Top Banner
Recent Developments in the Phenomenology of Generalized Parton Distributions CLAS Coll. Meeting 2015 | Herv´ e MOUTARDE Feb. 18 th , 2015 . . . . . .
53

Recent Developments in the Phenomenology of Generalized ...clas2015.roma2.infn.it/talks/18_moutarde.pdfof DVCS PARTONS Project Computing chain Example Team GPD modeling Gap equation

Jan 27, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Recent Developmentsin the Phenomenology ofGeneralized Parton Distributions

    CLAS Coll. Meeting 2015 | Hervé MOUTARDE

    Feb. 18th, 2015. . . . . .

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Motivation.Study nucleon structure to shed new light on nonperturbative QCD.

    .Perturbative

    QCD..

    ......

    .Asymptoticfreedom

    ..

    ......

    .Nonperturbative

    QCD..

    .......Perturbative AND nonperturbative QCD at work..

    ......

    Define universal objects describing 3D nucleon structure:Generalized Parton Distributions (GPD).

    Relate GPDs to measurements using factorization:Virtual Compton Scattering (DVCS, TCS),Deeply Virtual Meson production (DVMP).

    Get experimental knowledge of nucleon structure.H. Moutarde CLAS Coll. Meeting 2015 2 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Anatomy of the nucleon.GPDs, 3D nucleon imaging, and beyond.

    Correlation of the longitudinal momentum and thetransverse position of a parton in the nucleon.

    DVCS recognized as the cleanest channel to access GPDs..Deeply Virtual Compton Scattering (DVCS)..

    ........

    e−

    .

    DVCS

    .

    e−

    .

    γ∗, Q2

    .p

    .p

    .

    γ

    .

    x + ξ

    .

    x − ξ

    .

    factorization µF

    . t ..

    R⊥

    .

    Transverse center

    .

    of momentum R⊥

    .

    R⊥ =∑

    i xi r⊥i

    24 GPDs F i (x , ξ, t, µF ) for each parton typei = g , u, d , . . . for leading and sub-leading twist.

    H. Moutarde CLAS Coll. Meeting 2015 3 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Anatomy of the nucleon.GPDs, 3D nucleon imaging, and beyond.

    Correlation of the longitudinal momentum and thetransverse position of a parton in the nucleon.

    DVCS recognized as the cleanest channel to access GPDs..Deeply Virtual Compton Scattering (DVCS)..

    ........

    e−

    .

    DVCS

    .

    e−

    .

    γ∗, Q2

    .p

    .p

    .

    γ

    .

    x + ξ

    .

    x − ξ

    .

    factorization µF

    . t ..

    R⊥

    .

    Transverse center

    .

    of momentum R⊥

    .

    R⊥ =∑

    i xi r⊥i

    .

    b⊥

    .

    Impact

    .

    parameter b⊥

    24 GPDs F i (x , ξ, t, µF ) for each parton typei = g , u, d , . . . for leading and sub-leading twist.

    H. Moutarde CLAS Coll. Meeting 2015 3 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Anatomy of the nucleon.GPDs, 3D nucleon imaging, and beyond.

    Correlation of the longitudinal momentum and thetransverse position of a parton in the nucleon.

    DVCS recognized as the cleanest channel to access GPDs..Deeply Virtual Compton Scattering (DVCS)..

    ........

    e−

    .

    DVCS

    .

    e−

    .

    γ∗, Q2

    .p

    .p

    .

    γ

    .

    x+ ξ

    .

    x− ξ

    .

    factorization µF

    . t ..

    R⊥

    .

    Transverse center

    .

    of momentum R⊥

    .

    R⊥ =∑

    i xi r⊥i

    .

    b⊥

    .

    Impact

    .

    parameter b⊥

    .

    xP+

    .

    Longitudinal

    .momentum xP+

    24 GPDs F i (x , ξ, t, µF ) for each parton typei = g , u, d , . . . for leading and sub-leading twist.

    H. Moutarde CLAS Coll. Meeting 2015 3 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Anatomy of the nucleon.GPDs, 3D nucleon imaging, and beyond.

    Correlation of the longitudinal momentum and thetransverse position of a parton in the nucleon.

