Top Banner
1 Ultrashort laser bioengineering: Micropatterning of collagen fibers __________________ Alice Rebière 20160620 __________________ Master of Science Thesis in Engineering Physics at KTH Supervisor: Raphaël Devillard (INSERM/ALPhANOV) Cosupervisor: Dora AïtBelkacem (ALPhANOV) Examiner: Marina Zelnina KTH TRITA FYS 2016:25 ISSN 0280316X ISRN KTH/FYS/16:25—SE
45

rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

Oct 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  1  

   

                     

Ultrashort  laser  bioengineering:  Micropatterning  of  collagen  fibers  

 

__________________  Alice  Rebière  

2016-­‐06-­‐20  __________________  

       

Master  of  Science  Thesis  in  Engineering  Physics  at  KTH    

Supervisor:  Raphaël  Devillard  (INSERM/ALPhANOV)  Co-­‐supervisor:  Dora  Aït-­‐Belkacem  (ALPhANOV)  

Examiner:  Marina  Zelnina  KTH    

           TRITA  FYS  2016:25        ISSN  0280-­‐316X         ISRN  KTH/FYS/-­‐-­‐16:25—SE  

Page 2: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  2  

Page 3: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  3  

Acknowledgements:  Je  souhaite   tout  d’abord  remercier  Raphaël  pour  sa  présence,  sa  gentillesse,  son  aide,  son  encadrement,  le  prêt  de  sa  voiture,  …  Bref,  merci  d’avoir  été  un  super  encadrant  dynamique,  tout   au   long   du   stage,   et   de  m’avoir   supportée!  Merci   d’avoir   cru   en  moi,   et   de  m’avoir  proposé  de  retravailler  ensemble.  Merci  à  Dora  également  pour  l’encadrement,  pour  l’aide  au  quotidien  à  ALPhANOV,  pour  les  bons  moments  en  manip,  l’aide  sur  le  rapport,  le  thé  au  Yamato  …  Merci  à  Jérôme  pour  m’avoir  initié  à  l’art  de  la  fabrication  des  fibres,  à  la  culture  cellulaire,    et  merci  pour  le  bizutage  des  débutants  chimistes!  Merci   à   Clémentine   et   Baptiste   de   m’avoir   soutenu   en   fin   de   stage,   et   pour   leur   regard  attentif  sur  la  rédaction  de  mon  rapport  de  stage.  Merci   à   Simon   pour   l’entraide   sur   les   manips   des   fibres,   de   la   conception   à   l’usinage   en  passant  par  la  caractérisation.  Merci  à  Bruno  pour  son  avis  éclairé  sur  les  simulations  optiques,  ainsi  que  le  soutien  pointu  en   optique.   Merci   à   Murielle   pour   son   soutien   sur   la   partie   biologique   et   pour   tout  l’apprentissage  en  culture  cellulaire!  Merci  à  ceux  qui  m’ont  permis  de  passer  des   journées  agréables  dans   les  trois  bureaux  où  j’ai   eu   l’occasion   de   travailler:   d’abord   la   Meso   team   à   ALPhANOV   (Charly,   Christophe,  Guillaume  et  Anthony),  puis  la  Nano  team  (Baptiste,  Bastien  –  merci  aussi  pour  l’aide  sur  les  manip   Tangerine!,   Clémentine,   Dora,   Laura),   et   bien   sûr   à   l’INSERM,   Olivia   (et   sa   puce!),  Yoyo,  Simon,  Pauline  et  Camille.  Merci  également  à  l’ensemble  de  la  BU  MUL  à  ALPhANOV,  et  plus  globalement,  à  l’ensemble  du  personnel  d’ALPhANOV  et  de  l’  unité  BioTis  de  l’INSERM  pour  leur  support  tout  au  long  de  ces  semaines  passées  si  vite,  et  les  bons  moments  passés  ensemble.  

     

Page 4: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  4  

Abstract  The   lack  of  organ  donors   for   transplants   is  becoming  a  huge  burden.   In  attempt   to  

palliate   this   shortage   and   to   help   tissues   to   self-­‐repair,   tissue   engineering   labs   are  developing  bioengineered  human  tissues.  One  of  the  most  challenging  issues  encountered  in  the   field   of   tissue   engineering   is   the   vascularization   of   the   bioengineered   tissues.   Several  approaches  have  been  developed  to  face  this  issue.  

Among  them,  the  approach  developed  in  this  project  deals  with  the  biofabrication  of  collagen-­‐based   microfibers   to   mimic   blood   capillaries   that   would   be   integrated   inside   a  tissue-­‐engineered   construct.   The   realization   of   these   capillaries   used   laser   machining  techniques  applied  to   tissue  engineering:  endothelial  cell-­‐laden  microfibers  of  collagen  are  produced  with   a  diameter   around  100   to  150  µm.   The   collagen   core   is   then  machined  by  ultrashort   laser  pulses  using  different  wavelengths   (532  and  1064  nm)  and  different  pulse  durations  (picosecond  and  femtosecond).  

In  this  study,  we  demonstrate  the  feasibility  of  the  process.  The  precise  machining  process  allowed  the  creation  of  10  to  20  µm  voids   in  the  fiber-­‐shaped  construct  without  extended  damage  for  surrounding  cells.  Confocal  microscopy  examination  of  the  fibers  demonstrated  variation   of   the   diameter   of   the   hole   regarding   the   machining   setups   and   laser   energies  used.  

These   machined   microfibers   would   be   perfused   to   validate   the   mechanical  characteristics   and   flow   resistance   of   the   tissue-­‐engineered   construct   created.   In   a   long-­‐term,   it   is   expected   that   these   perfused   microfibers   can   be   used   as   an   easy  prevascularization  method  of  tissue-­‐engineered  constructs  and  as  an  essential  component  of  artificial  organs.  

 

 

 

 

 

 

 

 

 

 

Page 5: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  5  

 

Table  of  contents:    Acknowledgements:  ...........................................................................................................................  3  

Abstract  ................................................................................................................................................  4  

List  of  Figures:  ......................................................................................................................................  7  

List  of  Tables:  .......................................................................................................................................  9  

I.   Context:  tissue  engineering  .....................................................................................................  10  A.   Tissue  Engineering  .............................................................................................................................  10  B.   Vascularization  of  tissue  substitutes  ...............................................................................................  12  1.   Vascularization:  the  most  challenging  issue  of  tissue  engineering  .........................................  12  2.   State  of  the  art  of  vascularization  solutions  ......................................................................................  13  

C.   Laser  technology  applied  to  tissue  engineering  ............................................................................  16  1.   Laser-­‐matter  interaction  applied  to  biological  tissues  .................................................................  17  2.   Laser  micropatterning  for  tissue  engineering  .................................................................................  19  

D.   The  project’s  objectives  ....................................................................................................................  20  

II.   Material  and  methods  .............................................................................................................  21  A.  Preparation  of  the  fibers  ......................................................................................................................  21  1.   Cell  culture  .......................................................................................................................................................  21  2.   Collagen  .............................................................................................................................................................  21  3.   Fiber  ...................................................................................................................................................................  21  4.   Fixation  of  fibers  ...........................................................................................................................................  23  

B.  Micromachining  the  fibers  ...................................................................................................................  23  1.   The  laser  sources  ..........................................................................................................................................  23  2.   The  optical  set  ups  .......................................................................................................................................  24  3.   Sample-­‐holding  systems  ............................................................................................................................  26  

C.  Characterization  method:  confocal  fluorescent  microscopy  ..........................................................  27  1.   DAPI  Labeling  .................................................................................................................................................  27  2.   Live/Dead®  Assay  .......................................................................................................................................  27  

III.   Results  .......................................................................................................................................  28  A.   Influence  of  the  laser  parameters  on  the  machining  ...................................................................  28  1.   Influence  of  the  energy:  threshold  determination  .........................................................................  28  2.   Influence  of  the  pulse  duration  on  the  machining  ..........................................................................  31  3.   Influence  of  the  wavelength  on  the  machining  ................................................................................  31  

B.   Fabrication  of  capillary  substitutes  .................................................................................................  32  1.   Whole  fiber  machining  ...............................................................................................................................  32  2.   Cell  viability  .....................................................................................................................................................  32  

IV.   Discussion  .................................................................................................................................  33  A.   Influence  of  the  laser  parameters  on  the  machining  ...................................................................  33  1.   Influence  of  the  energy  on  the  machining:  threshold  determination  ....................................  33  2.   Influence  of  the  pulse  duration  ...............................................................................................................  34  3.   Influence  of  the  wavelength  .....................................................................................................................  35  

