘ ๐‘ฃ , where ๐‘‰ is a Lyapunov or an ISS-

Lyapunov function of the closed-loop system

- For a given ๐‘ฃ, maximize ๐‘ ๐‘ฃ subject to sublevel set

ฮ  ๐‘ฃ = แˆผ๐‘ฅ: เดค๐‘‰ ๐‘ฅ. ๐‘ฃ โ‰ค 0} satisfying constraints

- In cases with bounded disturbances, need ๐‘ ๐‘ฃ โ‰ฅ ๐‘๐‘š๐‘–๐‘›(๐‘ฃ) for the

sublevel set ฮ (๐‘ฃ) to be strongly returnable

- Simplifications occur due to positive invariance of sublevel sets

90

Page 91: Reference Governor - LIRMM

Constructing เดฅ๐‘ฝ

โ€ข Off-line simulations and machine learning

- เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ฮฆ(๐‘ฅ, ๐‘ฃ) is a classifier separating safe and unsafe initial

conditions and constant commands

- Scenarios (Monte Carlo simulations) are run with respect to ๐‘ค(โ‹…)

- Non-smooth classifiers permitted, e.g., เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = min๐‘—แˆผฮฆ๐‘—(๐‘ฅ, ๐‘ฃ)}.

Thus can represent unions of safe regions.

ฮฆ ๐‘ฅ(0), ๐‘ฃ โ‰ค 0 โ‡’ (๐‘ฅ(0), ๐‘ฃ) is safe

- In the disturbance-free case, model simulations are run for

various combinations of ๐‘ฅ(0) and ๐‘ฃ

91

Page 92: Reference Governor - LIRMM

Constructing เดฅ๐‘ฝ

๐‘ง =๐‘ฅ๐‘ฃ

ฮฆ๐‘— ๐‘ง = maxแˆผ๐œ‚๐‘–๐‘—๐‘‡ ๐‘ง โˆ’ ๐‘๐‘— , ๐‘– โˆˆ ๐ผ}

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = เดค๐‘‰ ๐‘ง = min๐‘—

ฮฆ๐‘—(๐‘ง)

Example: Cover safe initial

conditions and commands

by a union of hyper-

rectangles

92

Page 93: Reference Governor - LIRMM

เดฅ๐‘ฝ implicitly defined through on-line prediction

โ€ข Constraints:

๐ถ = แˆผ ๐‘ฅ, ๐‘ฃ : โ„Ž๐‘– ๐‘ฅ, ๐‘ฃ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ}

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ = ๐‘š๐‘Ž๐‘ฅแˆผโ„Ž๐‘–(๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‹… , ๐‘ฃ), ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, ๐‘ก = 0,โ‹ฏ , ๐‘ก0, ๐‘ค โ‹… โˆˆ ๐‘Š}

where ๐‘ก0 is sufficiently large so that

โ„Ž๐‘– ๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‹… , ๐‘ฃ โ‰ค โˆ’๐œ–, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, ๐‘ค โ‹… โˆˆ ๐‘Š and ๐‘ก โ‰ฅ ๐‘ก0

๐œ™ = โ€œsolutionโ€

Bemporad, IEEE TAC AC-43(4) 451-461 (1998); Gilbert and K, Automatica, 38, 2063-2073, 2002

โ€ข On-line prediction of maximum constraint violation

93

Page 94: Reference Governor - LIRMM

เดฅ๐‘ฝ implicitly defined through on-line prediction

Sun and K., IEEE TCST 13 (6), pp. 991-919, 2005

โ€ข Simplifications in parametric uncertainty/robust reference

governor case

๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค โ‰ˆ ๐œ™ ๐‘ก, ๐‘ฅ, ๐‘ฃ, ๐‘ค0 +๐œ•๐œ™

๐œ•๐‘คแ‰š๐‘ก,๐‘ฅ,๐‘ฃ,๐‘ค0

(๐‘ค โˆ’ ๐‘ค0)

