Top Banner
Rebecca Harrington PhD (UCLA) 2008, Postdoc (KIT) 2008-2013, McGill 2013 – 2016 Ruhr Universität Bochum 2017-Present The Role of Fluids in Triggering “Unconven?onal “ Earthquakes
52

Rebecca Harrington

Mar 16, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Rebecca Harrington

RebeccaHarringtonPhD(UCLA)2008,Postdoc(KIT)2008-2013,McGill2013–2016RuhrUniversitätBochum

2017-Present

TheRoleofFluidsinTriggering“Unconven?onal“Earthquakes

Page 2: Rebecca Harrington

Sliponafaultduringanearthquake

✭Depth

into theearth

Surface of the earth

Distance along the fault plane 100 km

Page 3: Rebecca Harrington

Sliponanearthquakefaultsecond2.0

Page 4: Rebecca Harrington

Sliponanearthquakefaultsecond4.0

Page 5: Rebecca Harrington

Sliponanearthquakefaultsecond6.0

Page 6: Rebecca Harrington

Sliponanearthquakefaultsecond8.0

Page 7: Rebecca Harrington

Sliponanearthquakefaultsecond10.0

Page 8: Rebecca Harrington

Sliponanearthquakefaultsecond12.0

Page 9: Rebecca Harrington

Sliponanearthquakefaultsecond14.0

Page 10: Rebecca Harrington

Sliponanearthquakefaultsecond16.0

Page 11: Rebecca Harrington

Sliponanearthquakefaultsecond18.0

Page 12: Rebecca Harrington

Sliponanearthquakefaultsecond20.0

Page 13: Rebecca Harrington

Sliponanearthquakefaultsecond22.0

Page 14: Rebecca Harrington

Sliponanearthquakefaultsecond24.0

Page 15: Rebecca Harrington

P/%,&,QI"&-J&)*J-(R%S-*&);&)*&%&;");R-+(%RT&

Page 16: Rebecca Harrington

P/%,&,QI"&-J&)*J-(R%S-*&);&)*&%&;");R-+(%RT&

!"&1<K(%S-*@A6&

#$&1;)U"6&

V("LK"*$Q&1'U6&

HI"$,(%E&%RIE),K

<"&

H)U"&%*<&<K(%S-*&;$%E"&%;&&&&J-(&,"$,-*)$&"%(,/LK%M";&&

M0 !!3, M0 ! fc

"3

V%KE,&(KI,K(";&W),/&%&<K(%S-*X&&&&0K(%S-*&("E%,"<&,-&J$&#QX&

&

! =LV

! = fc!1

?)R"&1;"$6&D(-K

*<&R-S

-*&

Page 17: Rebecca Harrington

Howdosourceparametersscalewithsize?

KanamoriandBrodsky,2004

M0 ∝τ3

DatasuggestsduraSonscalesas

Page 18: Rebecca Harrington

0 2 4 6 8 10 12 14 16!4000

!2000

0

2000

4000

disp

. (nm

)

time (sec)

10!1 100 101 102

100

105

frequency (Hz)

!0 (n

ms)

dataBrune fitconfidence int.

Z,-&/"EI&K*<"(;,%*<&)J&"%(,/LK%M";&#"/%["&)*&,/"&;%R"&W%Q&("+%(<E";;&-J&;)U"&-(&W/"("&,/"Q&/%II"*N&&

!to understand earthquake scaling relationships (key to estimating hazard)&&

Page 19: Rebecca Harrington

'-W&);&"*"(+Q&I%(SS-*"<&)*&"%(,/LK%M";T&&

P/Q&;/-KE<&W"&$%("T&&&

1464 H Kanamori and E E Brodsky

Figure 18. Illustration of simple stress release patterns during faulting. (a) ——: simple case ofimmediate stress drop. - - - -: general case without slip-weakening. (b) Slip-weakening model:hatched and cross-hatched areas indicate the fracture energy and frictional energy loss, respectively.(c) The energy budget: hatched, cross-hatched and dotted areas indicate the fracture energy, thermal(frictional) energy and radiated energy, in that order. All the figures are shown for unit area of thefault plane.