B.   Fabrication  of  blood  capillaries  substitutes  ...................................................................................  35  1.   Machining  on  the  collagen  ........................................................................................................................  36  2.   Size  of  the  channels  ......................................................................................................................................  36  3.   Whole  fiber  machining:  choice  of  optimal  settings  ........................................................................  36  4.   Cell  viability  .....................................................................................................................................................  37  

Page 6: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  6  

Conclusion  and  Perspectives  ..........................................................................................................  37  

Annex  1:  Example  of  a  G-­‐code  program  ................................................................................  39  

Annex  2:  Tests  with  Sirius  laser  (green)  on  Eclipse  1:  optimization  of  patterning  set-­‐up  ....  40  A.          From  the  sample  holding  system  V2  to  V3  ....................................................................................  40  B.   Highlighting  the  need  of  Eclipse  2  set-­‐up  .......................................................................................  42  

References  .......................................................................................................................................  43  

 

   

Page 7: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  7  

List  of  Figures:  Figure  1:    General  principle  of  tissue  engineering  (3)  .............................................................  11  Figure  2:  Schematic  description  of  diffusion  and  transport  processes  in  vascularized  tissues  in  vivo  [inspired  from(9)]  ............................................................................................................  12  Figure  3:  Critical  distance  between  cells  and  blood  vessels  (11)  ............................................  13  Figure  4:  Outline  of  the  advantages  and  drawbacks  of  the  different  strategies  for  vascularization  approaches  (9)  ...............................................................................................  14  Figure  5:  Overview  of  the  advantages  and  drawbacks  of  the  different  strategies  for  vascularization  in  tissue  engineering  (15)……………………………………………………………………………13  Figure  6:  Scheme  of  nonlinear  interaction  phenomena  with  its  timescale  (courtesy  to  Dr  John    Lopez)  ………………………………………………………………………………………………………………………………..16  Figure  7:  Creation  of  plasma  and  optical  breakdown  in  water  ...............................................  18  Figure  8:  Nonlinear  absorptionfor  ultrashort  laser  machining  (courtesy  of  Dr  john  Lopez)  ...  19  Figure  9:  A)  Creation  of  the  sheath  around  the  glass  capillary  B)  Replacement  of  the  glass  capillary  by  the  collagen/cell  solution  (38)  .............................................................................  22  Figure  10:  Fiber  with  (on  the  left)  and  without  (on  the  right)  the  sheath.  The  green  part  is  the  collagen,  on  the  edge  there  are  the  cells  (38)  ........................................................................  23  Figure  11:  Eclipse  I  inverted  microscope,  Aerotech  stages  and  sample  .................................  24  Figure  12:  Scheme  of  the  Eclispse  1  set-­‐up  .............................................................................  25  Figure  13:  Scheme  of  the  Eclipse  II  set-­‐up  ..............................................................................  25  Figure  14:  Photo  of  the  Eclipse  II  set-­‐up  .................................................................................  26  Figure  15:  Confocal  image  of  a  fiber  machined  at  2.2  µJ:  three  views  (a)  DAPI  labelling  in  the  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  of  the  two  images  (cells  and  collagen)   29  Figure  16:  Confocal  image  of  the  fiber  machined  at  3  µJ  (merge  of  the  two  images)  ............  29  Figure  17:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  of  the  two  previous  images  ......................................................................  30  Figure  18:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  of  the  two  previous  images  ......................................................................  30  Figure  19:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  of  the  two  previous  images  ......................................................................  31  Figure  20:  Whole  fiber  machined  by  Satsuma  laser  (IR)  .........................................................  32  Figure  21:  Live/dead  protocol  on  a  non-­‐fixed  fiber  of  endothelial  cells  machined  at  3  µJ:  observation  at  the  confocal  microscope  (green:  live  cells,  red:  dead  cells).  This  live/dead  assay  is  representative  for  n=6  fibers  .....................................................................................  33  Figure  22:  Live/dead  assay  on  a  non-­‐fixed  fiber  of  endothelial  cells  machined  at  3  µJ:  observation  on  the  confocal  microscope  (green:  live  cells,  red:  dead  cells),  on  thee  different  sections  (longitudinal  and  transverse  sections)  ......................................................................  33    Figure  23:  Absorption  coefficients  of  several  species  including  collagen  (collagen  fibrils)  and  water  (39)  ...............................................................................................................................  35  Figure  24:  Microscope  observation  of  the  fiber  machined  at  4,48  µJ  (obj  10x)  (a)  before  (b)  after  the  machining  occured  ...................................................................................................  40  Figure  25:  Confocal  observation  of  the  fiber  machined  at  4,48  µJ  (three  different  sections)  41  Figure  26:  Different  fibers  machined  at  2,24  µJ  (a)  Fiber  machined  (b)  Exploded  fiber  (c)  Torn  fiber  (d)  Void  bubbles  appearance  in  the  fiber  .......................................................................  41  Figure  27:  Point  Spread  Function  of  the  beam  with  an  agarose  gen  layer  of  400  µm  (a)  and  without  (b)  the  agarose  gel  layer  ............................................................................................  42  

Page 8: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  8  

   

Page 9: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  9  

List  of  Tables:    

Table  1:  Characteristics  of  the  different  tests  performed  ..........................................................  26  Table  2:  Parameters  used  in  Sirius  (IR)  tests  .............................................................................................  28  Table  3:  Energy  tests  on  Sirius  (IR)  ...............................................................................................................  28  Table  4:  Size  of  the  channels  depending  on  the  energy  for  a  machining  with  Sirius  laser  

(picosecond).  ..............................................................................................................................................  29  Table  5:  Parameters  used  in  Satsuma  (IR)  tests  ......................................................................................  29  Table  6:  Energy  tests  on  Satsuma  (IR)  .........................................................................................................  30  Table  7:  Size  of  the  channels  depending  on  the  pulse  duration  for  a  machining  at  3  µJ  ..........  31  Table  8:  Characteristics  of  the  lasers  used  for  wavelength-­‐dependent  test  .................................  31  Table  9:  Optimal  parameters  .........................................................................................................................  37  Table  10:  Settings  of  Sirius  (green)  laser  for  tests  on  wavelength  effect  ........................................  40  Table  11:  Energy  tests  on  Sirius  (green)  laser  ...........................................................................................  40  

 

 

   

Page 10: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  10  

I. Context:  tissue  engineering    A   growing   number   of   people   are   suffering   from   bone   diseases   such   as   osteoporosis,  

pseudo-­‐arthritis   or   osteosarcomas,   consisting   of   a   major   health   issue.   In   industrialized  countries,   the  population  aging   is   the  main   factor   to  explain   that  growth.  The  Health  High  Authority   (Haute   Autorité   de   Santé)   in   France   declares   that   42778   bone   substitutes   have  been   used   in   France   in   2011   for   10  million   euros.  More   than   two  million   bone   grafts   are  performed  annually  around  the  globe  in  order  to  remedy  to  the  bone  defects  in  orthopedics  and  dentistry  surgery.  

In   clinical   application,   the   therapeutic   solutions   are   mainly   centered   on   the   use   of  human,   animal   or   synthetic   transplants.   For   bone   tissue,   the   use   of   auto   transplantation  remains  the  ‘gold  standard’  as  it  represents  the  ‘ideal’  material  but  it  is  limited  in  quantities  and  can  be  the  cause  of   infections,  pains,  and  morbidity  on  the  donor  site.  The  main  risks  relative   to   allotransplantation   and   xenotransplantation   are   the   rejection   of   the   transplant  and  the  transmission  of  pathogenesis  agents.  As  for  the  synthetic  materials  used  in  clinical  applications,   their   lack   of   biological   properties   remains   a  major   disadvantage   to   their   use  and   illustrates   the   limitations   of   such   substitutes   for   tissue   regeneration.   It   is   especially  difficult  to  recreate  tissue  architecture,  as  well  on  the  macroscopic  level  (general  shape),  as  on  the  microscopic  level  (3D  microorganization  of  cells  and  other  tissue  components).    

 The  possibility  to  generate  new  tissue  substitutes  with  optimized  properties  is  therefore  

a  major  stake  and  a  real  clinical  need  (1).  This  is  what  the  field  of  tissue  engineering  tends  to  achieve.  