๐œ•๐œ™

๐œ•๐‘ค|๐‘ก,๐‘ฅ,๐‘ฃ,๐‘ค0

= solution of sensitivity ODEs

94

Page 95: Reference Governor - LIRMM

Control of EAMSD

โ€ข Position and current constraints

Miller, K, Gilbert, Washabaugh, IEEE Control Systems Magazine,2000

๐‘‘๐‘ฅ1๐‘‘๐‘ก

= ๐‘ฅ2

๐‘‘๐‘ฅ2๐‘‘๐‘ก

=๐‘˜

๐‘š๐‘ฅ1 โˆ’

๐‘

๐‘š๐‘ฅ2 +

๐›ผ

๐‘š

๐‘ข

๐‘‘0 โˆ’ ๐‘ฅ1๐›พ , ๐‘ข = ๐‘–๐›ฝ

๐‘ข =1

๐›ผ(๐‘‘0 โˆ’ ๐‘ฅ1 )

๐›พ ๐‘˜๐‘ฃ โˆ’ ๐‘๐‘‘๐‘ฅ2

๐‘‘0

๐‘ฅ๐‘’(๐‘ฃ)

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ =๐‘˜

2๐‘ฅ1 โˆ’ ๐‘ฃ 2 +

๐‘š

2๐‘ฅ22 โˆ’ ๐‘ ๐‘ฃ

Position constraint

๐‘ฅ1

๐‘ฅ2

Current constraint

เดค๐‘‰ ๐‘ฅ, ๐‘ฃ โ‰ค 0

95

Page 96: Reference Governor - LIRMM

Control of EAMSD

Without RG

Experimental Results

With RG

โ€ข Position and current constraints

๐‘‘0

Position response

96

Page 97: Reference Governor - LIRMM

17:00-17:20, Paper FrC15.4 Add to My Program

Constrained Spacecraft Attitude Control on SO(3) Using

Reference Governors and Nonlinear Model Predictive Control

Kalabic, Uros V. Univ. of Michigan

Gupta, Rohit Univ. of Michigan

Di Cairano, Stefano Mitsubishi Electric Res. Lab.

Bloch, Anthony M. Univ. of Michigan

Kolmanovsky, Ilya V. The Univ. of Michigan

16:20-16:40, Paper WeC06.2 Add to My Program

Constraint Enforcement of Piston Motion in a Free-Piston Engine

Zaseck, Kevin Univ. of Michigan

Brusstar, Matthew The United States Environmental Protection

Agency

Kolmanovsky, Ilya V. The Univ. of Michigan

Nonlinear reference governor

applications at 2014 ACC

97

Page 98: Reference Governor - LIRMM

Reference Governor for Linear

Systems with Nonlinear

Constraints

98

Page 99: Reference Governor - LIRMM

Linear systems with nonlinear constraints

๐‘ฅ ๐‘ก + 1 = ๐ด๐‘ฅ ๐‘ก + ๐ต๐‘ฃ ๐‘ก

๐‘ฆ ๐‘ก โˆˆ ๐‘Œ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘ก โˆˆ ๐‘+

y ๐‘ก = ๐ถ๐‘ฅ ๐‘ก + ๐ท๐‘ฃ ๐‘ก

๐‘Œ = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ

โ€ข Linear system model:

โ€ข Treat nonlinear constraints (without polyhedral approximations):

Kalabic et. al., Proc. of 2011 CDC, pp. 2680-2686 99

Page 100: Reference Governor - LIRMM

Comments

โ€ข Motivation: Handling constraints for Feedback Linearizable systems

โ€ข Theory in Gilbert, K., and Tan (1994,1995) and Gilbert and K. (2002) is

applicable to the case of linear systems and nonlinear constraints

โ€ข We discuss computations, heuristics and examples

100

Page 101: Reference Governor - LIRMM

Scalar Reference Governor

๐›ฝ ๐‘ก โˆˆ 0,1 ,

๐‘ฆ ๐‘ก + ๐‘˜|๐‘ก โˆˆ ๐‘Œ, ๐‘˜ = 0,โ‹ฏ ๐‘กโˆ—

๐›ฝ ๐‘ก โ†’ ๐‘š๐‘Ž๐‘ฅ

๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1

โ€ข Optimization problem:

1We use the approach of Bemporad (1998) with implicitly defined constraints

2Here ๐‘กโˆ— is a finite determination index or an upper bound on it. We assume it

to be known in all the subsequent developments.