An earthquake is viewed as a stress release process on a fault surface S . The solid linesin figure 18(a) show the simplest case. At the initiation of an earthquake, the initial (beforean earthquake) shear stress on the fault plane σ0 drops to a constant dynamic friction σf , andstays there, i.e. σf = σ1. If the condition for instability is satisfied (Brace and Byerlee (1966),Scholz (2002), also section 6.1.1), rapid fault slip motion begins and eventually stops. At theend, the stress on the fault plane is σ1 (final stress) and the average slip (offset) is D. Thedifference "σs = σ0 − σ1 is the static stress drop. During this process, the potential energy(strain energy plus gravitational energy) of the system, W0, drops to W1 = W0 − "W where"W is the strain energy drop, and the seismic wave is radiated carrying an energy ER. Fromequation (3.14),

"W = σ̄DS, (4.32)

where σ̄ = (σ0 + σ1)/2 is the average stress during faulting (section 3.1.4). Graphically, "W

(for unit area) is given by the trapezoidal area shown in figure 18(c).The variation of stress during faulting can be more complex than shown by the solid lines

in figure 18(a). For example, the stress may increase to the yield stress σY in the beginning ofthe slip motion (curve (1) in figure 18(a)) because of loading caused by the advancing rupture(figure 15(e)), or of a specific friction law such as the rate- and state-dependent friction law(Dieterich 1979) (figure 17). In fact, some seismological inversion studies have shown this

Page 20: Rebecca Harrington

Gutenberg-Richter Log(N) = a - bM

Do small earthquakes behave like large earthquakes? Can a breakdown in source scaling give information about seismic rupture? &

&+*%*@$,#B"@C*%+/"$0*%:*@,"$*+%1*@+"$*<%:$/1%+*(+1/=$@1+D%

Page 21: Rebecca Harrington

For large populations, source parameter scaling relationships roughly hold.

My focus: How does the faulting environment relate to the

source parameter scaling? Are earthquakes on some faults different than others?

•  Physical factors may account for some of the range in observations.

–  Fault geometry may be a factor. Faults become more smooth with increasing slip.

cumulative slip fault maturity/geometry

–  Fault frictional properties may also change rupture speed. (Fluids!)

1464 H Kanamori and E E Brodsky

Figure 18. Illustration of simple stress release patterns during faulting. (a) ——: simple case ofimmediate stress drop. - - - -: general case without slip-weakening. (b) Slip-weakening model:hatched and cross-hatched areas indicate the fracture energy and frictional energy loss, respectively.(c) The energy budget: hatched, cross-hatched and dotted areas indicate the fracture energy, thermal(frictional) energy and radiated energy, in that order. All the figures are shown for unit area of thefault plane.

An earthquake is viewed as a stress release process on a fault surface S . The solid linesin figure 18(a) show the simplest case. At the initiation of an earthquake, the initial (beforean earthquake) shear stress on the fault plane σ0 drops to a constant dynamic friction σf , andstays there, i.e. σf = σ1. If the condition for instability is satisfied (Brace and Byerlee (1966),Scholz (2002), also section 6.1.1), rapid fault slip motion begins and eventually stops. At theend, the stress on the fault plane is σ1 (final stress) and the average slip (offset) is D. Thedifference "σs = σ0 − σ1 is the static stress drop. During this process, the potential energy(strain energy plus gravitational energy) of the system, W0, drops to W1 = W0 − "W where"W is the strain energy drop, and the seismic wave is radiated carrying an energy ER. Fromequation (3.14),

"W = σ̄DS, (4.32)

where σ̄ = (σ0 + σ1)/2 is the average stress during faulting (section 3.1.4). Graphically, "W

(for unit area) is given by the trapezoidal area shown in figure 18(c).The variation of stress during faulting can be more complex than shown by the solid lines

in figure 18(a). For example, the stress may increase to the yield stress σY in the beginning ofthe slip motion (curve (1) in figure 18(a)) because of loading caused by the advancing rupture(figure 15(e)), or of a specific friction law such as the rate- and state-dependent friction law(Dieterich 1979) (figure 17). In fact, some seismological inversion studies have shown this

