Top Banner
 1 Reaction Kinetics (3) Xuan Cheng Xiamen University Physical Chemistry
35

Reaction Kinetics(3)

May 30, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 1/35

  1

Reaction

Kinetics (3) Xuan Cheng

Xiamen University

PhysicalChemistry

Page 2: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 2/35

  2 

Determination of theRate Law

PhysicalChemistry

λ β α  ][][][ L B Ak r  =The rate law (17.48)

1. Half-life method

o A

n

 Ank n

t  ][log)1()1(

12loglog 10

1

102/110 −−−

−=

−(17.49)

[ ] Ano

n

k  Ant  1

1

2/1 )1(

12

= (17.29)For  n ≠ 1

o A

n

 Ank n

t  ][log)1()1(

12loglog 10

1

102/110 −+−

−=

−(17.49)

ReactionKinetics

Page 3: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 3/35

  3 

半衰期法确定反应级数

用半衰期法求除一级反应以外的其它反应的级数。

以 lnt 1/2 ~ ln[A]o 作图从直线斜率求 n 值。从多个实验数据

用作图法求出的 n 值更加准确。

 根据 n 级反应的半衰期通式: 取两个

不同起始浓度 [A]o , [A]o’ 作实验,分别测定半衰期为

t 1/2  和 ,因为同一反应,常数相同,所以:

1

1

2/1][

1

)1(

12−

−=

no A

n

 Ak nt 

1/ 2't 

PhysicalChemistry

1

2/1

2/1

][

'][

'

=

n

o

o

 A

 A

)]/[']ln([

)'/ln (1 2/12/1

oo A A

t t n +=

o An K t  ]ln [)1(lnln 2/1 −+=

ReactionKinetics

Page 4: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 4/35

  4 

PhysicalChemistryDetermination of the

Rate Law2. Powell-plot method

o A A ]/[][≡α 

n Ak r  ][=

(17.50)

the fraction of A unreacted

t  Ak  no A

1][ −≡φ 

[ ][ ]

[ ] t k n A A

 A A

no

n

o

)1(1 11−+=  

  

   −−

For  n ≠ 1 (17.28)

φ α  )1(11 −=−− nn For  n ≠ 1

(17.13)

[ ]

[ ]t k 

 A

 A A

o

−=ln

For  n = 1

φ α  −=ln For  n = 1 (17.51)

ReactionKinetics

Page 5: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 5/35

Page 6: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 6/35

  6 

PhysicalChemistry

Determination of theRate Law

3. Initial-rate method

λ β α  ][][][ L B Ak r  =The rate law (17.48)

The ratio of initial rates for runs 1 and 2

α 

=

1,0

2,01,02,0

][

][/ A

 Ar r 

Measure r 0 for two different initial concentrations [A]0,1 and [A]0,2  

while keeping [B]0, [C]0, …fixed.

α  can be found

The orders β  ,…λ  can be found similarly

ReactionKinetics

Page 7: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 7/35

  7 

PhysicalChemistry

Determination of theRate Law4. Isolation method

λ β α  ][][][ L B Ak r =The rate law (17.48)

Make initial concentrations of reactant A much less than the

concentrations of all other species

[B]0 >> [A]0, [C]0 >> [A]0, …

The rate law becomes

α λ β α  ][][][][ 00

A j L B Ak r  == (17.52)λ β 00 ][][ L Bk  jwhere ≡

Where j is essentially constant.

The reaction has the pseudo-order α  .

The orders β  ,…λ  can be found

similarly.

ReactionKinetics

Page 8: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 8/35

Page 9: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 9/35

  9 

PhysicalChemistryRate Laws and EquilibriumConstants for Elementary Reactions

 DC  B A +⇔+

]][[]][[][

11 DC k  B Ak dt 

 Ad −+−= 

  

  

Show that for a reaction that takes place in a sequence of steps, the

overall equilibrium constant is a product of ratios of the rate

constants for each step.