101

Page 102: Reference Governor - LIRMM

Linear model based prediction

๐‘ฆ ๐‘ก + ๐‘˜|๐‘ก = ฮ“ ๐‘˜ ๐‘ฅ ๐‘ก + ๐ป ๐‘˜ ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ ๐‘ก ๐ป ๐‘˜ (๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 )

ฮ“ ๐‘˜ = ๐ถ๐ด๐‘˜ ,

๐ป ๐‘˜ = ๐ถ โˆ’ ฮ“ ๐‘˜ (๐ผ โˆ’ ๐ด)โˆ’1๐ต + ๐ท

โ€ข Predicted output is an affine function of ๐›ฝ(๐‘ก)

โ€ข Predicted response to a constant command

๐‘ฃ ๐‘ก + ๐‘˜|๐‘ก โ‰ก ๐‘ฃ ๐‘ก = ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก )

102

Page 103: Reference Governor - LIRMM

Convex nonlinear constraints

If ๐›ฝ 0 = 0 is feasible, then an admissible interval for the values of ๐›ฝ ๐‘ก is of

the form

๐พ ๐‘ก = 0, ๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก , 1 โ‰ฅ ๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก โ‰ฅ0

and the reference governor sets ๐›ฝ ๐‘ก =๐›ฝ๐‘š๐‘Ž๐‘ฅ ๐‘ก . The constraints are satisfied

for all ๐‘ก โ‰ฅ 0.

โ€ข Suppose that

๐‘Œ = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ , ๐‘Ÿ

โ„Ž๐‘– are convex functions

โ€ข Proposition

103

Page 104: Reference Governor - LIRMM

Algorithmic implementation

If โ„Ž๐‘– ๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก > 0 where ๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก is the predicted response with

๐›ฝ ๐‘ก = ๐›ผ, use bisections to search for a scalar ๐›ผ+ that approximately

solves

โ„Ž๐‘– ฮ“ ๐‘˜ ๐‘ฅ ๐‘ก + ๐ป ๐‘˜ ๐‘ฃ ๐‘ก โˆ’ 1 + ๐›ผ+๐ป ๐‘˜ ๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ ๐‘ก โˆ’ 1 = 0

โ€ข Set ๐›ผ = 1.

โ€ข For ๐‘– = 1,โ‹ฏ , ๐‘Ÿ, and ๐‘˜ = 0,โ‹ฏ , ๐‘กโˆ—, repeat

โ€ข Update ๐›ผ = ๐›ผ+

โ€ข Apply โ€œconstraints active last firstโ€ evaluation heuristics (see the

paper)

104

Page 105: Reference Governor - LIRMM

Convex Quadratic Constraints

๐‘ฆ๐‘‡ เทจ๐‘„๐‘ฆ + แˆš๐‘†๐‘ฆ + แˆš๐ถ โ‰ค 0, เทจ๐‘„ = เทจ๐‘„๐‘‡ โ‰ฅ 0

โ€ข Suppose that the constraints are of the form

โ€ข This is a quadratic function of ๐›ฝ(๐‘ก). The root finding can be performed by

solving a quadratic equation.