Page 22: Rebecca Harrington

Y()\E"@<K$SE"&,(%*;)S-*&U-*"&&1A]&@&B]&MR&<"I,/6&

H");R-+"*)$&U-*"&1]&F&A]&MR&<"I,/6&

H/%EE-W&;");R-+"*)$1T6&U-*"&18&F&]&MR&<"I,/6&

^2*$-*["*S-*%E_&H");R)$&H)+*%E;&&

Page 23: Rebecca Harrington

E,"<F('=%,#*%,$@'+(?/'%G/'*%H4I6JI%C1K%('%7@$CL*9<M%N@9(:/$'(@X&&H%*&5*<("%;&V%KE,&

Page 24: Rebecca Harrington

HowfaultfricSonalproperSesinfluencerupture

DifferencesinwaveformsandscalingproperSescouldberelatedtochangesinfricSonbasedontremorlocaSons.

Tectonictremorwaveforms:“earthquakes”(low-frequencyevents,orLFEs)thathappendeepinthefaultzone

Page 25: Rebecca Harrington

E,"<F('=%,#*%,$@'+(?/'%G/'*%H4I6JI%C1K%('%7@$CL*9<M%N@9(:/$'(@X&&H%*&5*<("%;&V%KE,&

Page 26: Rebecca Harrington

H");R-+"*)$&c-*"&17@A]&MR6&>*,(%@IE%,"&"%(,/LK%M";&)*&,/"&3/%(E"[-)d&;");R)$&U-*"&

Page 27: Rebecca Harrington

Theshallowseismogeniczone(<5km)

Roleoffluids?Usinginducedseismicity

Page 28: Rebecca Harrington

O/@9X&%&R%+*),K<"@I("<)$,%#E"&("E%S-*;/)I&#",W""*&`K)<&`-W&%*<&"%(,/LK%M"&-$$K(("*$"&

V%KE,&-()"*,%S-*;&

H,(";;&<(-If;");R)$&"*"(+Q&

PQ+/9",*%+,$*++*+R%7/$*%S$*++"$*%0#@'=*+R%%% .-(-"E%;S$&

R-<"E)*+&

3-R#)*"&-#;"([%S-*;fR-<"E)*+&,-&$-*;,(%)*&R"$/%*);R;&J-(&W/)$/&`K)<;&%E,"(&,/"&;,(";;&;,%,"&%*<&$-*,(-E&"%(,/LK%M"&*K$E"%S-*&&

E*(+1(0%/Q+*$)@?/'+% T/<*9('=%>*g"$S-*&[-EKR";:&

+"-E-+)$%E&)*J-(R%S-*:&W"EE&I(";;K(";&

7/$*%S$*++"$*%0#@'=*+R%%%

Page 29: Rebecca Harrington

E,@?0%,$(==*$('=% UF'@1(0%,$(==*$('=%

What can we learn from earthquake triggering near injection sites?

Page 30: Rebecca Harrington

E,@?0%,$(==*$('=%UF'@1(0%,$(==*$('=%UF'@1(0%,$(==*$('=%UF'@1(0%,$(==*$('=%

What can we learn from earthquake triggering near injection sites?

Page 31: Rebecca Harrington

E,@?0%,$(==*$('=%UF'@1(0%,$(==*$('=%UF'@1(0%,$(==*$('=%UF'@1(0%,$(==*$('=%

?()++"()*+&;,(";;&);&I(-I-(S-*%E&,-&["E-$),Q&

What can we learn from earthquake triggering near injection sites?

Page 32: Rebecca Harrington

Earthquake triggering in Canada

Triggering in Canada (determined by statistical "-value) following distant earthquakes from 2004-2014 (Wang et al., 2015). Red/pink indicates triggering.

