Top Banner
Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri http://nift.wvu.edu/remody
46

Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Dec 14, 2015

Download

Documents

Eileen Dowdey
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Reactive Molecular Dynamics

Andrei SmirnovRolando A. Carreno-Chavez

Jaggu Nanduri

http://nift.wvu.edu/remody

Page 2: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Reactive Molecular Dynamics

1. Problem and objective, relation to the long term goal

2. Methodology3. Problems, issues, and solutions4. Accomplishments and results5. Future work and direction

Page 3: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Problem and Objective

Bridging the Nano and Macro Scales: Atomistic Modeling: <1nm – 1nm Molecular Dynamics: 1nm – 1mc Continuum Modeling: 1mc - 1cm

Reducing the number of empirical constants: Predicting kinetic reaction rates Porous medium diffusion constants

Capturing new effects: In-pore kinetic reactions at microscale Transient concentration polarization effects

Page 4: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

MethodologyKinetic/Collision Theory:

• http://en.wikipedia.org/wiki/Collision_theory

Nwall = 0.25 vavg

N/V = 0.25*den/m*(8kT/pi*m)^(1/2)

Reactions in the bulk

YSZ Ni, O--

Reactions on the surface

Page 5: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Input ParametersSpecies:

Reactions:

•Atomic mass•Size•Heat capacity: DOF

•Activation energy •Enthalpy

Species and reactions data above can be specified both on the boundaries and in the bulk.

Page 6: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Problems and Solutions

Memory Efficient Implementation

Time-efficient Execution Algorithm

Advanced data structures to accommodate several million molecules on a single processor vs. several hundred in QM calculations.

Space segmentation algorithm to exploit the localnature of the interaction potential. Adaptive time-stepping.

Page 7: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enable to avoid memory allocations and deallocations.Instead.

Page 8: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enable to avoid memory allocations and deallocations.Instead.

Page 9: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enable to avoid memory allocations and deallocations.Instead new links are created.

Page 10: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enable to avoid memory allocations and deallocations.Instead new links are created and old links are reassigned.

Page 11: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enable to avoid memory allocations and deallocations.Instead new links are created and old links are reassigned.

Page 12: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enables more efficient nested looping over neighboring particles.

Page 13: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enables more efficient nested looping over neighboring particles.

Page 14: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Looped Lined Lists

Enables more efficient nested looping over neighboring particles.

Page 15: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Interaction Acceleration

Space segmentation scheme

Enables to achieve near linear dependence of execution time on the number of molecules.

Page 16: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Species/Reactions

OOP Approach

Implementing classes of Atoms, Molecules, Species, and Reactions in a object-oriented framework enabled flexible data input and problem setup for hundreds of species and reactions.

Page 17: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas Gas Phase Reactions

OH+OH=H2O+OOH+OH=HO2+HOH+O2=HO2+OOH+O=O2+HOH+H2=H2O+HOH+H=H2+OOH+H=H2OOH+HO2=H2O+O2O2+H2O=OH+HO2O2+H2=OH+OHO2+H2=HO2+HO2+H=OH+OO2+H=HO2

O+H2=OH+HO+H=OHO+HO2=OH+O2O+O=O2H+H=H2H2O+H=H2+OHH2O+O=HO2+HH2O+O=OH+OHHO2+H=H2+O2HO2+H=H2O+OHO2+H=OH+OHCH4+H=H2+CH3

H2+CH3=CH4+HCH4+O=OH+CH3OH+CH3=CH4+OCH4+O2=HO2+CH3HO2+CH3=CH4+O2CH4+OH=H2O+CH3H2O+CH3=CH4+OHCO2+H=OH+COOH+CO=CO2+HCO2+O=O2+COCO+O=CO2CO+O2=CO2+OCO+HO2=CO2+OH

Page 18: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas Surface Reactions

OH->H2O+OOH->HO2+HO2->HO2+OOH->O2+HH2->H2O+HOH->H2+OOH->H2OOH->H2O+O2O2->OH+HO2O2->OH+OHO2->HO2+HO2->OH+OO2->HO2

H2->OH+HH2O->OH+CHO->O2H->H2H2O->H2+OHH2O->HO2+HH2O->OH+OHHO2->H2+O2HO2->H2O+OHO2->OH+OHCH4->H2+CH3H2->CH4+HCH4->OH+CH3OH->CH4+O

CH4->HO2+CH3HO2->CH4+O2CH4->H2O+CH3H2O->CH4+OHCO2->OH+COOH->CO2+HCO2->O2+COCO->CO2O2->CO2+OHO2->CO2+OHO->COCO2->CO+COH2O->OH+CH

Page 19: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Accomplishments & Results10 mil/GB molecules on a single processor: Simulations in 1mc^3 pore

1000 molecules: H2+O2 reaction. 15 mil: H2 + O(s) = H2O

Page 20: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

VALIDATION

First validation of the Remody program (histogram) with Maxwell Boltzmann Velocity distribution for 10000 molecules of hydrogen at 850 K.

Validation of the Remody program (histogram) with Maxwell Boltzmann Velocity distribution for 10000 molecules of helium at 3000 K.

Page 21: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

1 million - molecules

Page 22: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

2 millions - molecules

Page 23: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

3 millions - molecules

Page 24: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

4 millions - molecules

Page 25: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

5 millions - molecules

Page 26: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

6 millions - molecules

Page 27: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

7 millions - molecules

Page 28: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

8 millions - molecules

Page 29: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

9 millions - molecules

Page 30: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

10 millions - molecules

Page 31: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

11 millions - molecules

Page 32: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

12 millions - molecules

Page 33: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

13 millions - molecules

Page 34: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

14 millions - molecules

Page 35: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

15 millions - molecules

Page 36: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

16 millions - molecules

Page 37: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

17 millions - molecules

Page 38: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Concentrations

Page 39: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas

1.5 million molecules in one cubic micron

Page 40: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas

3.0 million molecules in one cubic micron

Page 41: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas

4.0 million molecules in one cubic micron

Page 42: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas

5.0 million molecules in one cubic micron

Page 43: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas 4.0 mil molecules

Page 44: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Syngas 5.0 mil molecules

Page 45: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Accomplishments

1. The capability was developed to simulate tens of millions of reacting molecules on a single workstation.

2. Developed techniques enable to conduct simulations in nanometer-to-micron range, bridging the gap between ab-initio QM and continuum mechanics paradigms.

3. Hundreds of bulk gas and surface reactions can be easily incorporated.

4. H2 + anode reactions inside one cubic micron pore were simulated.

5. Simulation of anode-Syngas reaction inside 1mc^3 pore, including 41 surface and 38 bulk reactions is continuing.

Page 46: Reactive Molecular Dynamics Andrei Smirnov Rolando A. Carreno-Chavez Jaggu Nanduri .

Future Work

1. Investigate transient effects in Syngas simulation in micron size pores.

2. Investigate transient effects of polarization.3. Extend surface reaction model with surface

species kinetics.4. Extend simulations to larger size pores using a

workstation cluster.5. Investigate the effects of low ppm impurities on

surface degradation.6. Predict kinetic reaction rates.