 

A. Tissue  Engineering  

Tissue  engineering  has  been  defined  as  “the  development  of  biological  substitutes  that  enable   to   restore,   maintain,   or   improve   tissue   and   organ   functions   to   avoid   using   a  mechanical   system,   organ   transplantation   or   surgical   reconstruction”   (2).   Van   Blitterswijk  precises   that   tissue   engineering   gathers   “all   the   techniques   and   methods   inspiring   from  engineering  and  life  sciences,  used  to  develop  biological  substitutes”(3).  That  research  field  allows   to   consider   new   therapeutic   solutions   where   you   expand,   manipulate   and   handle  cells  in  order  to  seed  them  into  a  construct  that  can  further  be  implanted  (Fig.  1).  

Page 11: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  11  

 Figure  1:    General  principle  of  tissue  engineering  (3)  

Within   the   tissue   engineering   field,   several   categories   can   be   distinguished.  Biofabrication   is   one   of   them:   it   is   defined   as   “the   automated   generation   of   biologically  functional   products   with   structural   organization   from   living   cells,   bioactive   molecules,  biomaterials,  cell  aggregates  such  as  microtissues,  or  hybrid  cell-­‐material  constructs,  through  bioprinting  or  bioassembly  and  subsequent   tissue  maturation  processes”   (4)  Biofabrication  itself  gathers  two  techniques:  bioassembly  and  bioprinting.  

 Bioassembly   can   be   defined   as   “the   fabrication   of   hierarchical   constructs   with   a  

prescribed  2D  or  3D  organization  through  automated  assembly  of  pre-­‐formed  cell-­‐containing  fabrication  units  generated  via  cell-­‐driven  self-­‐organization  or  through  preparation  of  hybrid  cell-­‐material   building   blocks,   typically   by   applying   enabling   technologies,   including  microfabricated   molds   or   microfluidics”   (4).   This   concerns   all   the   tissue-­‐engineered  constructs  where  scaffolds  and  cells  are  assembled  together.  

 Bioprinting   is   “the   use   of   computer-­‐aided   transfer   processes   for   patterning   and  

assembling  living  and  non-­‐living  materials  with  a  prescribed  2D  or  3D  organization  in  order  to  produce  bio-­‐engineered  structures  serving  in  regenerative  medicine,  pharmacokinetic  and  basic   cell   biology   studies”   (4).  There   are   several   kind   of   bioprinters   such   as   the   ink-­‐jet  bioprinter,  the  microextrusion  bioprinter  or  the  laser-­‐assisted  bioprinter.  

 3D  bioprinting  allows  printing  and  organizing  cells  likely  as  in  a  cellular  tissue.  Given  

the  actual  state  of  the  art  in  this  field,  3D  bioprinting  allows  printing  cells  recreating  parts  of  organs  which   could  mainly   be   used   by   the   industry   in   order   to   develop   personalised   and  adapted  treatments  to  patients  (5).  

 One  of   the   tissue  engineering   applications   this   project   is   focused  on   is   bone   tissue  

regeneration,  which  especially  uses  laser  assisted  bioprinting.  The   losses   of   bone   tissues   after   a   trauma   represent   a   huge   challenge.   Clinically,   some  solutions   have  been  developed   to  help   bone   tissue   repair   such   as   grafts   (autotransplants,  allotransplants  and  xenotransplants)  and  metallic  bone  substitutes   (ceramic,  polymers  and  composites).   The   therapeutic   strategies   now   turn   towards   bone   tissue   engineering   which  raises   an   economic   and   scientific   interest   mainly   in   orthopedics   surgery,   reconstruction  surgery  and  oromaxillofacial  surgery.  

Page 12: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  12  

  As   in  grafting  or  wound  healing,   vascularization   is  one  of   the  key   limitations  of   the  use  of  engineered  bone  tissue.  

B. Vascularization  of  tissue  substitutes  

1. Vascularization:  the  most  challenging  issue  of  tissue  engineering    In  regenerative  medicine  applications,  three  main  challenges  have  to  be  overcome.  The  first  one  is  the  creation  of  biomaterials  able  to  be  transplanted  into  a  body  without  

being   rejected.   Biocompatible  materials   are   now   handled  much  more   easily:   they   can   be  braided,  knitted,  all  kinds  of  scaffold  constructs  can  be  created,  especially  with  the  growth  of  3D  printing  technologies  (6).  The  main  requirements  for  a  scaffold  in  tissue  engineering  are  easy  cell  penetration  in  the  scaffold,  a  good  cell  distribution  and  cell  proliferation.  Besides,  the   scaffold   should   have   a   good   permeability   to   culture  medium,   should   be   easily   in   vivo  vascularized  once  implanted.  The  maintenance  of  cell  phenotypes,  the  adequate  mechanical  properties   are   as   important   as   a   controlled  biodegradation   and  an  easy   fabrication  of   the  scaffold  (6)  .    

The   second   main   challenge   is   the   difficulty   to   grow   enough   cells   in   vitro,   out   of   the  original   body.  During   the   last   ten   years   scientists  managed   to  develop  many  different   cell  types,  especially  stem  cells   like   induced  pluripotent  stem  cells   (7).  But   there  are  still   some  types  of  cells  that  cannot  be  grown  directly  from  a  patient  (liver  cells,  pancreas  cells,  nervous  cells…)  (8).    

Finally,  the  third  issue  is  the  vascularization  issue  which  is  the  ability  to  provide  sufficient  blood  supply  to  the  tissues  and  organs  in  order  to  enable  them  to  survive  during  the  initial  phase  after  implantation  (9)    

The  vascularization  of  tissues  allows  the  cells  within  a  tissue  to  get  the  correct  amount  of  oxygen   and   nutrients   they   need   to   live.   It   also   allows   them   to   get   rid   of   the   waste   and  carbon  dioxide  they  produce  (Fig.  2).    

 

 Figure  2:  Schematic  description  of  diffusion  and  transport  processes  in  vascularized  tissues  in  vivo  [inspired  

from(9)]  

Nevertheless,  for  a  tissue  or  for  a  tissue-­‐engineered  construct  to  grow  beyond  100-­‐200  µm  (the  maximum  distance  the  oxygen  can  browse  within  cells),  new  blood-­‐vessel  formation  

Page 13: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  13  

is   required   [(9),   (10)].   Otherwise,   the   cells   situated   further   than   200   µm   from   a   blood  capillary  will  die  (Fig.  3).    

 Figure  3:  Critical  distance  between  cells  and  blood  vessels  (11)  

During   in   vitro   culture,   larger   tissue-­‐engineered   constructs   can   be   supplied   with  nutrients   in   perfusion   bioreactors   for   example   (12).   After   the   implantation   of   the   tissue  construct,  the  supply  of  nutrients  is  limited  by  the  average  range  of  the  diffusion  processes.  

The  lack  of  vascularization  in  current  tissue  constructs  is  the  main  limit  to  the  use  of  biomaterials   and   tissue   substitutes   during   the   implantation   process   (13).   The   only   viable  tissue   engineered   clinical   products   today   are   limited   to   very   thin   and   poorly   vascularized  tissues   such   as   the   epidermis   part   of   the   skin   or   cartilage   (14).   Bigger   grafts   are   not  vascularized   enough   leading   to   insufficient   nutrients   and   oxygen   exchanges,   which   finally  turns  into  cell  necrosis  and  rejection  of  the  graft  (14,15).  

 To  allow  bigger  tissue  constructs  to  live,  a  homogeneous  vascularization  is  needed:  a  

capillary  network  should  be  formed  to  deliver  the  proper  amount  of  nutrients  needed  by  the  tissue-­‐engineered   construct.   Once   implanted,   the   implanted   cells   secrete   signals   as   a  reaction  to  hypoxia.  These  signals  are  received  by  the  implanted  host’s  blood  vessels  which  will   invade   the   implant   (15).   However,   The   spontaneous   growth   of   vessels   is   limited   to  limited   to   several   tenths   of   micrometres   per   day   so   the   complete   vascularization   of   an  implant  would  take  a  few  weeks  (16).  In  the  meantime,  an  insufficient  vascularization  would  lead  to  hypoxia  deeper  in  the  tissue  and  nutrient  deficiencies.  

 

2. State  of  the  art  of  vascularization  solutions    

Several  strategies  are  implemented  to  enhance  vascularization.  They  can  be  sorted  in  cell-­‐based  techniques   (based  on  the  capacity  of  endothelial  cells   to   form  new  vessels)  and  scaffold-­‐based   techniques   (focused   on   the   generation   of   vessel   structures   via   scaffold  creation).  Both  present  advantages  and  drawbacks  (Fig.  4  and  Fig.  5).  