Page 33: Rebecca Harrington

TriggeringinAlberta

Wangetal.,2015

Triggeringstresses~0.1kPa,

frequencydependent

Page 34: Rebecca Harrington

30'

%&$% 1:7 1%

119o W

121o W

121o

123o W

123oW

125o

61 oN61 oN

60 oN60 oN

59 oN59 oN

58 oN58 oN

57 oN57 oN

56 oN56 oN

55 oN55 oN

NBC1

NBC2NBC3

NBC4

NBC5

NBC6

40' 40'

20' 20'

40' 40'

20' 20'

MOON

PYRD

TULN

NOWN

CARC

HKNB

WCNBELNBSRNB

SVNB

125o W

126o W

1o

127o W

12oW

128o

64o W o W

65oo W

66oW

67o

64 oNoN

65 oNoN

66 oNoN

44 oNoN

45 ooN

46 oNN

47 oN

30'

30'

(a) (b) (c)

Focal mechanism

Breakout

���Ý:���Ý:

���Ý: ��Ý:��Ý:

��Ý:

��Ý

��Ý

��Ý

��Ý

��Ý

LookforremotedynamictriggeringinthreesedimentarybasinswhereinjecSonoccurs•  Directtriggeringinthewaveforms

•  MulS-staSonmatchedfilteràenhancedcatalog

Roleoffluids?TriggeringnearinjecSonsites

Page 35: Rebecca Harrington

30'

%&$% 1:7 1%

119o W

121o W

121o

123o W

123oW

125o

61 oN61 oN

60 oN60 oN

59 oN59 oN

58 oN58 oN

57 oN57 oN

56 oN56 oN

55 oN55 oN

NBC1

NBC2NBC3

NBC4

NBC5

NBC6

40' 40'

20' 20'

40' 40'

20' 20'

MOON

PYRD

TULN

NOWN

CARC

HKNB

WCNBELNBSRNB

SVNB

125o W

126o W

1o

127o W

12oW

128o

64o W o W

65oo W

66oW

67o

64 oNoN

65 oNoN

66 oNoN

44 oNoN

45 ooN

46 oNN

47 oN

30'

30'

(a) (b) (c)

Focal mechanism

Breakout

���Ý:���Ý:

���Ý: ��Ý:��Ý:

��Ý:

��Ý

��Ý

��Ý

��Ý

��Ý

LookforremotedynamictriggeringinthreesedimentarybasinswhereinjecSonoccurs•  Directtriggeringinthewaveforms

•  MulS-staSonmatchedfilteràenhancedcatalog

ImmediateTriggering

Roleoffluids?TriggeringnearinjecSonsites

Page 36: Rebecca Harrington

Immediate triggering: Mainshock surface wave train (BCAB)

Page 37: Rebecca Harrington

30'

%&$% 1:7 1%

119o W

121o W

121o

123o W

123oW

125o

61 oN61 oN

60 oN60 oN

59 oN59 oN

58 oN58 oN

57 oN57 oN

56 oN56 oN

55 oN55 oN

NBC1

NBC2NBC3

NBC4

NBC5

NBC6

40' 40'

20' 20'

40' 40'

20' 20'

MOON

PYRD

TULN

NOWN

CARC

HKNB

WCNBELNBSRNB

SVNB

125o W

126o W

1o

127o W

12oW

128o

64o W o W

65oo W

66oW

67o

64 oNoN

65 oNoN

66 oNoN

44 oNoN

45 ooN

46 oNN

47 oN

30'

30'

(a) (b) (c)

Focal mechanism

Breakout

���Ý:���Ý:

���Ý: ��Ý:��Ý:

��Ý:

��Ý

��Ý

��Ý

��Ý

��Ý

LookforremotedynamictriggeringinthreesedimentarybasinswhereinjecSonoccurs•  Directtriggeringinthewaveforms

•  MulS-staSonmatchedfilteràenhancedcatalog

CatalogedTriggering

Roleoffluids?TriggeringnearinjecSonsites

Page 38: Rebecca Harrington

N@,@9/=*<%,$(==*$('=%

Page 39: Rebecca Harrington

N@,@9/=*<%,$(==*$('=%

Page 40: Rebecca Harrington

Cataloged triggering: Statistical implications of delayed triggering

p = e!! !"