It is sufficient to consider a reasonably general but simple two-stepreaction sequence, such as

 F  E C  +⇔

 F  E  D B A ++⇔+

(second-order in each direction, k 1, k -1)

(first-order forwarded, second-order reverse, k 2, k -2)

(overall)

]][[][][

22 F  E k C k dt 

C d −+−= 

  

  

ReactionKinetics

Page 10: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 10/35

Page 11: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 11/35

  11 

PhysicalChemistry Reaction Mechanisms

 p r o d u c t s A →

The Rate-Determining-Step Approximation

The reaction mechanism is assumed to consist of one or morereversible reactions that stay close to equilibrium during most of the

reaction, followed by a relatively slow rate-determining step, which

in turn is followed by one or more rapid reactions.

 products B A →+ products A →2

 productsC  B A →++ products B A →+2 products A →3

unimolecular 

The number of molecules that react in an elementary stepThe molecularity of the elementary reaction

 bimolecular 

trimolecular (termolecular)

ReactionKinetics

Page 12: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 12/35

  12 

PhysicalChemistry

12 k k  >>

Reaction Mechanisms

C  B Ak k   →   →   21

t k t k ee 12 −− << 212 k k k  ≈−

Suppose now that

Then whenever a B molecule is formed it decays rapidly into C.

   

  

 −

+−

−= −− t k t k o e

k k 

k e

k k 

k  AC  21

12

1

12

21][][ (17.41)

reduces to ( )t k o e AC  11][][ −−=

The formation of C depends on only the smaller of the two rate constants

 B Ak  →  1 is called the rate-determining step of the

reaction.

For the consecutive unimolecular reactions

ReactionKinetics

Page 13: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 13/35

  13 

PhysicalChemistry

The Steady-State Approximation

Assumes that during the major part of the reaction, the rates of 

change of concentrations of all reaction intermediates are

negligibly small

0][ ≈dt 

te Intermediad 

Reaction Mechanisms

Reactants

Products

Intermediates

Time

Conce

ntration

C  B Ak k   →   →   21 (17.35)

0][][][

21 =−=   

  

 Bk  Ak dt 

 Bd 

][][

2

1  A

k  B = ][][

][12 Ak  Bk 

dt 

C d == 

 

 

 

 

ReactionKinetics

Page 14: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 14/35

  14 

PhysicalChemistry Reaction Mechanisms

0001 ])[1(][][ 11  Aee Ak C t k t  t k  −− −=∫ =

C is formed by a first-order decay of A, with a rate constant k 1,

the rate constant of the slower, rate-determining step.

][][][

12 Ak  Bk dt 

C d == 

  

  

[ ] [ ]t k 

o e A A 1−

= (17.38)

( )t k o e AC  11][][ −−=

The same result as before, butobtained much more quickly.

ReactionKinetics

Page 15: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 15/35

  15 

PhysicalChemistry

C  B →

21 k k  >>−

 A B →

(the rate-

determining step)

Reaction Mechanisms

 DC  B A k k k   →   →   →   321

    ←−1k 

    ←−2k 

    ←−3k 

Consider the following mechanism composed of unimolecular reactions

is slower than

 B A ⇔ remains close to equilibrium

23 k k  >> 23 −>> k k 

C  B ⇔ is not in equilibrium

D is rapidly formed

from C

ReactionKinetics

Page 16: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 16/35

  16 

PhysicalChemistry Reaction Mechanisms

O H  N  H C  NH  H C  HNO H Br 

22562562 2+    →  ++ ++ −

]][][[ 2−+= Br  HNO H k r 

Example 17.4

is observed to be

A proposed mechanism is

(17.55)

The rate law for the Br --catalyzed aqueous reaction

O H ONBr  Br  HNOk 

222 + →  + −

−+ ++ →  + Br O H  N  H C  NH  H C ONBr k 

22562563

++  →  + 2221  NO H  HNO H 

    ←−1k 

rapid equilib.