Page 14: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  14  

 

Figure  4:  Outline  of  the  advantages  and  drawbacks  of  the  different  strategies  for  vascularization  approaches  

(9)  

Figure  5:  Overview  of  the  advantages  and  drawbacks  of  the  different  strategies  for  vascularization  in  tissue  

engineering  (15)  

a) Cell-­‐based  strategies  Cell-­‐based   strategies   rely   on   two   processes   of   vessel   formation:   angiogenesis  

(sprouting   of   capillaries   from   pre-­‐existing   blood   vessels)   and   in   vivo   vasculogenesis   (the  assembly  of  undifferentiated  endothelial  cells  to  capillaries).  Vasculogenesis   is  still  possible  

Page 15: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  15  

after   birth.   Endothelial   progenitor   cells   differentiate   to   endothelial   cells,   which   grow   and  organize  to  create  first  primitive  vessel  networks  (17).    

The   prevascularization   of   tissue   constructs   with   networks   of   capillary   aims   at  reducing  the  time  spent  to  connect  the  host  tissue  and  the  implantation  (9).  

 For   in   vivo   prevascularization,   a   non-­‐vascularized   tissue-­‐engineered   construct   is  

implanted  into  a  region  with  a  blood  vessel  suitable  for  microsurgical  transfers.  This  way,  a  transplantable   macrovessel   is   close   enough   to   the   graft.   Within   several   weeks,   the  vascularization   will   grow   inside   the   tissue-­‐engineered   construct   and   will   form   a  microvascular   network.   After   this   step,   the   tissue-­‐engineered   construct   is   re-­‐implanted   at  the  defect  site  (18).  However,  this  strategy  needs  three  different  surgeries  (one  to   implant  the  construct  at  the  vascularization  site,  one  for  the  removal  and  another  one  to  implant  the  construct  at  the  final  defect  site)  which  may  consist  in  a  huge  drawback.  

 Cell   sheet   engineering   is   another   solution   that   deals   with   living   cells   growing   in  

biomaterials:  confluent  monolayers  of  cells  are  transplanted  to  ischemic  tissues  and  can  be  layered   to   create   a   3D   construct:   successful   revascularization   has   been   achieved   this  way  (19–21).  

    The  capacity  of  the  endothelial  cells  to  form  prevascular  structures  in  specific  culture  conditions   is   used   for   in   vitro   prevascularization.   The   in-­‐vitro   prevascularization   strategy  combines   the   endothelial   cells   with   different   types   of   cells   (myoblasts   or   fibroblasts)   by  placing  them  in  co  culture  in  order  to  result  in  the  formation  of  a  prevascular  network  within  the  tissue  (9).  

The  objective   is   to  build  a  3D  prevascularized  structure.  After   the   implantation,   the  prevascularization  network  anastomoses  (connects)  to  the  vascular  network  of  the  host:  the  host  blood  vessels  will  only  grow  in  the  external  regions  of  the  construct  until  they  meet  the  prevascular   network.   This   way,   the   time   needed   for   a   complete   vascularization   is   greatly  reduced  from  weeks  to  days  (15,22).  Nevertheless,  the  perfusion  is  not  as  fast  as  with  in  vivo  prevascularization  because  the  vascular  network   is  not  microsurgically  connected  after  the  implantation.  

The  lack  of  microsurgical  connections  is  a  huge  issue  for  in  vitro  prevascularization  so  the   goal   of   future   works   would   be   to   include   a   vascular   network   creation   in   the   in   vitro  tissue-­‐construct  to  make  the  anastomose  faster.  

 Another   strategy   to   induce  neovascularization   in   vitro   is   angiogenic   factor  delivery.  

Indeed   the   angiogenic   factors   help   to   improve   the   vascularization   after   the   implantation  (23).   The   angiogenic   factors   are   delivered   to   stimulate   the   formation   of   blood   vessels  (Vascular   Endothelial   Growth   Factor   (VEGF)   and   bFibroblast   Growth   Factors   (bFGF)   for  example),   to   stabilize   the   new   vessels   formed,   but   also   for   indirect   approaches   with   the  delivery   of   other   factors   that   stimulate   the   cells   situated   near   the   vascularization   site   to  produce  angiogenic  factors.  However,   the  use  of  angiogenic   factors   (for  example  VEGF)  might  negatively   influence   the  differentiation  of   the  neighbouring   cells   that  are  present  on   co   culture   sites   (for  example,  endothelial  differentiation   instead  of  osteoblast  differenciation   in   the  outskirt  of   the   site);  

Page 16: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  16  

therefore   they   should  be  used  as   little   as   possible.   Besides,   the  use  of   such   factors   is   not  really  satisfying  yet  as  the  resulting  vessels  are  quite  disorganized,  or  even  leaky  (5).  

b) Scaffold-­‐based  strategies       The  scaffold–based  strategy  requires  a  good  architecture  and  design  of  a  scaffold:  for  example  a  scaffold  with  bigger  pores  will  enable  faster  vessel  ingrowth  (15).  The  pores  also  have  to  be  interconnected  to  allow  cell  migration  and  thus  vascularization.  The  3D  scaffolds  can  be  prepared  via  layer-­‐by-­‐layer  assembly,  from  a  wide  range  of  choice  of  materials.  Two   types  of   scaffolds   are  mainly  used:   the  biologically-­‐derived  vascularized   scaffolds   and  the  synthetically  manufactured  vascularized  scaffolds.      

The   reuse   of   biological   structures   is   very   promising   in   the   biologically   derived  vascularized  scaffolds.  The  decellularization  of  mammalian  sections  allows   to  provide  a  3D  structure   supplying   microvascular   networks.   Several   tests   have   been   conducted   on   small  intestinal   submucosa   of   pigs   (9).   A   whole-­‐heart   scaffold   with   intact   geometry   and  vasculature   has   been   constructed   by   Taylor   et   al   (24).   The   advantages   provided   by   these  naturally-­‐derived   scaffolds   are   the   biocompatible   matrix,   and   the   provision   of   relevant  geometries   (25).   However,   the   lack   of   standardization   and   reproducibility   stands   as   a  limitation  of  this  method,  as  well  as  the  difficulty  to  get  rid  of  all  the  cells  that  could  induce  an  immune  reaction  and  the  need  to  recolonize  the  scaffold  with  another  type  of  cells.       On  the  contrary,  the  use  of  synthetically  manufactured  vascularized  scaffolds  allows  a  high   reproducibility   in   the   tests   realized.   The   choice   of   the   material   and   all   the   settings  including   scaffold   stiffness,   surface   topography,   structural   qualities,   biocompatibility,  porosity  offers  a  wide  range  of  opportunities.  Some  of  the  most-­‐used  are  naturally-­‐derived  polymers   such   as   collagen,   gelatine,   or   hyaluronan   give   some   biocompatibility   to   the  material.   The   degradability   of   the   material   is   also   a   choice   criterion   as   healing   and  degradation  of  the  biomaterial  need  to  be  concomitant.    

c) Towards  a  global  approach    

The  final  goal  of  a  successful  approach  would  be  not  to  focus  on  one  of  these  strategies,  but  investigate  the  integration  of  several  in  order  to  combine  their  assets  and  eliminate  their  weaknesses.   In   the   end,   the   important   thing   is   the   number   of   functional   vessels   and   the  amount  of  blood  cells  they  can  carry.    

In   order   to   overcome   the   limitation   that   the   lack   of   vascularization   represents   and   to  

develop   larger   tissue   substitutes   that   can   be   implanted,   research   is   focusing   on   the  development  of  in  vitro  vascular  structures  for  new  regenerative  therapies  (27).  Besides,  the  lack  of  implanted-­‐material  vascularization  can  be  overtaken  by  the  reproduction  of  the  local  microenvironment   of   cells.   This   allows   to   mime   tissue   complexity   and   promote   cell  interactions  (28).  

 

C. Laser  technology  applied  to  tissue  engineering  

Since   the   first   Laser  was   created   in   1960,   laser   technology   has   kept   finding  more   and  more  new  applications.  As  the  French  researcher  Pierre  Aigrain  said,  “we  are  used  to  having  

Page 17: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  17  

a  problem  and  looking  for  a  solution.  In  the  case  of  the  laser,  we  already  have  a  solution  and  we  are  looking  for  the  problem”.  Lasers   are   now   commonly   used   in   the   field   of   health   and   biomedical   engineering   for  diagnostic  and  therapeutic  issues:  they  are  a  faster  less-­‐invasive  more-­‐precise  method  than  other   traditional   and   surgical   methods.   A   broad   range   of   applications   have   appeared  including   dermatology,   surgery,   odontology,   ophthalmology,   gastroenterology,   urology,  gynecology,  cardiology,  neurology,  cell  biology,  etc.  

