Top Banner

of 22

Réacteurs_nucléaires_de_génération_IV

Jun 03, 2018

Download

Documents

Suhaib Ashraf
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    1/22

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    2/22

    Generation IV Roadmap TW-4, Non-Classical

    2Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Peop le Involved in this Work

    TWG-4 Non-Class ical Reacto r Concep ts Memb ers

    Anghaie, Sam im , Chair (Presen ter ) Un ivers i ty o f Flo r ida, USA

    Delpech, Marc, CEA, France

    Fors berg , Charles , ORNL, USA

    Garzenne, Claude, EDF, France

    Herring , Steve, INEEL, USA

    Klein, An dy, Oregon State Universi ty , USA

    Lenno x, Tom, NNC Limi ted, UK

    Leroy , Maurice, EURATOM/JRC), Germany

    Lew is , Dave, Techn ical Direc to r ANL, USA

    Park, Won Seok, KAERI, Korea

    Peddico rd, Lee, Texas A&M Universi ty , USA

    Pick ard, Paul, SNL, USA

    Takano, Hideki , JAERI, Japan

    Wilso n, Paul, Universi ty of Wisc ons in, USA

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    3/22

    Generation IV Roadmap TW-4, Non-Classical

    3Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    ClassicalClassical vsvsNonNon--ClassicalClassical Coo lant & FuelCoo lant & Fuel

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    4/22

    Generation IV Roadmap TW-4, Non-Classical

    4Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    ClassicalClassical vsvsNonNon--ClassicalClassical Fuel DesignFuel Design

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    5/22

    Generation IV Roadmap TW-4, Non-Classical

    5Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    ClassicalClassical vsvsNonNon--ClassicalClassical PowerPower

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    6/22

    Generation IV Roadmap TW-4, Non-Classical

    6Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    ClassicalClassical vsvsNonNon--ClassicalClassical Appl icat ionsAppl icat ions

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    7/22

    Generation IV Roadmap TW-4, Non-Classical

    7Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    NonNon--ClassicalClassical ReactorReactorConceptsConcepts

    A total of 32 concepts gathered, among them 28 meet the Generation

    IV requirement of fission based self sustained criticality.

    Based on the primary design features , six Concept Sets are defined as:

    1. L iq uid Co re Reac to rs

    2. Gas Core Reactors

    3. Non -Conven tional Coo lan t Reac to rs

    4. Non -Convec tion Coo led Reac to rs

    5. Di rec t Energy Conver sion Reac to rs

    6. Modular Deployab le Reactors

    Non-Classical reactor concepts feature higher potential to meet or exceed

    Gen IV performance goals at somewhat lower technology readiness level.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    8/22

    Generation IV Roadmap TW-4, Non-Classical

    8Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary of L iqu id Core Reactor Conc epts

    Innovative ApproachesExamples

    1. Mo lten Salt Core

    HERACLITUS - Circulating fuel, natural thorium molten salt.

    MSBR-

    Molten Salt Breeder, liquid uranium and thoriumfluorides.

    AMSTER - Actinides Molten Salt Transmuter

    2. Liquid Metal Core

    LM-FR-

    Liquid Metal Equilibrium Fast Reactor, Mg-Pu Eutectic.

    MSBR - Molten Salt Breeder, liquid uranium and thorium

    fluorides.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    9/22

    Generation IV Roadmap TW-4, Non-Classical

    9Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Molten Salt Reactor

    HeatExchanger

    Reactor

    GraphiteModerator

    SecondarySalt Pump

    Off-gasSystem

    PrimarySalt Pump

    Purified

    Salt

    Chemical

    ProcessingPlant

    Turbo-Generator

    FreezePlug

    Critically Safe, Passively Cooled Dump Tanks

    (Emergency Cooling and Shutdown)

    Steam Generator

    NaBF_

    NaFCoolant Salt

    4

    72LiF

    _Th

    Fuel Salt

    _BeF F _UF4 4

    566Co

    704 Co

    454 Co

    621 Co

    538Co

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    10/22

    Generation IV Roadmap TW-4, Non-Classical

    10Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary o f Gas Core Nuc lear Systems

    Innovative ApproachesExamples

    1. GCR/VCR-MHD

    UF4 with either KF vapor Rankine cycle or He Brayton cycle.

    Efficient MHD energy conversion with fission enhancedionization.

    2. GCR-Graph ite Wall

    Neutralizes high temperature wall corrosion.

    3. Plasma/Vor tex Flow

    Varieties of vortex flow GCRs, high T, diverse uses.

    UF6 or U vapor with He or Argon.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    11/22

    Generation IV Roadmap TW-4, Non-Classical

    11Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Gas Core Reactor Power System

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    12/22

    Generation IV Roadmap TW-4, Non-Classical

    12Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Liquid and Gas/Vapor Core Reactor Properties

    1. Significant advances can be made in conversion efficiency, diversificatioof energy products, resource utilization and waste minimization.

    1. Excellent non-proliferation characteristics due to one to two orders of

    magnitude lower fuel inventory and plutonium buildup.

    3. Minimized source term due to online separation and removal of fission

    products and ultralow equilibrium concentration of minor actinides.

    4. Gas/vapor core reactors could potentially eliminate the need for Offsite

    Emergency Planning, which is a key safety goal for the Gen IV reactors.

    5. Many technology challenges; high temperature materials, energy

    conversion, dynamics and control, remote operation, fuel chemistry and

    fuel handling, fission product separation, and safety.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    13/22

    Generation IV Roadmap TW-4, Non-Classical

    13Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary o f Non -Convent iona l Cooled ReactorConcepts

    Innovative Approaches

    Examples

    1. AHTR - Advanced High T Reactor

    Graphite Matrix-

    Molten Salt Cooled.