(17.56)slow

fast

ReactionKinetics

h i l

Page 17: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 17/35

  17 

PhysicalChemistry Reaction MechanismsExample 17.4

]][][[ 2−+= Br  HNO H k r  (17.55)

Deduce the rate law for this mechanism and relate the observed rate

constant k in (17.55) to the rate constants in the assumed mechanism(17.56)

++  →  + 2221  NO H  HNO H 

    ← −1k 

rapid equilib.

(17.56)O H ONBr  Br  HNOk 

222 + →  + − slow

−+ ++ →  + Br O H  N  H C  NH  H C ONBr k 

22562563 fast

the rate-determiningstep

(1)

(2)

(3)

The formation of ONBr in (2) ]][[ 222−+= Br  NO H k r  (17.57)

Step (1) is near equilibrium. Equation (17.53) gives

ReactionKinetics

Ph i l

Page 18: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 18/35

  18 

PhysicalChemistry Reaction MechanismsExample 17.4

b

 f  

c k 

 K  = elementary reaction (17.53)*

]][[

][

2

22

1

11,

 HNO H 

 NO H 

k  K c +

+

−== ]][[][ 2

1

122 HNO H 

k  NO H  +

+ =

]][[ 222−+= Br  NO H k r  (17.57)

]][][)[/( 2121−+

−= Br  HNO H k k k r 

21,121 )/( k  K k k k k  c== −

]][][[ 2−+= Br  HNO H k r  (17.55)

Example 17.5

ReactionKinetics

Ph i l

Page 19: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 19/35

  19 

PhysicalChemistry Reaction Mechanisms

More examples in using the steady-state approximation

)()(4)(2 2252 g O g  NO g O N  +→ ][ 52O N k r  =

on the basis of the following mechanism:

Account for the rate law for the decomposition of N2O5

3252 NO NOO N  ak  + →  

5232

'

O N  NO NO ak  →  +

 NOO NO NO NO bk  ++ →  +2232

252 3 NOO N  NO ck  →  +

First identify the intermediates NO and NO3

ReactionKinetics

Ph i l

Page 20: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 20/35

  20 

PhysicalChemistryReaction Mechanisms

]][[]][[][

5232 O N  NOk  NO NOk dt 

 NOd cb −=

]][[]][[][][

3232'

523  NO NOk  NO NOk O N k 

dt 

 NOd baa −−=

3252 NO NOO N 

ak 

+ →  

5232

'

O N  NO NO ak  →  +

 NOO NO NO NO bk  ++ →  + 2232

252 3 NOO N  NO ck  →  +

]][[]][[][][

5232'

5252 O N  NOk  NO NOk O N k 

dt 

O N d caa −+−=

ReactionKinetics

Ph i l

Page 21: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 21/35

  21 

PhysicalChemistry Reaction Mechanisms

0]][[]][[ 5232 =− O N  NOk  NO NOk  cb

][

][

)(][][

]][[

2

52

'32

52

 NO

O N 

k k 

 NO NO

O N  NO

ba

a

b

c

+==

According to the steady-state approximation, set both rates equal

to zero 0][ =dt  NOd  0][ 3 =

dt  NOd 

)(][ 'bac

ba

k k k 

k k 

 NO +=

][

]][[][

2

523

 NO

O N  NO

k  NO

b

c=

0]][[]][[][ 3232

'

52 =−− NO NOk  NO NOk O N k  baa

][

][

)(][

][

)(][

2

52'

2

52'3

 NO

O N 

k k 

 NO

O N 

k k k 

k k 

k  NO

ba

a

bac

ba

b

c

+=

+=

ReactionKinetics

Ph i l

Page 22: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 22/35

  22 

PhysicalChemistry Reaction Mechanisms

]][[]][[][][

5232'