    DVCS recognized as the cleanest channel to access GPDs..Deeply Virtual Compton Scattering (DVCS)..

    ........

    e−

    .

    DVCS

    .

    e−

    .

    γ∗, Q2

    .p

    .p

    .

    γ

    .

    x + ξ

    .

    x − ξ

    .

    factorization µF

    . t ..

    R⊥

    .

    Transverse center

    .

    of momentum R⊥

    .

    R⊥ =∑

    i xi r⊥i

    .

    b⊥

    .

    Impact

    .

    parameter b⊥

    .

    xP+

    .

    Longitudinal

    .momentum xP+

    .

    −1 < x < +1−1 < ξ < +1

    24 GPDs F i (x , ξ, t, µF ) for each parton typei = g , u, d , . . . for leading and sub-leading twist.

    H. Moutarde CLAS Coll. Meeting 2015 3 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Anatomy of the nucleon.Different questions and different tools to answer them.

    1 Study of exclusive processes.

    2 Metrology of Generalized Parton Distributions.

    3 Understanding of QCD mechanisms and modeling ofGeneralized Parton Distributions.

    H. Moutarde CLAS Coll. Meeting 2015 4 / 19

  • Needs assesment

    . . . . . .

  • Needs assesment.

    .

    ..

    Higher

    Twists?

    .

    New

    Experiments?

    .

    Meson

    Production?

    .

    Error

    Propagation?

    .

    Compton

    Scattering?

    .

    Theoretical

    Constraints?

    .Software

    .

    Model

    Dependence?.

    Next to

    Leading

    Order?

    . . . . . .

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    .

    Perturbative

    .

    Nonperturbative

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    .

    Perturbative

    .

    Nonperturbative

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Nonperturbative

    .

    Perturbative

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    .

    Nonperturbative

    .

    Perturbative

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Nonperturbative

    .

    Perturbative

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Exclusive processes of current interest.Factorization and universality.

    ..

    e−

    .

    DVCS

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    .

    .

    .

    nucleon

    .

    GeneralizedParton

    Distributions

    .

    γ∗

    .

    Q2

    .

    by

    . bx

    ..

    e−

    .

    DVMP

    .

    e−

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    factorization

    .

    π, ρ, . . .

    .

    Perturbative

    .

    Nonperturbative

    ..

    TCS

    .

    e−

    .

    e+

    .

    γ∗

    .

    Q2

    .p

    .p

    . t.

    x + ξ

    .

    x − ξ

    .

    γ

    .

    factorization

    .

    Perturbative

    .

    Nonperturbative

    H. Moutarde CLAS Coll. Meeting 2015 6 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Need for global fits of world data.Different facilities will probe different kinematic domains.

    .Kinematic reach of existing or near-future DVCS measurements..

    ......

    ..ξ

    .0..

    0.2

    .

    0.4

    .

    0.6

    .

    Q2[GeV

    2]

    .0. .

    2.

    .

    4.

    .

    6.

    .

    8.

    .

    10.

    .

    12.

    .

    14.

    .

    JLab6(United States)

    .

    HERMES (Germany)

    .

    HERA (Germany)

    .Near-future and existing measurements

    H. Moutarde CLAS Coll. Meeting 2015 7 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Need for global fits of world data.Different facilities will probe different kinematic domains.

    .Kinematic reach of existing or near-future DVCS measurements..

    ......

    ..ξ

    .0..

    0.2

    .

    0.4

    .

    0.6

    .

    Q2[GeV

    2]

    .0. .

    2.

    .

    4.

    .

    6.

    .

    8.

    .

    10.

    .

    12.

    .

    14.

    .

    JLab12(UnitedStates)

    .

    COMPASS (CERN)

    .

    JLab6(United States)

    .

    HERMES

    .

    HERA

    .Near-future and existing measurements

    H. Moutarde CLAS Coll. Meeting 2015 7 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Need for global fits of world data.Different facilities will probe different kinematic domains.

    .Kinematic reach of existing or near-future DVCS measurements..

    ......

    ..ξ

    .0..

    0.2

    .

    0.4

    .

    0.6

    .

    Q2[GeV

    2]

    .0. .

    2.

    .

    4.

    .

    6.

    .

    8.

    .

    10.

    .

    12.

    .

    14.

    .

