Top Banner
Reducing Central Line Associated Blood Stream Infections in Pediatric Oncology Patients Ashley Quinn
26

reducing clabsis in pediatric oncology patients

Jan 02, 2017

Download

Documents

vuonghanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: reducing clabsis in pediatric oncology patients

Reducing  Central  Line  Associated  Blood  Stream  Infections  in  Pediatric  

Oncology  Patients  

Ashley  Quinn

Page 2: reducing clabsis in pediatric oncology patients

Central  Line  Associated  Blood  Stream  Infections  (CLABSIs)  are  preventable  form  of  patient  harm

• Definition– Bacteremia in  a  patient  with  a  central  line  with  no  other  identifiable  source

• Epidemiology– Incidence:  60  cases  per  10,000  admissions  1,2

–Mortality:  12-­‐25%  3

Adults  4 Pediatrics  5

Cost $40,890 $55,000Length  of  Stay 14  days 18  days

Page 3: reducing clabsis in pediatric oncology patients

Central  line  bundles  reduced  national  CLABSI  rates,  but  continue  to  occur  despite  bundle  adherence

• National  Healthcare  Safety  Network  (NHSN)• Central  line  bundles  – Evidence-­‐based  practices  that  reduce  CLABSIs– Better  outcomes  when  used  together  than  alone

Number  of  CLABSIs x 1000

Number  central  line  (CL)  daysCLABSI  rate  =  

CLABSI  rateNational  6 1.2

Pediatric  hematology-­‐oncology  7 2.135Benchmark  8 0.878

Page 4: reducing clabsis in pediatric oncology patients

Daily  full  body  topical  chlorhexidine gluconate(CHG)  treatments  consistently  reduce  CLABSI  rates

• Reduces  CLABSI  rates– Adult,  pediatric,  and  neonatal  ICU  10,  11,12

– Adult  medical  and  surgical  units  13

– Burn  and  bone  marrow  transplant  units  14,  10

– Long  term  acute  care  units  15

• Reduces  colonization,  transmission,  and  infection  of  drug-­‐resistant  organisms  16,  17,  18,  19

Page 5: reducing clabsis in pediatric oncology patients

• Population In  Pediatric  oncology  and  bone  marrow  transplant  patients

• Intervention daily  topical  CHG  treatments,

• Comparison compared  with  standard  daily  bathing  with  soap  and  water,

• Outcome will  reduce  CLABSI  rates  below  0.878/1000  central  line  days  within  1  year

Hypothesis

Page 6: reducing clabsis in pediatric oncology patients

July  2013 July  2014“preCHG” “wCHG”

Soap-­‐and-­‐water  baths Daily  CHG  treatments

• Outcome  measures– Primary:   CLABSI  rates– Secondary:   Pathogen  isolated– Process:   Compliance– Balancing:   Nursing  surveys

Methods

Page 7: reducing clabsis in pediatric oncology patients

Monitoring  compliance  in  real-­‐time  fostered  high  compliance  with  CHG  treatments

Compliance  for  every  patient  on  the  unit  could  be  simultaneously  assessed  in  real  time

Page 8: reducing clabsis in pediatric oncology patients

CHG  treatments  did  not  reduce  CLABSIs despite  evidence  of  efficacy  in  similar  populations

Start  CHG

National  Rate   2.135Benchmark 0.878

preCHG wCHGCLABSI  Rate 2.90 3.39p-­value 0.74

Sample size 36

Page 9: reducing clabsis in pediatric oncology patients

Isolation  of  Gram  negative  pathogens  doubled  in  the  wCHG period

preCHG wCHG

PathogenGram  + 6 7Gram  – 7 13Fungus 3 0

02468101214

�Gram  + Gram  -­‐ �  Fungi

Num

ber  C

LABS

IsPathogen  Isolated

preCHG wCHG

Page 10: reducing clabsis in pediatric oncology patients

Mucosal  Barrier  Injury  (MBI)  criteria  attributes  infection  to  translocation  of  intestinal  bacteria

