Top Banner
Kapitel 14 “Recognition” – p. 1 Recognition Scene understanding / visual object categorization Pose clustering Object recognition by local features Image categorization Bag-of-features models Large-scale image search Kapitel 14
40

Recognition Scene understanding / visual object categorization Pose clustering

Dec 30, 2015

Download

Documents

davis-deleon

Kapitel 14. Recognition Scene understanding / visual object categorization Pose clustering Object recognition by local features Image categorization Bag - of -features models Large- scale image search. TexPoint fonts used in EMF. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 1

Recognition Scene understanding / visual object categorization Pose clustering Object recognition by local features Image categorization Bag-of-features models Large-scale image search

Kapitel 14

Page 2: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 2

Scene understanding (1)

Scene categorization

•outdoor/indoor

•city/forest/factory/etc.

Page 3: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 3

Scene understanding (2)

Object detection

•find pedestrians

Page 4: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 4

Scene understanding (3)

mountain

building

tree

banner

marketpeople

street lamp

sky

building

Page 5: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 5

Visual object categorization (1)

Page 6: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 6

Visual object categorization (2)

Page 7: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 7

Visual object categorization (3)

Page 8: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 8

Visual object categorization (4)

Recognition is all about modeling variabilitycamera positionilluminationshape variationswithin-class variations

Page 9: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 9

Visual object categorization (5)

Within-class variations (why are they chairs?)

Page 10: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 10

Pose clustering (1)

Working in transformation space - main ideas: Generate many hypotheses of transformation image vs. model,

each built by a tuple of image and model features

Correct transformation hypotheses appear many times

Main steps: Quantize the space of possible transformations

For each tuple of image and model features, solve for the optimal transformation that aligns the matched features

Record a “vote” in the corresponding transformation space bin

Find "peak" in transformation space

Page 11: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 11

Pose clustering (2)

Example: Rotation only. A pair of one scene segment and one model segment suffices to generate a transformation hypothesis.

Page 12: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 12

Pose clustering (3)

2-tuples of image and model corner points are used to generate hypotheses. (a) The corners found in an image. (b) The four best hypotheses found with the edges drawn in. The nose of the plane and the head of the person do not appear because they were not in the models.

C.F. Olson: Efficient pose clustering using a randomized algorithm. IJCV, 23(2): 131-147, 1997.

Page 13: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 13

Object recognition by local features (1)

D.G. Lowe: Distinctive image features from scale-invariant keypoints. IJCV, 60(2): 91-110, 2004

The SIFT features of training images are extracted and storedFor a query image

Extract SIFT features Efficient nearest neighbor indexing Pose clustering by Hough transform For clusters with >2 keypoints (object hypotheses): determine

the optimal affine transformation parameters by least squares method; geometry verification

Input Image Stored

Image

Page 14: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 14

Object recognition by local features (2)

Cluster of 3 corresponding feature pairs

Page 15: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 15

Object recognition by local features (3)

Page 16: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 16

Object recognition by local features (4)

Page 17: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 17

Image categorization (1)

Training Labels

Training Images

Classifier Training

Training

Image Features

Image Features

Testing

Test Image

Trained Classifier

Trained Classifier

Outdoor

Prediction

Page 18: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 18

Image categorization (2)

Global histogram (distribution):

color, texture, motion, …

histogram matching distance

Page 19: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 19

Image categorization (3)

Cars found by color histogram matching

See Chapter “Inhaltsbasierte Suche in Bilddatenbanken

Page 20: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 20

Bag-of-features models (1)

ObjectObjectBag of Bag of ‘words’‘words’

Page 21: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 21

Bag-of-features models (2)

Origin 1: Text recognition by orderless document representation (frequencies of words from a dictionary), Salton & McGill (1983)

US Presidential Speeches Tag Cloudhttp://chir.ag/phernalia/preztags/

Page 22: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 22

Bag-of-features models (3)

Origin 2: Texture recognition

Texture is characterized by the repetition of basic elements or textons

For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Page 23: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 23

Bag-of-features models (4)

Universal texton dictionary

histogram

Page 24: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 24

Bag-of-features models (5)

G. Cruska et al.: Visual categorization with bags of keypoints. Proc. of ECCV, 2004.

We need to build a “visual” dictionary!

Page 25: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 25

Bag-of-features models (6)

Main step 1: Extract features (e.g. SIFT)

Page 26: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 26

Bag-of-features models (7)

Main step 2: Learn visual vocabulary (e.g. using clustering)

clustering

Page 27: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 27

Bag-of-features models (8)

visual vocabulary (cluster centers)

Page 28: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 28

Bag-of-features models (9)

… Source: B. LeibeAppearance codebook

Example: learned codebook

Page 29: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 29

Bag-of-features models (10)

Main step 3: Quantize features using “visual vocabulary”

Page 30: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 30

Bag-of-features models (11)

Main step 4: Represent images by frequencies of “visual words” (i.e., bags of features)

Page 31: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 31

Bag-of-features models (12)

Example: representation basedon learned codebook

Page 32: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 32

Bag-of-features models (13)

Main step 5: Apply any classifier to the histogram feature vectors

Page 33: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 33

Bag-of-features models (14)

Example:

Page 34: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 34

Bag-of-features models (15)

Caltech6 dataset

Dictionary quality and size are very important parameters!

Page 35: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 35

Bag-of-features models (16)

Caltech6 dataset

J.C. Niebles, H. Wang, L. Fei-Fei: Unsupervised learning of human action categories using spatial-tempotal words. IJCV, 79(3): 299-318, 2008.

Action recognition

Page 36: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 36

Large-scale image search (1)

Query Results from 5k Flickr images

J. Philbin, et al.: Object retrieval with large vocabularies and fast spatial matching. Proc. of CVPR, 2007

Page 37: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 37

Large-scale image search (2)

Mobile tourist guide self-localization object/building recognition photo/video augmentation

Aachen Cathedral

[Quack, Leibe, Van Gool, CIVR’08]

Page 38: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 38

Large-scale image search (3)

Page 39: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 39

Large-scale image search (4)

Application: Image auto-annotationLeft: Wikipedia imageRight: closest match from Flickr

Moulin Rouge

Tour MontparnasseColosseum

ViktualienmarktMaypole

Old Town Square (Prague)

Page 40: Recognition Scene  understanding  /  visual object categorization Pose  clustering

Kapitel 14 “Recognition” – p. 40

Sources

K. Grauman, B. Leibe: Visual Object Recognition. Morgen & Claypool Publishers, 2011

R. Szeliski: Computer Vision: Algorithms and Applications. Springer, 2010. (Chapter 14 “Recognition”)

Course materials from others (G. Bebis, J. Hays, S. Lazebnik, …)