    JLab12(UnitedStates)

    .

    JLab6(United States)

    .

    HERMES

    .

    COMPASS

    .

    HERA

    .

    seaquarks

    .

    valencequarks

    H. Moutarde CLAS Coll. Meeting 2015 7 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Need for global fits of world data.Different facilities will probe different kinematic domains.

    .Kinematic reach of existing or near-future DVCS measurements..

    ......

    ..ξ

    .0..

    0.2

    .

    0.4

    .

    0.6

    .

    Q2[GeV

    2]

    .0. .

    2.

    .

    4.

    .

    6.

    .

    8.

    .

    10.

    .

    12.

    .

    14.

    .

    JLab12(UnitedStates)

    .

    JLab6(United States)

    .

    HERMES

    .

    COMPASS

    .

    HERA

    .

    seaquarks

    .

    valencequarks

    .

    Need an EIC tomeasure gluon GPDs

    .

    ξ ≳ 10−4

    H. Moutarde CLAS Coll. Meeting 2015 7 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Need for global fits of world data.Different facilities will probe different kinematic domains.

    .Kinematic reach of existing or near-future DVCS measurements..

    ......

    ..ξ

    .0..

    0.2

    .

    0.4

    .

    0.6

    .

    Q2[GeV

    2]

    .0. .

    2.

    .

    4.

    .

    6.

    .

    8.

    .

    10.

    .

    12.

    .

    14.

    .

    JLab12(UnitedStates)

    .

    JLab6(United States)

    .

    HERMES

    .

    COMPASS

    .

    HERA

    .

    Dominant andsub-dominantcontributionsto the DVCSamplitudein the large Q2

    limit?

    H. Moutarde CLAS Coll. Meeting 2015 7 / 19

  • PARTONS Project.

    .

    ..

    Higher

    Twists?

    .

    New

    Experiments?

    .

    Meson

    Production?

    .

    Error

    Propagation?

    .

    Compton

    Scattering?

    .

    Theoretical

    Constraints?

    .Software

    .

    Model

    Dependence?.

    Next to

    Leading

    Order?

    . . . . . .

  • PARTONS Project.

    .

    PARtonicTomographyOfNucleonSoftware

    . . . . . .

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    Large distancecontributions

    .

    Small distancecontributions

    .

    Full processes

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    Large distancecontributions

    .

    Small distancecontributions

    .

    Full processes

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Evolution

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Evolution

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Perturbativeapproximations.

    Physical models.

    Fits.

    Numericalmethods.

    Accuracy andspeed.

    .

    Evolution

    .

    Need formodularity

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Perturbativeapproximations.

    Physical models.

    Fits.

    Numericalmethods.

    Accuracy andspeed.

    .

    Evolution

    .

    Need formodularity

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Perturbativeapproximations.

    Physical models.

    Fits.

    Numericalmethods.

    Accuracy andspeed.

    .

    Evolution

    .

    Need formodularity

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Perturbativeapproximations.

    Physical models.

    Fits.

    Numericalmethods.

    Accuracy andspeed.

    .

    Evolution

    .

    Need formodularity

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Computing chain design.Differential studies: physical models and numerical methods.

    ..

    Firstprinciples andfundamentalparameters.

    Computationof amplitudes

    .

    Experimentaldata andphenomenology

    .

    GPD at µ ̸= µrefF

    .

    GPD at µrefF

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    DVCS

    .

    TCS

    .

    DVMP

    .

    Manyobservables.

    Kinematic reach.

    .

    Perturbativeapproximations.

    Physical models.

    Fits.

    Numericalmethods.

    Accuracy andspeed.

    .

    Evolution

    .

    Need formodularity

    H. Moutarde CLAS Coll. Meeting 2015 9 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Status.Currently: integration, tests, validation.

    3 stages:

    1 Design.

    2 Integration and validation.

    3 Production.

    Flexible software architecture.

    1 new physical development = 1 new module.

    What can be automated will be automated.

    Get ready for 12 GeV!