• MBI-­‐CLABSI  criteria1. Isolation  of  intestinal  flora2. Risk  factors  for  MBI

• Evidence  of  mucositis• Severe  neutropenia

Epithelium

Intestinal  Flora

Bloodstream

MBI-­‐CLABSIIntestinal  translocation

NonMBI-­‐CLABSIInfected  central  line  site

CLABSI

Page 11: reducing clabsis in pediatric oncology patients

MBI-­‐CLABSIs were  2-­‐3  times  more  commonthan  nonMBI-­‐CLABSIs

5 5

11

15

02468

10121416

�preCHG �  wCHG

Num

ber  C

LABS

Is

CLABSIs  by  TypeNonMBI MBI

Page 12: reducing clabsis in pediatric oncology patients

All  CLABSIs  in  wCHG period  show  characteristics  consistent  with  MBI  (severe  neutropenia,  mucositis)

40%

100%100% 100%

0%

20%

40%

60%

80%

100%

�preCHG �  wCHG

%  CLA

BSIs  with

 Risk

 Factors

Risk  Factors  for  TranslocationNonMBI MBI

Pathogen  Isolated Number NonMBI-­‐CLABSIs

Pseudomonas  aeruginosa 4

Streptococcus  pneumoniae 1

Page 13: reducing clabsis in pediatric oncology patients

Daily  full  body  topical  CHG  treatments  reduced  the  CLABSI  rate  below  our  goal

Start  CHG

preCHG wCHGCLABSI  Rate 0.91 0.17p-­value 0.113

Sample size 6

National  Rate   2.135Benchmark 0.878

Page 14: reducing clabsis in pediatric oncology patients

• In  patients  with  intact  mucosal  barriers,  bundles  and  CHG  treatments  were  effective  in  reducing  CLABSIs  to  0.71/1000  line  days

• Future  Work– Strategies  to  reduce  bacterial  translocation  in  patients  with  mucosal  barrier  injury  including  severe,  prolonged  neutropenia  and  mucositis

Conclusions

Page 15: reducing clabsis in pediatric oncology patients

• Paul  Harker-­‐Murray  MD,  PhD• Lauren  Ranallo MSN,  RN,  AOCNS,  CPHON• Alyse Bartczak BSN,  RN

Acknowledgements

Page 16: reducing clabsis in pediatric oncology patients

Questions?

Page 17: reducing clabsis in pediatric oncology patients

Nursing  Surveys

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Definitely Somewhat No

Num

ber  o

f  Respo

nses

Interferes  with  Other  Work

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Patient  factors Workflow  factors Non  identified

Num

ber  o

f  Respo

nses

Barriers

Page 18: reducing clabsis in pediatric oncology patients

All  CLABSIs

National  Rate   1.303,  1.534Benchmark 0.878

Study  Period preCHG wCHGCLABSI  Rate 2.90 3.39p-­value 0.74Shifts 0 0Trends 1Runs 9  (3-­11) 6  (3-­10)

Start  CHG

Page 19: reducing clabsis in pediatric oncology patients

CHG  treatments  did  not  reduce  NonMBI CLABSIs

Start  CHG

preCHG wCHGCLABSI  Rate 0.91 0.85p-­value 1.0

Sample size 10

National  Rate   2.135Benchmark 0.878

Page 20: reducing clabsis in pediatric oncology patients

NonMBI CLABSIs

National  Rate   1.303,  1.534Benchmark 0.878

Study  Period preCHG wCHGCLABSI  Rate 0.91 0.85p-­value 1.0Shifts 1Trends 0 0Runs 7 (3-­11) 7 (3-­11)

Start  CHG

Page 21: reducing clabsis in pediatric oncology patients

NonMBI CLABSIs with  Pseudomonas  excluded

National  Rate   1.303,  1.534Benchmark 0.878

Study  Period preCHG wCHGCLABSI  Rate 0.91 0.17p-­value 0.113Shifts 1Trends 0 0Runs 7 (3-­11) 7 (3-­11)