5252 O N  NOk  NO NOk O N k 

dt 

O N d caa −+−=

The net rate of change of concentration of N2

O5

is

][

)(][

][

)(

][][][

52'2

52

'2

'52

52 O N 

k k k 

k k k 

 NO

O N 

k k 

k  NOk O N k 

dt 

O N d 

bac

bac

ba

aaa

+−

++−=

)(

]['

bac

ba

k k k 

k k  NO

+

=

][

][

)(][

][

)(][

2

52'

2

52'3

 NO

O N 

k k 

 NO

O N 

k k k 

k k 

k  NO

ba

a

bac

ba

b

c

+=

+=

][)(

][)(

][52'52'

''52 O N 

k k 

k k O N 

k k 

k k k k k k 

dt 

O N d 

ba

ba

ba

aabaaa

+−

+

+−−=

ReactionKinetics

Ph i l

Page 23: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 23/35

  23 

PhysicalChemistry Reaction Mechanisms

][

2][

52'

52

O N k k 

k k 

dt 

O N d 

ba

ba

+−=

 because 2][ 52−=O N υ 

][][ 5252' O N k O N k k 

k k r 

baba =+=

][ 52O N k r =

ba

ba

k k 

k k k 

+=

'

It follows that the reaction rate is

where

ReactionKinetics

Ph sical

Page 24: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 24/35

  24 

PhysicalChemistry Reaction MechanismsPre-equilibria

From a simple sequence of consecutive reactions we now turn to a

slightly more complicated mechanism:

Where C denote the intermediate.

 P C  B A ba k k   →   →  +  ←

'ak 

This scheme involves a pre-equilibrium, in which an intermediates

is in equilibrium with the reactants.

A pre-equilibrium arises when the rates of formation of the

intermediate and its decay back into reactants are much faster than

its rate of formation of products; thus, the condition is possible

when k’ a>>k b but not when k b >>k’ a. Because we assume that A, B,

and C are in equilibrium.

ReactionKinetics

Physical i

Page 25: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 25/35

  25 

PhysicalChemistry Reaction MechanismsPre-equilibria

We can write:

c K  B A

C  =]][[

][ 'a

ack 

k  K  =

In writing these equations, we are presuming that the rate of 

reaction of C to form P is too slow to affect the maintenance of the

 pre-equilibrium (see the following example). The rate of formation

of P may now be written:

]][[][][

 B A K k C k dt 

 P d cbb ==

This rate law has the form of a second-order rate law with a

composite rate constant:]][[

][ B Ak 

dt 

 P d = '

a

bacb

k k  K k k  ==where

ReactionKinetics

Physical R i

Page 26: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 26/35

  26 

PhysicalChemistry Reaction MechanismsPre-equilibria

Example: Analyzing a pre-equilibrium

Repeat the pre-equilibrium calculation but without ignoring the

fact that C is slowly leaking away as it forms P.

][][ C k dt  P d  b=

The net rates of change of P and C are

0][][]][[][ ' =−−= C k C k  B Ak 

dt 

C d baa

ba

a

k k 

 B Ak C 

+=

'

]][[][

where

 P C  B A ba k k   →   →  +

  ← 'ak 

]][[][

 B Ak dt 

 P d =

ba

ba

k k 

k k k 

+=

'

ReactionKinetics

Physical R ti

Page 27: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 27/35

  27 

PhysicalChemistry Reaction Mechanisms

Pre-equilibria

where]][[][

 B Ak dt 

 P d =

ba

ba

k k 

k k k 

+=

'