    H. Moutarde CLAS Coll. Meeting 2015 10 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    GPD computing made simple.Each line of code corresponds to a physical hypothesis.

    gpdEvolutionExample()1 // Load QCD evolution module2 EvolQCDModule∗ pEvolQCDModule = pModuleObjectFactory−>3 getEvolQCDModule( VinnikovEvolQCDModel::moduleID ) ;4

    5 // Configure QCD evolution module6 pEvolQCDModule−>setQcdOrderType( QCDOrderType::LO ) ;7

    8 // Load GPD module9 GPDModule∗ pGK11Module =

    10 pModuleObjectFactory−>getGPDModule( GK11Model::moduleID ) ;11

    12 // Create kinematic configuration ( x, xi , t , MuF, MuR )13 GPDKinematic gpdKinematic( 0.25, 0.29, −0.28, 1.82, 1.82 ) ;14

    15 // Compute GPD and store results16 GPDOutputData results = pGPDService−>17 computeGPDModelWithEvolution( gpdKinematic, pGK11Module,18 pEvolQCDModule, GPDComputeType::H ) ;19

    20 // Print results21 std :: cout

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    GPD computing made simple.Each line of code corresponds to a physical hypothesis.

    gpdEvolutionExample()1 // Load QCD evolution module2 EvolQCDModule∗ pEvolQCDModule = pModuleObjectFactory−>3 getEvolQCDModule( VinnikovEvolQCDModel::moduleID ) ;4

    5 // Configure QCD evolution module6 pEvolQCDModule−>setQcdOrderType( QCDOrderType::LO ) ;7

    8 // Load GPD module9 GPDModule∗ pGK11Module =

    10 pModuleObjectFactory−>getGPDModule( GK11Model::moduleID ) ;11

    12 // Create kinematic configuration ( x, xi , t , MuF, MuR )13 GPDKinematic gpdKinematic( 0.25, 0.29, −0.28, 1.82, 1.82 ) ;14

    15 // Compute GPD and store results16 GPDOutputData results = pGPDService−>17 computeGPDModelWithEvolution( gpdKinematic, pGK11Module,18 pEvolQCDModule, GPDComputeType::H ) ;19

    20 // Print results21 std :: cout

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Members and areas of expertise.Collaborations at the national and international levels.

    ...

    Argonne

    National

    Laboratory

    .

    Thomas

    Jefferson

    National

    Laboratory

    .

    University

    of Huelva

    .

    CERN

    .

    Johannes Gutenberg

    Universität

    .

    NationalCenterfor

    Nuclear

    Research

    .

    Development team

    B. Berthou M. Boer C. Mezrag H. Moutarde F. Sabatié J. Wagner

    .

    IPN and LPT (Orsay), Irfu (Saclay) and CPhT (Polytechnique)Experimental data analysis Perturbative QCDWorld data fits GPD modeling

    H. Moutarde CLAS Coll. Meeting 2015 12 / 19

  • GPD modeling in the Dyson-Schwinger framework.

    .

    ..

    Higher

    Twists?

    .

    New

    Experiments?

    .

    Meson

    Production?

    .

    Error

    Propagation?

    .

    Compton

    Scattering?

    .

    Theoretical

    Constraints?

    .Software

    .

    Model

    Dependence?.

    Next to

    Leading

    Order?

    . . . . . .

  • GPD modeling in the Dyson-Schwinger framework.

    .

    Emergence ofeffective degrees offreedom andinteraction

    . . . . . .

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1

    Invert both members of equation:

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 −

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1

    Invert both members of equation:

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 −

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1

    Invert both members of equation:

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 −

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1Invert both members of equation:

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 − .H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1Invert both members of equation: Forgotten contributions!

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 − .H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1Invert both members of equation: Forgotten contributions!

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 − .

    .Gluon propagator..

    ...... .

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1Invert both members of equation: Forgotten contributions!

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 − .

    .Quark propagator..

    ...... .

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Description of quark dressing.

    Resuming gluon contributions to the quark propagator:

    . . = . + . + . + . . .

    =. . ×

    1 + . +( . )2 + . . .

    = . ×

    (1− .

    )−1Invert both members of equation: Forgotten contributions!

    (. . )−1 =

    (1− .

    )× (. )−1

    = (. )−1 − .

    .Vertex..

    ...... .

    H. Moutarde CLAS Coll. Meeting 2015 14 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Building effective degrees of freedom from quarks and gluons.

    .Dyson - Schwinger gap equation..