Lasers  are  also  spreading   in   the   field  of   tissue  engineering.  The   first  example   is   the  Laser-­‐Assisted  Bioprinting  (LAB)  technology  (29,30).  Another  example  is  the  laser  use  in  the  field  of  bioassembly  for  micropatterning  applications  (31–34).  

1. Laser-­‐matter  interaction  applied  to  biological  tissues    

A  huge  variety  of  applications  in  biology  and  in  the  medical  field  has  appeared  with  the  growth   of   laser   technology.   This   range   of   applications   is   available   thanks   to   the   many  parameters   depending   on   lasers:   they   have   different   wavelengths,   pulse   duration,   pulse  energy,  powers,  or  even  focalization  conditions,  which  allow  to  use  them  on  different  kind  of  tissues  (for  instance  the  eye,  the  skin,  the  surface  of  an  organ,  more  indepth  focalization…).  The   wavelengths   allow   different   kind   of   interactions:   the   ultraviolet   lasers   can   interact  directly  with  molecular  bonds   ;   the   far   infrared  wavelengths  can  generate   thermal  effects,  whereas   in   the   visible   and  near   infrared   laser   can  be  optimized   to  maximize   the  depth  of  penetration  for  example  in  the  ocular  tissues.  The  pulse  duration  influences  the  laser-­‐tissue  interaction  (See  Fig  6).    

In   this   project,   the   goal   was   to   perform   some   intra-­‐volume   machining   into   fibers  made   of   a   transparent   collagen   hydrogel.   For   this,   the   processes   used   are   nonlinear  interaction   regimes   such   as   photo  disruption.   Therefore,   ultrashort   lasers   have  been  used  (with  pulse  durations  in  the  picosecond  range  and  under).  With   pulse   duration   shorter   than   the   thermal   diffusion   characteristic   time,   an   almost  athermal   and   very   localized   effect   can   be   achieved   in   the   tissue:   an   optical   breakdown  created   which   is   a   photodisruption   effect.   This   way,   the   surrounding   tissues   are   not  damaged.  

When   the   laser   beam   is   focalized   enough   and  with   a   high   enough   average   power,  multiphotonic  absorption  (MPA)  is  observed  (Fig  6).    

 Figure  6:  Scheme  of  nonlinear  interaction  phenomena  with  its  timescale  (courtesy  to  Dr  John    Lopez)  

Page 18: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  18  

The  energy  gap  of  tissue  is  much  higher  than  the  energy  brought  by  a  single  photon  which  is  not  enough  for  valence  electrons  to  go  to  the  conduction  band.  Therefore  several  photons  are  needed  to  excite  the  electrons  enough  to  make  them  change  bands.  

Multiphotonic   absorption   is   a   nonlinear   phenomenon   possible   with   high   intensity.  This   phenomenon   is   even   more   important   when   the   pulse   duration   decreases:   a   higher  number  of  photons  will   be   concentrated   in   a   shorter   time  and  will   therefore   increase   the  intensity   and   the   probability   of   nonlinear   absorption   (36).   With   a   pulse   duration   in  subpicosecond   order,   a   few   microjoules   per   pulse   should   be   enough   to   create   a   local  modification  in  a  transparent  material.  

 Once  the  electron  is  excited,  it  keeps  interacting  with  the  incident  laser  beam  and  its  energy  will  increase  (inverse  Bremsstrahlung  phenomenon).  Its  agitation  increases  with  this  energy  and  it  finally  collides  with  another  electron.  The  collision  will  transfer  some  of  the  energy  to  the  second  enabling  it  to  be  transferred  to  the  conduction  band  (secondary  electron),  and  so  on.    The  first  electron  with  a  high  enough  energy  will   remain   in  the  conduction  band  while  the  secondary   electrons   are   heated   by   the   electromagnetic   radiation   of   the   laser   (by   inverse  Bremsstrahlung  phenomenon).   They  will   therefore   collide  with   the   valence  electrons.   This  creates   avalanche   ionization.   The   density   of   the   electron   cloud   will   increase   until   the  formation  of  a  plasma.    When  the  pressure  of  the  plasma  gets  superior  to  the  tension  strengths  that  maintain  the  collagen   fibrils   together,   the   threshold   of   the   optical   breakdown   is   achieved.   A   cavitation  bubble  is  formed,  then  resorbs  creating  disruption  in  the  focalization  zone  of  the  tissue.    In   tight   focusing   conditions,   the   modification   zone   has   a   comet   shape,   where   the  photoexcited   volume   is   embedded   into   the   heat   affected   zone.   An   example   of   the  modification   zones   that   can   occur   is   displayed   in   Figure   7:   (a)  τ = 6ns,  λ = 1064nm,  E = 8,2  mJ  (b)   pulse   duration  τ = 30ps ,  λ = 1064nm ,  E = 740  μJ  (c)   pulse   duration  τ = 100fs,  λ = 580nm,  E = 35  μJ  (37)  .    

 Figure  7:  Creation  of  plasma  and  optical  breakdown  in  water  

The  machining  process  is  described  on  Figure  8.    

Page 19: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  19  

 Figure  8:  Nonlinear  absorptionfor  ultrashort  laser  machining  (courtesy  of  Dr  john  Lopez)    

2. Laser  micropatterning  for  tissue  engineering  

The   scaffolds   used   in   tissue   engineering   techniques   are   often   made   of   hydrogels.  Hydrogels  mainly  consist  of  water,  and  can  be  used  as  guiding  structures  for  cellular  growth,  differentiation,   and   regeneration.   Patterning   hydrogels   for   further   cell   seeding   allows   to  keep   the   cells   hydrated   enough   during   the   process   thanks   to   the  water   contained   in   the  hydrogel.  Besides,  as  hydrogels  are  permeable  to  nutrients,  the  cells  receive  all  the  oxygen  and  nutrients  they  need  to  live  and  prolifer.  

Several  works  on  hydrogel  micropatterning  have  been  reported  in  the  literature.  All  can  be  useful  for  vascularization  issues  in  tissue  engineering.  

One  of  the  most  used  hydrogel  is  collagen.  Collagen   is   the  most   abundant   protein   in  mammals,   it   is   the   protein   that   provides  

tensile   strength.   There   are   28   different   types   of   collagen   assembled   from   41   different  polypeptidic  chains  genetically  distinct.  The  collagen   is  produced  by  the  cells  by  exocytosis  and  it  is  located  in  the  extra-­‐cellular  matrix  and  interact  with  cells  via  receptors  and  regulate  their  proliferation,  migration  and  differentiation.    

Collagen   is   considered   as   an   elastic   protein   with   a   resilience   of   90%:   collagen   fibers   are  indeed   able   to   deform   reversibly   and   their   mechanical   properties   can   be   investigated   by  force  spectroscopy  (26)  

The   collagen   turbidity   can   be   an   obstacle   to   3D   patterning   features   under   tens   of  micrometers  below  the  surface  (31);  therefore  Applegate  et  al.  (32)  used  an  elastometric  silk  fibroin  hydrogel  as  a  biomaterial.  Laser  micropatterning  of  the  gel  allows  the  generation  of    scaffolds  with  interconnected  porous  networks  with  voids  of  5  µm  in  diameter  until  almost  1  cm   below   the   gel   surface   by   multi   photon   absorption   (MPA).   Within   a   material   that   is  transparent   to   the   low-­‐energy   photons,   very   little   light   is   absorbed   at   the   surface   which  allows  to  have  a  focal  spot  formed  and  the  MPA  to  occur  deep  within  the  material.  The  laser  used  was  a  810nm  with  a  impulsion  time  of  100  fs  and  a  repetition  rate  of  80  MHz,  giving  a  relatively  low  energy  (sub  2  nJ  per  pulse),  with  a  10x  objective  (numerical  aperture  NA=0.3).  

Page 20: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  20  

The  pattern  created  was  a  line  made  by  a  single  pass  of  the  laser  at  a  constant  speed  of  50  mm/s   with   varying   pulse   energies.   The   minimum   pulse   energy   necessary   to   observe  structural  changes  in  the  silk  gel  is  0.25  nJ  per  pulse  which  corresponds  to  0.7  𝑚𝐽/𝑐𝑚!.  

 Yaoming   Liu   et   al.   (33)   also   3D-­‐micropatterned   collagen   scaffolds   by   femtosecond   laser  ablation.  A  800  nm,  45  fs  Ti:Sapphire  laser  was  used  with  a  10x  (NA=0.25)  objective  to  create  various  3D  patterns  in  a  collagen  gel.  The  threshold  fluence  for  ablation  of  the  scaffold  was  found   to   be   0.06   J/cm2.   Mesenchymal   stem   cells   from   rat   bone   marrow   and   human  fibroblasts  were  then  seeded  within  the  ablated  patterns  and  were  shown  to  be  viable  for  at  least  10  days.    