]][[][

 B Ak dt 

 P d =

'a

bacb

k k  K k k  ==where

When the rate constant for the decay of C into products is muchsmaller than that for its decay into reactants '

ab k k  <<

ReactionKinetics

Physical R ti

Page 28: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 28/35

  28 

Homework Physical

Chemistry

Page 592

Prob. 17.28

Prob. 17.29

Prob. 17.33

Page 593

Prob. 17.39

Prob. 17.52

ReactionKinetics

Physical

Page 29: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 29/35

  29 

速率决定步骤

  在连续反应中,如果有某步很慢,该步

的速率基本上等于整个反应的速率,则该慢步骤称为速率决定步骤,简称速决步或速

控步。利用速决步近似,可以使复杂反应的

动力学方程推导步骤简化。

PhysicalChemistry

Physical

Page 30: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 30/35

  30 

速率决定步骤

A][B][1k r  ≈慢步骤后面的快步骤可以不考虑。

只需用平衡态近似法求出第 1 , 2 步的速

率。虽然第二步是速决步,但中间产物 C

的浓度要从第一步快平衡求。

例 1. 慢 快 快A B C D E+ → → →

PhysicalChemistry

例 2.

  快   慢   快 快 F  E  DC  B A →→→→+

Physical

Page 31: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 31/35

  31 

稳态近似

  从反应机理导出速率方程必须作适当近似,

 稳态近似是方法之一。

  假定反应进行一段时间后,体系基本上处于稳态,这时,各中间产物的浓度可认为保持不

变,这种近似处理的方法称为稳态近似,一般

活泼的中间产物可以采用稳态近似。

PhysicalChemistry

Physical

Page 32: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 32/35

  32 

氢与碘的反应

2 2

2 2

H I 2HI

1 d[HI][H ][I ]

2 dtr k 

+ →= =

  总包反应

实验测定的速率方程

分别用稳态近似和平衡假设来求中间产物 [I]

的表达式,并比较两种方法的适用范围。

2

2 2 [I]1 d[HI]

[H ]2 dt k =

PhysicalChemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ +

+ →

 

反应机理:

快平衡

M  I M  I  +→+ 22

Physical

Page 33: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 33/35

  33 

用稳态近似法求碘原子浓度

因为 (1) 是快平衡, k-1 很大; (2) 是慢反应, k2 很小,

分母中略去 2k2[H2] 项,得:1 2

2 22 2

1

[H ][ [H ]I [] I ]r k k k 

k −= =

与实验测定的速率方程一致。

2 2

1 2 -1 2 2

1 d[I]

[I ][M]- [I] [M]- [H ][I] 02 dk k k 

t = =

2 1 2

1 2 2

[I ][M][I]

[M] 2 [H ]

k k −

=+

2 1 2 2 22 2

1 2 2

[H ][I ][M][H ][I]

[M] 2 [H ]

k k r k 

k k −

= = +

PhysicalChemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ +

+ →

 

反应机理:

快平衡慢

M  I M  I  +→+ 22

Physical

Page 34: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 34/35

  34 

显然这个方法简单,但这个方法只适用于快平衡下面是慢反应的机理 , 即 k -1>>k 2 。

反应 (1) 达到平衡时:2

1 2 -1[I ][M] [I] [M]k k =

2 1

21

[I] [I ]k 

k −=

2 1 22 2 2 2 2 2

1

[H ][I] [H ][I ] [H ][I ]k k 

r k k k 

= = =

用平衡假设法求碘原子浓度Physical

Chemistry

2

2

(1) I M 2I M

(2) H 2I 2HI

+ ++ →

反应机理:

快平衡

  M  I M  I  +→+ 22

Physical

Page 35: Reaction Kinetics(3)

8/14/2019 Reaction Kinetics(3)

http://slidepdf.com/reader/full/reaction-kinetics3 35/35

稳态近似法与平衡态近似法的比

稳态近似法 — 优点:所得最终动力学方程中包含了复合

  反应中的全部动力学参数 ( 如 k 1 , k -1 ,

k 2)优缺点

—平衡态近似法 缺点:所得最终动力学方程中只有一个

  动力学参数(k 2)

,而且包含在k 2 K c

乘积中

  优点:所得动力学方程的形式简单

缺点:所得动力学方程的形式复杂

PhysicalChemistry