    ....... ..

    −1. =.

    −1. − . .

    .

    Fundamentaldegrees offreedom

    ..

    Model interaction:

    Gluon propagator

    Quark-gluon vertex

    .

    Consistently getdressed quarkpropagator.

    Effectivedegrees offreedom

    H. Moutarde CLAS Coll. Meeting 2015 15 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Building effective degrees of freedom from quarks and gluons.

    .Dyson - Schwinger gap equation..

    ....... ..

    −1. =.

    −1. − . .

    .

    Fundamentaldegrees offreedom

    ..

    Model interaction:

    Gluon propagator

    Quark-gluon vertex

    .

    Consistently getdressed quarkpropagator.

    Effectivedegrees offreedom

    H. Moutarde CLAS Coll. Meeting 2015 15 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Building effective degrees of freedom from quarks and gluons.

    .Dyson - Schwinger gap equation..

    ....... ..

    −1. =.

    −1. − . .

    .

    Fundamentaldegrees offreedom

    ..

    Model interaction:

    Gluon propagator

    Quark-gluon vertex

    .

    Consistently getdressed quarkpropagator.

    Effectivedegrees offreedom

    H. Moutarde CLAS Coll. Meeting 2015 15 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    The gap equation.Building effective degrees of freedom from quarks and gluons.

    .Dyson - Schwinger gap equation..

    ....... ..

    −1. =.

    −1. − . .

    .

    Fundamentaldegrees offreedom

    ..

    Model interaction:

    Gluon propagator

    Quark-gluon vertex

    .

    Consistently getdressed quarkpropagator.

    Effectivedegrees offreedom

    H. Moutarde CLAS Coll. Meeting 2015 15 / 19

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Dyson - Schwinger and Bethe - Salpeter.First step towards the modeling of nucleon GPDs.

    0.0

    0.5

    1.0

    Ξ

    -1.0-0.50.00.51.0

    x

    0.0

    0.5

    1.0

    1.5

    Training ground: pion.

    Modeling of GPD, PDFand form factor.

    Goal: nucleon.

    0 0.5 1 1.5 2 2.5 3

    -t [GeV2]

    0

    0.5

    1

    Fπ(t

    )

    Model (M=0.35 GeV)

    Amendolia et al (1986)

    Huber et al. (2008)

    Model (M=0.25 GeV)

    Model (M=0.45 GeV)

    0 0.1 0.2 0.3 0.4

    -t [GeV2]

    0.5

    1

    Fπ(t

    )

    Model (M=0.35 GeV)

    Amendolia et al (1986)

    Huber et al. (2008)

    Model (M=0.25 GeV)

    Model (M=0.45 GeV)

    Mezrag et al., arXiv:1406.7425Chang et al., Phys. Lett. B737, 23 (2014)

    Mezrag et al., Phys. Lett. B741, 190 (2015)H. Moutarde CLAS Coll. Meeting 2015 16 / 19

  • Conclusions

    . . . . . .

  • Phenomenologyof Generalized

    PartonDistributions

    Introduction

    Needsassesment

    Experimentalaccess

    Kinematic reachof DVCS

    PARTONSProject

    Computingchain

    Example

    Team

    GPD modeling

    Gap equation

    Pion form factor

    Conclusions

    . . . . . .

    ..

    Conclusions.Versatile tools for hadron structure studies.

    Two major developments:

    Software project: PARTONS.

    GPD modeling: Schwinger-Dyson.

    Aims ( by the end of 2015):

    DVCS computing chain validated and automated.

    Beginning of Dyson-Schwinger modeling of nucleon GPDs.

    H. Moutarde CLAS Coll. Meeting 2015 18 / 19

  • Commissariat à l’énergie atomique et aux énergies alternatives DSMCentre de Saclay | 91191 Gif-sur-Yvette Cedex IrfuT. +33(0)1 69 08 73 88 | F. +33(0)1 69 08 75 84 SPhNEtablissement public à caractère industriel et commercial | R.C.S. Paris B 775 685 019

    . . . . . .

    Needs assesmentExperimental accessKinematic reach of DVCS

    PARTONS ProjectComputing chainExampleTeam

    GPD modeling in the Dyson-Schwinger frameworkGap equationPion form factor