" !P =1! p

.(-#%#)E),Q&-J&$/%*+";&)*&;");R)$),Q&(%,"&

Page 41: Rebecca Harrington

N@,@9/=*<%,$(==*$('=%

Page 42: Rebecca Harrington

N@,@9/=*<%,$(==*$('=%

Page 43: Rebecca Harrington

?()++"()*+&%*<&E%$M&-J&I%(S$E"&["E-$),Q&<"I"*<"*$"&&

H,(";;";X&8N7&F&A&M.%&H,(";;";X&8N7&F&7&M.%& H,(";;";X&8NA&F&8N7&M.%&

Page 44: Rebecca Harrington

?()++"()*+&%*<&J("LK"*$Q&<"I"*<"*$"&

Page 45: Rebecca Harrington

!118˚30' !118˚00' !117˚30' !117˚00'

54˚00'

54˚30'

CRANE network RAVEN network TD network CN networkHypoDD relocations Catalogue locations

M 1 M 2 M 3 M 4Wells Cities

Fox CreekJan 23, 2015

June 13, 2015

!120˚ !112˚

50˚

52˚

54˚

56˚

58˚

CRANE network RAVEN network TD network CN networkHypoDD relocations Catalogue locations

M 1 M 2 M 3 M 4Wells Cities

B.C.

U.S.A.

Alberta

Fox Creek

Edmonton

7$/S*$?*+%/:%*@$,#B"@C*+X&&&/Q<(%KE)$&J(%$,K()*+&)*<K$"<&"["*,;&

54˚00'

54˚30'

Fox Creek

June 13, 2015

CRANE network RAVEN network TD network CN networkCRANE network RAVEN network TD network CN networkCRANE network RAVEN network TD network CN networkHypoDD relocations Catalogue locationsHypoDD relocations Catalogue locationsHypoDD relocations Catalogue locations

M 1 M 2 M 3 M 4M 1 M 2 M 3 M 4M 1 M 2 M 3 M 4

2;"&;I"$,(%E&(%S-&R",/-<;&,-&";SR%,"&;,%S$&;,(";;&<(-I&

Page 46: Rebecca Harrington

Proper?esofearthquakes:hydraulicfracturinginducedevents

Stressdropvaluesdon’tdifferfromnaturalearthquakes

Clercetal.,2016

Page 47: Rebecca Harrington

Stressdropsdon’tchangewithdepthordistanceformthewell

Stressdropsmaynotbeagoodmetricfordiscrimina?ngbetweeninducedandnaturalearthquakes

Clercetal.,2016

Page 48: Rebecca Harrington

PoroelasScmodelof(fracking)inducedearthquakesinFoxCreek,AB

Dengetal.,2016

Page 49: Rebecca Harrington

CoulombstresschangesontheesSmatedfaultplane

Page 50: Rebecca Harrington

InducedearthquakesandΔCFS:poroelasScresponseseemstodominateporepressurechanges.

Dengetal.,2016

Page 51: Rebecca Harrington

Summary•  Naturalearthquaketriggeringoccurswithsmall(~0.1kPa)triggeringstressesthatappeartobefrequencydependent.

•  Humaninducedearthquakesdonotappeartobephysicallydifferentthannaturalearthquakes(stressdrops,b-values,…)

•  NewporoelasScmodelingandtriggeringobservaSonssuggeststresstransferoftherockmatrixmaybemoreimportantfornucleaSngearthquakes.

•  DoobservaSonsandmodelingresultshelpdisSnguishmechanismsforimmediatevs.delayedtriggering?

Page 52: Rebecca Harrington

&&

X/$C('=%/'%"'<*$+,@'<('=%#/W%Y"(<+%('Y"*'0*%$"S,"$*%@,%@99%<*S,#+%('%,#*%:@"9,%G/'*Z%,$*1/$%H<**SKM%*@$,#B"@C*+%H(',*$1*<(@,*%@'<%+#@99/WK[%!*9@,*%,/%=*/9/=(0@9%0#@$@0,*$(+?0+%,/%"'<*$+,@'<%

1*0#@'(0@9%S$/0*++[%%%!"#$%&'()&*+)%&,-'.%)$/".$%01\%

X/$C('=%/'%"'<*$+,@'<('=%#/W%

!*+"9,%/:%@==$*++()*9F%0"$(/"+%0/W+%