โ€ข Then the constraints can be re-written as

๐‘ฅ ๐‘ก ๐‘‡ ๐‘ฃ ๐‘ก ๐‘‡ + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก))๐‘‡ เดค๐‘„ ๐‘˜๐‘ฅ(๐‘ก)

๐‘ฃ ๐‘ก + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก)

+ าง๐‘† ๐‘˜๐‘ฅ(๐‘ก)

๐‘ฃ ๐‘ก + ๐›ฝ(๐‘ก)(๐‘Ÿ ๐‘ก โˆ’ ๐‘ฃ(๐‘ก)+ แˆš๐ถ โ‰ค 0

105

Page 106: Reference Governor - LIRMM

Mixed Logical Dynamic Constraints

๐‘”๐‘– ๐‘ฆ > 0 โ†’ โ„Ž๐‘– ๐‘ฆ โ‰ค 0, ๐‘– = 1,โ‹ฏ๐‘Ÿ,

โ€ข We consider a set of constraints of if-then type

where ๐‘”๐‘– , โ„Ž๐‘– are convex functions

โ€ข Observations:

โ€ข The set of ฮฒ ๐‘ก โˆˆ [0,1] for which ๐‘”๐‘–(๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก ) โ‰ค 0 is a

(possibly empty) sub-interval of [0,1], ๐พ๐‘–(๐‘˜)

โ€ข The set of ฮฒ ๐‘ก โˆˆ [0,1] for which โ„Ž๐‘–(๐‘ฆ ๐‘ก + ๐‘˜ ๐‘ก ) โ‰ค 0 is

another (possibly empty) sub-interval of [0,1], ๐พ๐‘–(๐‘˜)

106

Page 107: Reference Governor - LIRMM

Mixed Logical Dynamic Constraints

๐‘”๐‘– ๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) > 0 โ†’ โ„Ž๐‘– ๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) โ‰ค 0

โ€ข Then the set of feasible ๐›ฝ ๐‘ก โˆˆ [0,1] for which

is also an interval 0,1 โˆฉ ๐พ๐‘– ๐‘˜ โˆฉ ๐พ๐‘–(๐‘˜)

โ€ข The recursive feasibility of ๐›ฝ ๐‘ก = 0 is preserved by the reference

governor, hence it follows that the feasible values of ๐›ฝ(๐‘ก) satisfy

ฮฒ ๐‘ก โˆˆ 0, ๐›ฝ๐‘š๐‘Ž๐‘ฅ , ๐›ฝ๐‘š๐‘Ž๐‘ฅ โ‰ฅ 0

107

Page 108: Reference Governor - LIRMM

Concave Constraints

โ€ข Suppose that the constraint functions โ„Ž๐‘– in Y = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ โ‰ค 0 , ๐‘– =1,โ‹ฏ๐‘Ÿ, are concave

โ€ข Approximate the constraints by the dynamically reconfigurable affine

constraints

๐‘ฆ(๐‘ก + ๐‘˜|๐‘ก) โˆˆ ๐‘Œ๐‘(๐‘ก)

where

๐‘Œ๐‘ ๐‘ก = ๐‘ฆ: โ„Ž๐‘– ๐‘ฆ๐‘–,โˆ— ๐‘ก +๐œ•โ„Ž๐‘–๐œ•๐‘ฆ

(๐‘ฆ๐‘–,โˆ— ๐‘ก )(๐‘ฆ โˆ’ ๐‘ฆ๐‘–,โˆ— ๐‘ก ) โ‰ค 0 ,

๐‘– = 1,โ‹ฏ ๐‘Ÿ,

and ๐‘Œ๐‘(๐‘ก) โŠ† ๐‘Œ

108

Page 109: Reference Governor - LIRMM

Concave Constraints

If ๐‘ฆ๐‘–โˆ— 0 , ๐‘– = 1,โ‹ฏ ๐‘Ÿ exist such that ๐›ฝ 0 = 0 is feasible, then

๐›ฝ ๐‘ก = 0 and ๐‘ฆ๐‘–โˆ— ๐‘ก =๐‘ฆ๐‘–โˆ— ๐‘ก โˆ’ 1 remain feasible for ๐‘ก > 0 and

constraints are adhered to for all ๐‘ก>0.

