Top Banner
REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech DSN-45 06/24/2015 Rio de Janeiro, Brazil Computer Architecture and Emerging Technologies Lab, Georgia Tech
28

REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

Jan 12, 2016

Download

Documents

Rosalyn Newman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC

Chiachen Chou, Georgia Tech

Prashant Nair, Georgia Tech

Moinuddin K. Qureshi, Georgia Tech

DSN-4506/24/2015

Rio de Janeiro, Brazil

Computer Architecture and Emerging Technologies Lab, Georgia Tech

Page 2: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

GROWING DRAM SIZE IN SMARTPHONES

2

Samsung Galaxy S6 (2015) 3GB DRAM

Samsung Galaxy S2 (2011)1GB DRAM

courtesy: Samsung

Smartphone usability: battery life

30% energy goes to memory system in idle mode

DRAM Refresh accounts for significant energy consumption in idle mode

Page 3: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

LOWER REFRESH RATE FOR ENERGY

Current standard refresh rate: 64ms

3

DRAMCPU

64ms

Energy 1X

1s

0.5X

Refresh Rate

Use ECC to protect DRAM from refresh errors

Bit Error Rate 10-9 10-4

Page 4: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

ECC-6 INCURS LONG LATENCY FOR READ

Decoder latency is on the critical path

4

DRAMCPU

Request

ECCDecoder

Data

ECC-6: 30 cycles

We want energy reduction in idle mode, and maintain performance in active mode

Page 5: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

AGENDA

• Introduction

• Background– DRAM 101– Refresh and Errors– Error Correction Codes (ECC)

• Morphable ECC

• Results

• Summary

5

Page 6: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

6

• Dynamic Random Access Memory (DRAM)

• DRAM stores data as charge on capacitor

Leakage

DRAM Chip

1

DRAM 101

DRAM is a volatile memory charges leak quickly

Page 7: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

7

DRAM maintains data integrity by Refresh operations

DRAM Chip

RefreshRefreshRefreshRefresh

DRAM REFRESH

JEDEC: 64ms 1s

Lowering refresh rate reduces power

64ms 1s0

0.2

0.4

0.6

0.8

1

Refresh Power

Refresh

No

rma

lize

d P

ow

er

64ms 1s0

0.2

0.4

0.6

0.8

1

Idle Power

BackgroundRefresh

No

rma

lize

d P

ow

er

16X50%

Page 8: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

8

DRAM maintains data integrity by Refresh operations

DRAM REFRESH RATE AND ERRORS

Lowering refresh rate increases bit error rate

0.01 0.1 1 10 1001E-10

1E-08

1E-06

1E-04

1E-02

1E+00

Refresh Rate (second)

Cum

ulati

ve E

rror

Rat

e

64ms: 10-9

1s: 10-4.5

Page 9: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

ERROR CORRECTION CODE (ECC)

ECC: tolerate refresh errors

Q: how many errors should the system tolerate?

9

ECC-1

ECC-6

64B cache line

Errors

1 Error

6 Errors

ECC Strength Capability

Page 10: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

ERROR CORRECTION CODE (ECC)

ECC: tolerate refresh errors

Q: how many errors should the system tolerate?

What should be the strength of the ECC?

10

ECC Strength Line Failure System Failure

ECC-1 1.8 X 10-2 1.0

ECC-2 9.8 X 10-7 1.0

ECC-4 1.6 X 10-11 2.7 X 10-4

ECC-5 4.9 X 10-14 8.1 X 10-7

ECC-6 1.2 X 10-16 1.8 X 10-9

Refresh rate of 1s needs ECC-6 for errors

Good✔

Page 11: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

DRAWBACKS OF ECC-6

Single Core, 1MB Cache, 1GB DRAM

11

ECC-6 incurs huge performance degradation

Low Med High ALL0.8

0.9

1

ECC-1 ECC-6

Memory Activity (MPKI)

Nor

mal

ized

IP

C

Page 12: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

WHAT IS THE IDEAL CASE?

12

Goal Strong ECC

Weak ECC

Active Mode Performance(Refresh Power Negligible) Bad Good

Idle Mode Energy(Performance Not Critical) Good Bad

✔ ✘

Ideally, we want ECC-1 in active mode, and ECC-6 in idle mode

?

?

Page 13: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

AGENDA

• Introduction

• Background

• Morphable ECC (MECC)– Overview– Design– ECC Support and Storage

• Results

• Summary

13

Page 14: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

MECC: OVERVIEW

14

MECC uses two ECCs based on modes

Time

REFRESH Normal Slow Normal

ECC Weak Strong Weak

Active Active

Idle

Sleep Wake up

ECC-Upgrade ECC-Downgrade

ECC-Upgrade ECC-Downgrade

Page 15: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

MECC: DESIGN

15

Memory controller uses ECC-mode bits to decode with different ECCs

DRAM Chips

RD Queue

WR Queue

ECCEncoder

Address Data+ECCData+ECC

ECC-1Encoder

ECC-6Encoder

Memory ControllerTo Processor

Data

?