    High temperature diverse uses.

    2. OCR - Organic Coo lant Reactors

    Cheaper efficient cooling, reduced costs.

    3. FSEGT - Sodium Evaporat ion

    Fast reactors, sodium evaporation cooling.

    Unique sodium vapor gas turbines.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    14/22

    Generation IV Roadmap TW-4, Non-Classical

    14Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    AHTR, Molten Salt Cooled Reactor

    Radiationand

    Conduction

    Heat

    Transfer

    Fuel(Graphite: Similar

    to HTGR Fuel)

    Molten Salt

    (Example:2LiF-BeF )2

    Control

    Rods

    >1000 Co

    Conversion Options

    Hydrogen from water

    Electricity

    Brayton Indirect

    CycleDirect Thermo-

    Electric

    -

    -

    Hot Air Out

    Air In CoolingWater

    Passive DecayHeat Removal

    Reactor Energy ConversionOptions

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    15/22

    Generation IV Roadmap TW-4, Non-Classical

    15Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Non-Conventional Cooled Reactor Properties

    1. Molten Salt Cooled Reactors

    Significant advances can be made in conversion efficiency, and

    diversification of energy products.

    High temperature operation at low pressure, low power density, high heat

    capacity.

    High temperature materials, fuel design, molten salt to water heat exchanger,

    mixed nuclear/hydrogen safety issues.

    2. Organic Cooled Reactors

    High conversion ratio, superior coolant properties, low pressure operation,

    lower cost coolant (compared to CANDU).

    Fuel (UC) reaction with water and air, coolant flammability, coolant fouling,

    coolant radiolysis, reactivity coefficients.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    16/22

    Generation IV Roadmap TW-4, Non-Classical

    16Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary of Non -Convect ion Cooled Concepts

    Innovative ApproachesExamples

    1. Solid State-Heat Pipe Cooled

    Non-Convection Cooled Reactor Properties

    Low fuel inventory, static energy conversion, small scale

    power applications, remote site applications.

    High temperature fuels and materials, lifetime of energyconversion unit, dynamics and control, fuel cycle.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    17/22

    Generation IV Roadmap TW-4, Non-Classical

    17Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary of Direc t Energy Convers ion Reactor

    Concepts

    Innovative Approaches

    Examples

    1. QSMC - Quasi-Spher ical Fission Magnet ic Cel l

    Direct conversion of fission fragment energy.

    Cells coated with thin film of fissionable fuel.

    Radiation cooling.

    2. FFMC-

    Fission Fragment Magnet ic Col l imator

    Magnetically guided fission fragment trajectories.

    Thin films of UO2.

    Heavy water coolant.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    18/22

    Generation IV Roadmap TW-4, Non-Classical

    18Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Direct Energy Conversion Schematics

    Tubes w/Thin

    Layer U-235 Fuel

    Collector 2 (+4.4 MV)Collector 1 (+3.1 MV)

    Electron Grid (-3 ke

    Ground Grid (0 ke

    ElectricalInsulation

    Coolant Manifold Magnet

    Tubes w/Thin

    Layer U-235 Fuel

    Collector 2 (+4.4 MV)Collector 1 (+3.1 MV)

    Electron Grid (-3 ke

    Ground Grid (0 ke

    ElectricalInsulation

    Coolant Manifold Magnet

    MAGNETS

    CATHODE

    ANODE

    SUPPORT

    WIRE

    cm

    2 cm

    16 cm

    POTTING MATERIAL

    MYLAR

    INSULATOR

    MAGNETS

    CATHODE

    ANODE

    SUPPORT

    WIRE

    cm

    2 cm

    16 cm

    POTTING MATERIAL

    MYLAR

    INSULATOR

    Venetian blind collector

    Array of fission cells

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    19/22

    Generation IV Roadmap TW-4, Non-Classical

    19Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Direct Energy Conversion Reactor Properties

    1. Low fissile inventory, proliferation resistant, no moving

    parts, no coolant, no flow, barely critical.

    2. Hard to make critical, large systems, very low burnup,

    magnet design, direct energy conversion.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    20/22

    Generation IV Roadmap TW-4, Non-Classical

    20Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    A Summary of Modular Deployab le Reactor

    Concepts

    Innovative Approaches

    Examples

    1. MMDR - Mult i -Modular Deployable Reactor

    Modular construction, factory built.

    Transportable, easily assembled

    2. SPS - Submersib le Power Stat ion

    Transportable, modular undersea siting.

    Coastal siting niche.

    2. DORC - Distant ly Operated Reacto r Complex

    Remotely operated.

    Liquid metal cooled.

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    21/22

  • 8/12/2019 Racteurs_nuclaires_de_gnration_IV

    22/22

    Generation IV Roadmap TW-4, Non-Classical

    22Reno ANS Presentation RS043-00 2001 ANS Winter Meeting Reno, NV November 13, 2001

    Summary

    1. Despite many technology gaps and data uncertainties, there is nolack of innovation and revolutionary ideas in Non-Classical

    reactor concepts.

    2. Several concepts such as gas/vapor core reactors offer promising

    advances toward the Gen IV goals for sustainability, safety, andeconomy, and have potential for making significant inroads

    toward achieving the optimum utilization of nuclear energy.

    3. Gas/vapor core reactors set the upper performance potential in

    sustainability and safety with no insurmountable technology

    challenge.4. Evaluations of modular deployable concepts are underway.

    5. Direct energy conversion and non-convective cooled nuclear

    reactor systems are eliminated from further evaluation process.