Nanorod   particles   can   also   be   used   in   order   to   3D   cell   patterning   in   collagen   I  hydrogel  (34).    Gold  nanorods  are  added  to  the  collagen  hydrogen  used  in  order  to  increase  the  near-­‐infrared  femtosecond  laser  beam.  They  absorb  the  NIR  light  (800  nm,  100  fs  and  90  MHz)   and   release   the   energy   in   the   form   of   photons,   using   photothermal   effect,   which  thermally   denaturates   the   surrounding   collagen  matrix.   Channels   are  patterned   inside   the  hydrogel  with  a  laser  objective  lens  (10X,  NA  0.45).  The  pattern  resolution  can  be  tuned  by  adjusting  the  laser  power  and  the  writing  speed  of  the  laser.  For  a  high  pattern  fidelity  and  a  high  cell  viability  (>  90%),  a  writing  speed  of  2.0  mm/s  and  a  laser  power  of  100  mW  were  used  that  is  a  fluence  of  54  𝐽/𝑐𝑚!.  An  inverse  relationship  exists  between  the  writing  speed  and  pattern  width.  The   laser  power  determines  the  pattern  size.  These  channels  produced  within  the  hydrogel  cause  cell  migration  and  3D  cell  alignment  to  the  patterns  over  a  period  of  14  days.    

 

D. The  project’s  objectives  

This  project  was  led  in  collaboration  between  ALPhANOV,  a  technologic  center  for  optics  and   lasers   (in   Talence,   France)   and   the   BioTis   INSERM   (National   Institute   for   Health   and  Medical  Research)  U1026  Unit  (Tissue  Engineering  Unit,  in  Bordeaux,  France).  The  biological  part  of  the  project  was  carried  out  in  the  INSERM  labs  and  all  the  optics  and  photonics  parts  in  APhANOV.  

BioTis   U1026   INSERM   lab   is   amongst   others   focusing   on   bone   tissue   regeneration.   In  order  to  overcome  the  vascularization   issue  and  prevascularize  bone  tissues  engineered  at  the   lab,   an   easy-­‐to-­‐use   and   versatile  method   for   building   cell-­‐laden  microfibers   has   been  developed  (38).  The  objective  of  the  project  was  to  perfuse  these  microfibers  in  order  to  use  them  as  substitutes   for  capillaries.  First   tests  performed  on  these  microfibers  showed  that  they  cannot  be  perfused  if  not  pre-­‐holed.  

The   main   idea   is   to   pre-­‐pattern   microfibers   with   a   laser-­‐based   approach.   The  achievement   of   void   creations   inside   the   microfibers   would   allow   an   easier   perfusion  without  cell  damage.  

Some  preliminary  trials  to  create  a  lumen  into  the  microfibers  had  been  performed  using  a  similar  laser  setup  in  2014  and  showed  the  potential  of  the  approach.  

Page 21: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  21  

The   aim   of   this   final   degree   project   was   therefore   to   demonstrate   the   feasibility   of   the  process  and  to  optimize  this  process.    

 

II. Material  and  methods  

A.  Preparation  of  the  fibers  

1. Cell  culture    D1  cell  line  was  purchased  from  ATCC  (LGC  Standards,  Molsheim,  France).  These  cells  come  from   rat   bone   marrow.   The   D1   cell   line   was   cultured   in   150   cm2   culture   flasks,   with  Dulbecco's  Modified  Eagle  Medium  (DMEM,  Gibco,  Life  Technologies)  supplemented  with  10  %  fetal  calf  serum  (FCS)  (GE  Healthcare®)  and  1/1000th  plasmacin  (plasmacinTM  prophylactic,  2.5  mg/mL,  Invivo)    at  37°C  and  with  5  %  CO2.  Endothelial   cells   were   cultured   in   150   cm2   culture   flasks,   with   Dulbecco's  Modified   Eagle  Medium  (DMEM,  Gibco,  Life  Technologies)   supplemented  with  10  %   fetal   calf   serum  (FCS)  (GE  Healthcare®)  and  1/1000th  plasmacin  (plasmacinTM  prophylactic,  2.5  mg/mL,  Invivo)    at  37°C  and  with  5  %  CO2.  

They  were  mixed  with  neutralized  collagen  in  order  to  obtain  a  final  cell  density  of  50  x  106  

cells/mL  on  the  fiber.  

The   confluent   cells   were   collected   from   the   culture   flask   by   a   trypsin   treatment   (trypsin  solution  at  0.1  mg/mL  in  EDTA  0.065  mg/mL).  

2. Collagen  

The   collagen   used   was   Type   I   Collagen   purchased   from   BD   Biosciences   (Collagen   Type   I,  obtained   from  rat   tail,  Bedford,  US).  The   type   I   collagen  used  comes   from  rat   tail   tendons  and   its   quality   depends   on   the   arriving   lots,   the   age   and   health   of   rats   inducing   variable  deterioration.  

3. Fiber  manufacturing    

The   making   of   the   fibers   was   done   under   sterile   condition,   on   a   microbiological   safety  workbench,  according  to  the  protocols  adapted  by  Kalisky  et  al  (38).  The  general  idea  was  to  create  a  shell  around  a  glass  capillary  and  then  replace  the  glass  capillary  inside  the  sheath  by  the  solution  of  collagen  to  create  the  fiber.    

The   sheath   is   made   by   cross-­‐linking   sodium   alginate   (10/60   at   2   %   in   PBS   1X  (Phosphate   Buffer   Saline))   with   calcium   chloride   (CaCl2)   solution   at   0.2   mol/L.   Sodium  alginate   Protanal   LF-­‐10/60  was   purchased   from   (FMC  Biopolymer,  Drammen,  Norway   and  calcium  chloride  was  purchased  from  Sigma  (Saint  Quentin  Fallavier,  France)  and  PBS  0.1  M  pH  7  was   from  Gibco   (Life  Technology  SAS,  Saint  Aubin,  France).  A  300  µm  diameter  glass  

Page 22: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  22  

capillary  is  plunged  into  calcium  chloride  and  alginate  starting  and  finishing  with  CaCl2  (see  Fig  9  A).  The  sheaths  are  left  in  the  cell  culture  medium.    

In  the  meantime,  after  having  trypsinated  the  cells  and  collected  them  in  the  bottom  of  the  tube,  the  cell/collagen  solution  is  prepared.  All  the  preparation  takes  place  in  the  ice  so  that  the  collagen  does  not  jellify.  The  collagen  solution  is  composed  of:  

-­‐ 𝑉!  of   collagen   (𝐶1 ∗ 𝑉!    = 𝐶2 ∗ 𝑉!"!#$  with  𝐶1 = 8.38  𝑚𝑔/𝑚𝐿  the   stock   solution   collagen  concentration,  𝐶2 = 5  𝑚𝑔/𝑚𝐿  the  final  collagen  concentration,  V2  the  total  final  volume  of  the  solution).  

-­‐ 𝑉!"#$  =  𝑉! ∗  0.023  of  sodium  hydroxide   (5  𝑚𝑜𝑙/𝐿,   to  neutralize   the  pH  of  Collagen  from  2  to  7)  

-­‐ 𝑉!"#!"! =  𝑉!"!#$/10  of  10xPBS  solution  -­‐ 𝑉!"!"#$ =  𝑉!"!#$-­‐  𝑉!-­‐𝑉!"#$-­‐𝑉!"#!"!    

The  concentration  needed  in  the  final  solution  to  be  able  to  seed  the  fibers  with  cells  is  50  million   cells/mL.   From   this   concentration,   the   total   volume  𝑉!"!#$  to   prepare   can   be  deduced,  depending  on  the  number  of  cells  collected  during  trypsination.      

This  collagen  solution   is  mixed  up  with  the  cells  with  a  vortex.   It   is   then  added   in  a  syringe  that  was  previously  placed  in  the  freezer.  The  syringe  is  introduced  at  the  end  of  the  300   µm   diameter   glass   capillary   –   inside   the   alginate   sheath:   the   goal   is   to   replace   the  capillary   by   the   solution   by   removing   progressively   the   glass   capillary   while   keeping   the  syringe  triggered  (see  Fig  9  B).  