M0

ECC-ModeECC-Mode

Data + ECC

ECCDecoder

Page 16: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

MECC: ECC STORAGE

16

64B Data Block 8B ECC

SECDEC SECDEC SECDEC SECDEC

Byte 0-7 Byte 8-15 Byte 48-55 Byte 56-63

Conventional

MECC ECC-1

MECC ECC-6

0000

1111

ECC-Mode

ECC-1 for 64B Data

ECC-6 for 64B Data

60 bits

11 bits

Unused

MECC uses existing space to store 2 ECCs

11 bits

60 bits

+ = 60 bits

Page 17: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

AGENDA

• Introduction

• Background

• Morphable ECC

• Results

• Summary

17

Page 18: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

Core Chips:• 1 cores 1.6 GHz• 2-wide In-Order• 1MB cache

METHODOLOGY

18

Off-chip DRAMCPU

LPDDR2

Capacity 1GB

Bus DDR 200MGHz

Organization1 channels,

4 banks

• Baseline: No Error Correction Code

• SPEC2006 (exclude mcf): low, medium, high MPKI workloads

• USIMM for DRAM model and power

Page 19: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

POWER AND ENERGY CONSUMPTION

19

Parameters Values DescriptionVDD 1.7 V Operating VoltageIDD0 95 mA 1 bank active precharge current

IDD2P 0.6 mA Precharge power-down standby currentIDD3P 3 mA Active power-down standby currentIDD4 135 mA Burst read/write: 1 bank activeIDD5 100 mA Auto refreshIDD8 1.3 mA Self refresh

Power in Idle Mode = (Prefresh original * Toriginal / TMECC ) + Pother

courtesy: Micron LPDDR2 Specs

Page 20: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

PERFORMANCE IN ACTIVE MODE

20

povraywrf

hmmer

h264ref

gromacs

astar

dealII

cactu

sgcc

sphinx

xalanc

libq

lbm0.7

0.75

0.8

0.85

0.9

0.95

1

PerformanceECC-6 MECC

Nor

mal

ized

IPC

-2%

MECC limits the degradation within 2%

-1%

Low MPKI

-2%

Med MPKI

-3%

High MPKI

Page 21: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

POWER SAVING IN IDLE MODE

21

Baseline MECC0

0.2

0.4

0.6

0.8

1

Refresh Power

Refresh

No

rma

lize

d P

ow

er

Baseline MECC0

0.2

0.4

0.6

0.8

1

Idle Power

Background Refresh

No

rma

lize

d P

ow

er

16X

50%

MECC saves idle power by 50%

Page 22: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

TOTAL ENERGY SAVINGS

22

Baseline MECC0

0.2

0.4

0.6

0.8

1

Total System Energy

Acitve IdleN

orm

aliz

ed E

nerg

y

15%

MECC saves total energy by 15%

Page 23: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

ECC-UPGRADE

Active

IdleECC-Upgrade

DRAM Chips

ECCEncoder

Data + ECC-1Data + ECC-6

ECCDecoder

Lines

Can we enhance the ECC-Upgrade?

Entire Memory

Page 24: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

MEMORY DOWNGRADE TRACKING (MDT)

24

1

0

Address

Index

Need ECC-Upgrade

Don’t Need ECC-Upgrade

povr

ay wrf

hmm

er

h264

ref

gobm

kpe

rl

bzip

2

sopl

ex

calcu

lix

zeus

mp

sphi

nx

xala

nc libq

lbm

ALL10.24

102.4

1024

Memory Downgrade Tracking

Acc

ess

ed

Me

mo

ry

Re

gio

n (

MB

)

MDT avoids unnecessary ECC-Upgrades

128MB

Page 25: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

FREQUENT TRANSITION OF ECC STATES

25

Active

Idle

ECC-Downgrade

Can we enhance the ECC-Downgrade?

courtesy: Samsung, Bluetooth, Facebook, Twitter

Frequent Transition

Page 26: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

SELECTIVE MEMORY DOWNGRADE (SMD)

26

Memory Activity(MPKC)

> THLD?Enable

ECC-Downgrade

DisableECC-Downgrade

Yes

No

0

40

80

Selective Memory Downgrade

ECC-Downgrade Disabled ECC-Downgrade Enabled

Exe

cutio

n T

ime (

%)

in

each

Sate

SMD avoids frequent transition of ECCs

Low MPKI

Page 27: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

EXECUTIVE SUMMARY

• Energy consumption determines the usability of emerging mobile computing devices

• DRAM refresh operations accounts for significant fraction of memory system’s energy

• Results: -50% idle power, -15% overall energy, with only 2% performance degradation

27

Strong ECC Weak ECCActive Mode

(refresh power negligible)Bad

PerformanceGood

PerformanceIdle Mode

(performance not critical)Huge Energy

SavingsNo Energy

Saving

Morphable ECC

Page 28: REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC Chiachen Chou, Georgia Tech Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech.

REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC

Chiachen Chou, Georgia Tech

Prashant Nair, Georgia Tech

Moinuddin K. Qureshi, Georgia Tech

DSN-4506/24/2015

Rio de Janeiro, Brazil

Computer Architecture and Emerging Technologies Lab, Georgia Tech