Start  CHG

Page 22: reducing clabsis in pediatric oncology patients

Neutropenia Data

NonMBI CLABSI MBI  CLABSIpreCHG wCHG p preCHG wCHG p

Duration 17±11 28±14 0.43 21±19 35±28 0.21Time 2.5±0.7 7.0±7.8 0.50 6.8±5.5 7.8±10.1 0.74

Page 23: reducing clabsis in pediatric oncology patients

Line  Type

NonMBI CLABSI MBI  CLABSI

preCHG wCHG p preCHG wCHG p

Tunneled 2 3

0.074

4 7

0.883PICC 0 2 6 8

Port 3 0 2 2

Page 24: reducing clabsis in pediatric oncology patients

Line  Location

NonMBI CLABSI MBI  CLABSI

preCHG wCHG p preCHG wCHG p

Tunneled 0 0

0.114

0 6

0.039PICC 5 3 7 4

Port 0 2 5 7

Page 25: reducing clabsis in pediatric oncology patients

References1. Srinivasan,  A;  Wise,  A;  Bell,  M;  Cardo,  D;  Edwards,  J;  Fridkin,  S;  Jernigan,  J;  Kallen,  A;  McDonald,  LC;  Patel,  PR;  

Pollock,  D.  Vital  Signs:  Central  Line–Associated  Blood  Stream  Infections  — United  States,  2001,  2008,  and  2009.  MMWR,  2011.  60(8):243-­‐248.  

2. Wisplinghoff,  H;  Bischoff,  T;  Tallent,  SM;  Seifert,  H;  Wenzel,  RP;  Edmond,  MB.  Nosocomial Bloodstream  Infections  in  US  Hospitals:  Analysis  of  24,179  Cases  from  a  Prospective  Nationwide  Surveillance  Study. CID,  2004.  39:309-­‐317.

3. O’Grady,  NP;  Alexander,  M;  Dellinger,  EP;  Gerberding,  JL;  Heard,  SO;  Maki,  DG;  Masur,  H;  McCormick,  RD;  Mermel,  LA;  Pearson,  ML;  Raad,  II;  Randolph,  Al;  Weinstein.  RA.  Centers  for  Disease  Control  and  Prevention  Guidelines  for  the  Prevention  of  Intravascular  Catheter-­‐Related  Infections.  MMWR  2002;51(RR-­‐10):1-­‐29.

4. Pittet,  DT;  Wenzel,  RP.  Nosocomial Bloodstream  Infection  in  Critically  Ill  Patients:  Excess  Length  of  Stay,  Extra  Costs,  and  Attributable  Mortality.  JAMA,  1994.  271:1598-­‐1601.  

5. Goudie,  AD;  Brady,  PQ;  Rettiganti,  M.  Attributable  Cost  and  Length  of  Stay  for  Central  Line–Associated  Bloodstream  Infections.  Pediatrics,  2013.  133(6):  1525-­‐1532.

6. Johnson,  NB;  Hayes,  LD;  Brown,  K;  Hoo,  EC;  Ethier,  KA.  CDC  National  Health  Report:  Leading  Causes  of  Morbidity  and  Mortality  and  Associated  Behavioral  Risk  and  Protective  Factors—United  States,  2005–2013.  MMWR  2014;63(5):1-­‐27.

7. National  Healthcare  Safety  Network  (NHSN)  Report,  Data  Summary  for  2013,  Device-­‐associated  Module.  Am  J  Infect  Control  2015;43(3):  206–221.  

8. SPS  CLABSI  Workgroup.  (June  2016).  Reducing  CLABSI  in  Hematology-­‐Oncology  Populations  [PDF].9. "Our  Results."  Solutions  For  Patient  Safety.  N.p.,  n.d.  Web.  06  Sept.  2016.10. Climo,  M.Y.,  DS;  Warren,  DK;  Perl,  TM;  Bolon,  M;  Herwaldt,  LA;  Weinstein,  RA;  Sepkowitz,  KA;  Jernigan,  JA;  

Sanogo,  K;  Wong,  ES,  Effect  of  Daily  Chlorhexidine Bathing  on  Hospital-­‐Acquired  Infection. The  New  England  Journal  of  Medicine,  2013.  368(6):  p.  533-­‐542.  