 Figure  9:  A)  Creation  of  the  sheath  around  the  glass  capillary  B)  Replacement  of  the  glass  capillary  by  the  

collagen/cell  solution  (38)  

The  whole  fibers  and  sheath  are  placed  in  the  incubator  at  37°C  during  12  to  24  hours;  the  fibers  will  jellify  and  the  cells  will  migrate  to  the  interface  collagen-­‐alginate.      The  diameter  of  the  created  fibers  varies  but  is  usually  between  100  and  150  µm.  The  fibers  are   smaller   than   the   300   µm   diameter   glass   capillary   used   to   create   the   sheath   because  when   placed   in   the   incubator   for   24   h,   the   collagen   jellified   and   the   cells   got   closer   and  tighter,   retracting   the   fiber   in   length   and   diameter.   The   longer   the   fiber   is   left   in   the  incubator,  the  more  contracted  it  will  be.  

Page 23: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  23  

4. Fixation  of  fibers  

Some  of  the  used  fibers  were  fixed  in  order  not  to  have  the  viability  condition  on  the  first  tests  performed  on  the  D1  cell  fibers.  

The  cells  were  fixed  with  a  4  %  paraformaldehyde  (PFA)  solution  at  4°C  for  30  minutes.  They  were  then  rinsed  out  three  times  with  a  PBS  1X  solution.    

To   unsheathe   the   fibers   two   processes   can   be   used.   The   first   one   is   unsheathing  manually:   dismantling   of   the   sheath   with   the   tweezers   and   a   scalpel   and   with   care.   The  second  one   is  plunging   the   fibers   in  a   sodium  citrate  solution  at  55  𝑚𝑜𝑙/𝐿  kept  at  37°C   to  accelerate   the   reaction:   the   sodium   atoms   take   the   place   of   the   calcium   atoms   and   un-­‐crosslink  the  sheath.  A  representation  of  the  fiber  before  and  after  the  unsheathing  can  be  seen  on  Fig  10.  The  D1  fixed  fibers  are  then  kept  in  distilled  water  at  4°C  for  several  weeks.  

 Figure  5:  Fiber  with  (on  the  left)  and  without  (on  the  right)  the  sheath.  The  green  part  is  the  collagen,  on  the  edge  there  

are  the  cells  (38)  

 

B.  Micromachining  the  fibers  

1. The  laser  sources    Lasers  have  been  used  for  the  experiments,  in  order  to  study  the  influence  of  different  pulse  duration  and  different  wavelengths.  

a. Sirius      

The  Sirius  laser  is  a  laser  developed  by  Spark  Lasers  (Talence,  France).  It  delivers  10ps  pulses   at   1064   nm   with   a   repetition   rate   varying   from   20   kHz   to   2   MHz.   At   50   kHz,   its  maximum  energy  delivered  is  above  60  µJ  per  pulse.  The  average  power  at  the  laser  output  is  3  W.  A  frequency  doubling  system  is  added  at  the  output  of  the  laser,  allowing  to  choose  the  wavelength  between  1064  nm  and  532  nm.  This  laser  was  used  at  1064  nm  and  532  nm  with  a  repetition  rate  of  50  kHz.  

b. Satsuma/eclipse  II    

The  Satsuma  laser  is  an  Ytterbium-­‐doped  fiber  laser  developed  by  Amplitude  Systems  (Talence,  France).  It  delivers  350  fs  pulses  at  1030  nm  with  a  repetition  rate  of  500  kHz  to  2  MHz.  Its  maximum  energy  delivered  is  10  µJ  per  pulse.  At  500  kHz,  the  average  power  at  the  laser   output   is   5   W.   A   frequency   doubling   system   is   added   at   the   output   of   the   laser,  allowing  to  choose  the  wavelength  between  1030  nm,  515  nm  and  343  nm.  This  laser  was  used  at  1030  nm  with  a  repetition  rate  of  50  kHz.  

Page 24: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  24  

2. The  optical  set  ups  

a. The  optical  set  up  Eclipse  1  

The   Eclipse   1   set   up   is   a   bottom-­‐up   machining   system.   It   was   adapted   to   several   laser  sources   during   this   project.   A   half-­‐wave   plate   and   a   polarized   beam   splitter   cube   were  inserted  in  the  optical  path  at  the  laser  output.  This  allowed  an  extra  laser  cavity  tuning  of  the   average   power   of   the   laser.   The   laser   beam   was   inserted   in   an   inverted   microscope  (NIKON  Eclipse   Ti-­‐U)   and   is   focalized   by   a  Mitutotyo   objective   (magnification   x20/NA=0.4)  (see   Fig   11  &   12).   In   order   to   cover   totally   the   entrance   pupil   of   the   objective   (8  mm),   a  beamexpander   is  added   in   the  optical  path,  according  to  the  size  of   the   laser  beam  at   the  output   of   the   laser   and   the   distance   between   the   laser   output   and   the   entrance   of   the  inverted  microscope.    

A   CCD   camera   allows   to   visualize   the   sample   via   transmission   lighting   from   under   the  objective  (see  Fig  14).  

The  laser  focal  spot  is  fixed  while  the  sample  is  moving  thanks  to  a  system  of  XYZ  motorized  stages  (AEROTECH,  A3200).  Theses  stages  were  controlled  by  a  G-­‐code  program  (Annex  1).  The  resolution  of  this  stages  system  is  250  nm  and  the  maximum  speed  that  can  be  reached  in  this  configuration  is  10  mm/s.  The  pattern  created  was  a  line  made  by  a  single  pass  of  the  laser  at  a  constant  speed  of  0,5  mm/s.  

After  aligning  the  set  up  on  the  Sirius  laser  (infrared  wavelength  (IR)),  the  laser  beam  was  naturally  diverging  enough  in  order  to  cover  the  pupil  of  the  objective  (the  beam  had  a  much  bigger  diameter  than  8  mm,  rather  20  mm).    

When  the  set  up  was  mounted  on  Sirius  laser  (green  wavelength),  a  beam  expander  was  used   in  order   to   cover   totally   the  pupil  of   the  objective.  The  alignment  of   the  optical  path  was  finely  tuned  using  the  autocorrelation  method.  

 

 Figure  6:  Eclipse  I  inverted  microscope,  Aerotech  stages  and  sample  

 

Page 25: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  25  

 Figure  7:  Scheme  of  the  Eclispse  1  set-­‐up  

b. The  optical  set  up  Eclipse  II    

The   Eclipse   2   set-­‐up   was   already   in   place   and   aligned.   It   is   a   machining   system   allowing  machining  from  the  top.  The  Satsuma  laser  was  used  with  this  machining  set  up.  As  for  the  Eclipse  1  set  up,  a  half-­‐wave  plate  and  a  polarized  beam  splitter  cube  were  inserted  in  the  optical  path  at  the  laser  output,  as  well  as  a  beam  expander.  This  allows  an  extra  laser  cavity  tuning  of   the  average  power  of   the   laser.  The  sample  was  mounted  on  stages,   themselves  mounted  on  a  granit  gantry  that  allows  stability.  The  laser  beam  was  inserted  in  one  of  the  gantry  openings  and  goes  through  a  Mitutotyo  objective  (magnification  x20/NA=0.4)  (see  Fig  13   &   14).   In   order   to   cover   totally   the   entrance   pupil   of   the   objective   (8   mm),   a   beam  expander  is  added  in  the  optical  path.    

A  CCD  camera  allows  to  visualize  the  sample  via  transmission  lighting  from  above  the  set  up.  (see  Fig  13)  

The  sample  is  moving  thanks  to  a  system  of  motorized  XYZ  stages  on  an  hexapod  (prototype  created  by  ALIO,  with  5  axes  –  X,  Y,  Z,  and  two  rotational  axes).  Theses  stages  are  controlled  by  a  G-­‐code  program.  The  resolution  of  this  stage  system  is  1  µm  and  the  maximum  speed  that  can  be  obtained  is  100  mm/s.    