โ€ข Proposition

๐‘ฆ ๐‘ก

โ„Ž(๐‘ฆ)

๐‘ฆ๐‘–โˆ— ๐‘ก

๐‘ฆ

109

Page 110: Reference Governor - LIRMM

Spacecraft relative motion example

โ€ข Dynamic model is linear

โ€ข Hillโ€“Clohessy-Wiltshire equations

โ€ข Constraints are nonlinear:

โ€ข Approach within LOS half-cone in front of

the docking port (convex, quadratic)

โ€ข Thrust/delta-v magnitude squared is

limited (convex, quadratic)

โ€ข Soft-docking: Small velocity when close to

docking position (Mixed Logical Dynamic

with quadratic ๐‘” and โ„Ž)

110

Page 111: Reference Governor - LIRMM

Spacecraft relative motion example

-1000 0 1000-300

-200

-100

0

100

200

300

Ra

dia

l p

ositio

n (

m)

Along-track position (m)-1000 0 1000

-300

-200

-100

0

100

200

300

Cro

ss-t

rack p

ositio

n (

m)

Along-track position (m)

โ€ข Reference governor is applied to

guide in-track orbital position set-point

for an unconstrained LQ controller

0 200 400 600 8000

1

2

3

4

5

time (sec)LOS cone

Dockingposition

820 830 840 8500

0.2

0.4

0.6

0.8

1

time (sec)

force (N)

Separation distance

Relative velocity

magnitude

111

Page 112: Reference Governor - LIRMM

Electromagnetically Actuated Mass Spring Damper

โ€ข Dynamics are feedback linearizable

โ€ข Constraints

- Current limit results in a concave nonlinear constraint

- Overshoot constraint is linear

แˆถ๐‘ฅ1แˆถ๐‘ฅ2

=0 1

โˆ’๐‘˜/๐‘š โˆ’๐‘/๐‘š

๐‘ฅ1๐‘ฅ2

+0

1/๐‘š๐‘ข

๐‘ข = ๐‘˜๐‘ฃ โˆ’ ๐‘๐‘‘๐‘ฅ2

0 โ‰ค ๐‘ข โ‰ค๐›ผ ๐‘–๐‘š๐‘Ž๐‘ฅ

๐›พ

๐‘‘0 โˆ’ ๐‘ฅ1๐›พ

๐‘ฅ1 โ‰ค 0.008

force

max. current

112

Page 113: Reference Governor - LIRMM

Electromagnetically Actuated Mass Spring Damper

0 2 4 60

0.002

0.004

0.006

0.008

0.01

0.012

mass position x1

(m)

time (sec)

unconstrained

imax

=0.5342

imax

=0.365

0 1 2 3 4 50

0.2

0.4

0.6

0.8

current (A)

time (sec)

unconstrained

imax

=0.5342

imax

=0.365

113

Page 114: Reference Governor - LIRMM

Electromagnetically Actuated Mass Spring Damper

โ€ข Landing control example

โ€ข Voltage limits

โ€ข MLD constraints on soft-landing

velocity AND magnetic force

exceeding spring force

๐‘‘๐‘ง

๐‘‘๐‘ก= ๐‘ž

๐‘‘๐‘ž

๐‘‘๐‘ก=

1

๐‘š(โˆ’๐น๐‘š๐‘Ž๐‘” + ๐‘˜๐‘  ๐‘ง๐‘  โˆ’ ๐‘ง โˆ’ ๐‘๐‘ž)

๐‘‘๐‘–

๐‘‘๐‘ก=๐‘‰๐‘ โˆ’ ๐‘Ÿ๐‘– +

2๐‘˜๐‘Ž๐‘–(๐‘˜๐‘ + ๐‘ง)2

๐‘ž

2๐‘˜๐‘ ๐‘˜๐‘ + ๐‘ง

๐น๐‘š๐‘Ž๐‘” =๐‘˜๐‘Ž

๐‘˜๐‘ + ๐‘ง 2๐‘–2

114

Page 115: Reference Governor - LIRMM

Electromagnetically Actuated Mass Spring Damper

115