11. Milstone,  A.E.,  A;  Xiaoyan,  S;  Zerr,  DM;  Orscheln,  R;  Speck,  K;  Obeng,  D;  Reich,  NG;  Coffin,  SE;  Perl,  TM,  Daily  chlorhexidine bathing  to  reduce  bacteraemia in  critically  ill  children:  a  multicentre,  cluster-­‐randomised,  crossover  trial. Lancet,  2013.  9872:  p.  1099-­‐1106.  

Page 26: reducing clabsis in pediatric oncology patients

References12. Quach,  C.M.,  AM;  Perpete,  C;  Bonenfant,  M;  Moore,  DL;  Perreault,  T,  Chlorhexidine Bathing  in  a  Tertiary  Care  

Neonatal  Intensive  Care  Unit:  Impact  on  Central  Line–Associated  Bloodstream  Infections. Infection  Control  and  Hospital  Epidemiology,  2014.  35(2):  p.  158-­‐163.  

13. Medina,  A.S.,  T;  Pelter,  M;  Brancamp,  T,  Decreasing  Central  Line–Associated  Bloodstream  Infections  in  the  Non-­‐ICU  Population. J  Nurs Care  Qual,  2014.  29(2):  p.  133-­‐140.

14. Popp,  J.L.,  AJ;  Nappo,  R;  Richards,  WT;  Mozingo,  DW,  Hospital-­‐acquired  infections  and  thermally  injured  patients:  Chlorhexidine gluconate baths  work. American  Journal  of  Infection  Control,  2014:  p.  129-­‐132.  

15. Edwards,  M.P.,  J;  Kochvar,  G,  Quality  improvement  intervention  reduces  episodes  of  long-­‐term  acute  care  hospital  central  lineeassociated infections. American  Journal  of  Infection  Control,  2014:  p.  735-­‐738.  

16. Armellino,  D.W.,  J;  Parmentier,  D;  Musa,  N;  Eichorn,  A;  Silverman,  R;  Hirschwerk,  D;  Farber,  B,  Modifying  the  risk:  Once-­‐a-­‐day  bathing  “at  risk”  patients  in  the  intensive  care  unit  with  chlorhexidine gluconate. American  Journal  of  Infection  Control,  2014:  p.  571-­‐573.  

17. Lin,  M.L.,  K;  Blom,  DW;  Lyles,  RD;  Weiner,  S;  Poluru,  KB;  Moore,  N;  Hines,  DW;  Weinstein,  RA;  Hayden,  MK,  The  Effectiveness  of  Routine  Daily  Chlorhexidine Gluconate Bathing  in  Reducing  Klebsiella pneumoniaeCarbapenemase-­‐Producing  Enterobacteriaceae Skin  Burden  among  Long-­‐Term  Acute  Care  Hospital  Patients.Infection  Control  and  Hospital  Epidemiology,  2014.  35(4):  p.  440-­‐442.  

18. Chen,  W.S.,  L;  Lianhong,  L;  Xin,  W;  Zhang,  W,  Effects  of  daily  bathing  with  chlorhexidine and  acquired  infection  of  methicillin-­‐resistant  Staphylococcus  aureus and  vancomycin-­‐resistant  Enterococcus:  a  meta-­‐analysis. J  ThoracDis,  2013.  5(4):  p.  518-­‐524.  

19. Viray,  M.M.,  JC;  Coopersmith,  CM;  Kollef,  MH;  Fraser,  VJ;  Warren,  DK,  Daily  Bathing  with  Chlorhexidine-­‐based  Soap  and  the  Prevention  of  Staphylococcus  aureus Transmission  and  Infection. Infection  Control  and  Hospital  Epidemiology,  2014.  35(3):  p.  243-­‐250.