 Figure  8:  Scheme  of  the  Eclipse  II  set-­‐up  

 

Page 26: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  26  

 

 Figure  9:  Photo  of  the  Eclipse  II  set-­‐up  

c. Summary  of  the  characteristics  used  for  the  different  tests    Here  is  a  table  (Table  1)  that  sums  up  the  characteristics  of  the  different  performed  tests.    Table  1:  Characteristics  of  the  different  tests  performed  

  Wavelength   Repetition  rate  (used)  

Energy  (used)  

Pulse  duration  

Theoretical  spot  diameter  

Theoretical  fluence  

Sirius  (IR)  –  Eclipse  1  

1064  nm   50  kHz   3  µJ   10  ps   3,2  µm   36,2  J/cm2  

Sirius  (green)  

(Annex  2)  –  Eclipse  1  

532  nm   50  kHz   3  µJ   10  ps   1,6  µm   145,1  J/cm2  

Satsuma  (IR)  –  

Eclipse  2  

1030  nm   50  kHz   2.92  µJ   350  fs   3,1  µm   37,7  J/cm2  

3. Sample-­‐holding  systems    

Several  versions  of  the  sample-­‐holding  system  were  developed  during  the  project.    

a. Alginate  sheath  (V1)    

The  first  sample-­‐holding  system  (V1)  created  was  a  glass  side  on  which  the  fiber  was  laid.  The   alginate   was   cross-­‐linked   with   calcium   chloride   to   hold   the   fiber   still.   This   first  configuration  has  proved  that  the  fiber  needed  to  be  laid  on  a  plane  sample-­‐holding  system  in  order  to  facilitate  the  stage  movement.  

b. Agarose  gel  with  V-­‐groove  (V2)    

The  second  version  of   the  sample-­‐holding  system  developed   (V2)  consisted  of  a  6-­‐well  plate   in  which   a   layer   of   agarose   gel  was   poured.   In   this   agarose   layer,   a   thin   straight   V-­‐

Page 27: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  27  

groove   had   been   formed   by   putting   two  microscope   plates   glued   together   inside   the   gel  while  it  was  solidificating.  In  this  V-­‐groove,  the  fiber  was  positioned  with  caution.  This  set  up  allows  to  keep  the  fiber  hydrated  (with  the  agarose  gel  around).  Besides,  it  enables  to  keep  the  fiber  straight  without  movement  during  the  machining.    

Nevertheless,  the  drawback  of  this  set  up  is  that   it   is  not  convenient  for  transportation  between   the   two  working   places   (ALPhANOV   and   INSERM)   as  most   of   the   fibers   got   lost  during   the   transportation.  Unfortunately,   it   introduces   spherical   aberration   for   bottom-­‐up  machining  (See  Annex  2).  

c. Airtight  enclosure  (V3)    The   third   version  of   the   sample-­‐holding   system   (V3)  was  a   closed   small   box  with  a  

glass  plate  bottom.  The  box  was  kept  closed  with  a  humid  tissue  inside  in  order  to  keep  the  fiber  moisturized.  This  3rd  version  allowed  to  get  rid  of  the  spherical  aberrations.  The  limit  of  this  set  up  is  that  the  lid  has  to  be  removed  to  machine  the  fiber  on  top-­‐down  machining  (Eclipse  2  set  up).  This  not  only  decreases  the  sterility  of  the  experiment  but  also  decreases   the   available   time   for   the   experiment   as   the   fiber   dries   out   quicker.   This   is,  however,  still  reasonable  as  a  fiber  dries  out  in  about  45  minutes,  which  leaves  a  sufficient  amount  of  time  to  process  it.    

C.  Characterization  method:  confocal  fluorescent  microscopy  

Confocal   fluorescent   microscopy   was   used   in   order   to   visualize   and   characterize   the  voids   created  by   laser  machining  but   also   to   test   the   viability   of   the   cells   after  machining  thanks  to  fluorescent  labels.  Confocal  microscopy  allows  to  get  increased  optical  resolution  and  contrast.  

1. DAPI  Labeling    The   nuclei   of   the   cells   from   the   fixed   fibers   were   labeled   via   a   DNA-­‐labeling   with   DAPI  (diluted  at  1/5000   in  PBS  1X).  The  fibers  were   left  10  min  at  ambient  temperature   in  total  darkness   in   the   DAPI   solution.   They   were   then   rinsed   with   distilled   water.   A   confocal  microscope  (Leica  TCS  SPE,  Model  DMI  4000B)  has  been  used  to  highlight  whether  the  fibers  were  machined  or  not.  

2. Live/Dead®  Assay  

The   cells   of   the   non-­‐fixed   fibers   were   labeled   with   a   Live/Dead®   assay   (Thermofisher  scientific)   four  hours  after  the  machining.  This  allows  a  convenient  discrimination  between  live   and   dead   cells.     In   a   relatively   low   brightness   environment,   the   Live-­‐Dye™   (a   cell-­‐permeable  green  fluorescent  dye  (Ex/Em  =  488/518  nm)  stains  live  cells),  and  the  Dead-­‐Dye  (ethidium  homodimer-­‐1  a  cell  non-­‐permeable  red  fluorescent  dye  (Ex/Em  =  488/615)  stains  the  dead   cells)   solutions   from   the   Live-­‐Dead   Staining  Kit  were   added   to  2.5  mL  of   culture  medium.  This  solution  was  then  placed  at  37°C  and  5  %  CO2  in  an  incubator  for  10  min.  The  culture  medium  in  which  the  fibers  were  plunged  was  withdrawn,  in  the  meantime,  and  the  solution  was  added  to  the  culture  well  in  which  the  fibers  were.  The  fibers  were  left  in  the  stove  at  37°C  and  5  %  CO2  for  15  min.  The  solution  was  then  taken  out  of  the  well  and  the  

Page 28: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  28  

fibers   were   rinsed   with   cell   culture   medium.   The   fibers   were   then   observed   under   the  confocal  microscope  (Leica  TCS  SPE,  DMI  4000B  model).  

 

III. Results  

A. Influence  of  the  laser  parameters  on  the  machining  

1. Influence  of  the  energy:  threshold  determination    

The  influence  of  the  energy  was  studied  in  two  different  set  ups:  on  the  Eclipse  1  set  up  mounted  on  the  Sirius  laser  (IR,  picosecond  regime)  and  on  Eclipse  2  set  up  mounted  on  the  Satsuma  laser  (IR,  femtosecond  regime).  The  goal  was  to  determine  the  threshold  energy  from  which  a  precise  machining  is  possible  in  the  fiber  without  damaging  the  surrounding  fiber  (splitting  it  or  tearing  it  in  several  parts).  

The  third  version  of  sample-­‐holding  system  (V3)  was  used  for  these  tests.  

a. Tests  on  Sirius  (IR)/Eclipse  1  set  up    

The   characteristics   used   with   the   Sirius   laser   (IR)   on   fixed   D1   cell-­‐laden   fibers   are  summed  up  in  Table  2.  

 Table  2:  Parameters  used  in  Sirius  (IR)  tests  

  Wavelength   Repetition  rate  

Energy  per  pulse  

Pulse  duration  

Cells  used  

Sirius  (IR)   1064  nm   50  kHz   2.2  µJ  and  3  µJ  

10  ps   Fixed  D1  

 The  main  energy  tests  are  summurized  in  Table  3:    

Table  3:  Energy  tests  on  Sirius  (IR)  

𝑷𝒕𝒂𝒓𝒈𝒆𝒕  (mW)   Energy  (𝛍𝐉)   Number  of  fibers   Result:  did  it  work?  50     1     7   No  (n=7)  108     2.2     4   No  (n=2)    

Yes(  n=2)  150     3     10   Yes  (n=9)  

No  (n=1)    A   ‘yes’   result   in   this   table  corresponds   to  an  observable  channel  created   inside   the  

fiber,  as  in  Fig  15  or  Fig  16.  At   2.2  µμJ,   four   fibers   were   machined,   and   50   %   of   these   presented   observable   channels  during  confocal  observation  (see  Fig  15).  At  3  µμJ,  ten  fibers  were  machined  and  90  %  of  these  presented  observable  channels  during  confocal  observation  (see  Fig  16)    

Page 29: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  29  

The  size  of  the  channels  were  measured  with  the  tool  of  the  confocal  software.  The  fibers  machined  at  2.2  µμJ  showed  an  average  channel  diameter  of  8.65  𝜇𝑚  wide  (see  Table  4).  The  fibers  machined  at  3  µμJ  had  an  averaged  channel  diameter  of  10.07  𝜇𝑚.    

 Figure  10:  Confocal  image  of  a  fiber  machined  at  2.2  µJ:  three  views  (a)  DAPI  labelling  in  the  cells  (b)  autofluorescence  of  

the  collagen  (c)  merge  of  the  two  images  (cells  and  collagen)    

 Figure  11:  Confocal  image  of  the  fiber  machined  at  3  µJ  (merge  of  the  two  images)  

Table  4:  Size  of  the  channels  depending  on  the  energy  for  a  machining  with  Sirius  laser  (picosecond).  

  Number  of  measures    

Number  of  fibers  processed  

Average  diameter  of  the  canal  (𝜇𝑚)  

Standard  deviation  of  the  diameter  of  the  canal  (𝜇𝑚)  

At  2.2  𝜇𝐽   119   2   8.65     3.11    At  3  𝜇𝐽   71   2   10.07   3.63  

 

b. Tests  on  Satsuma  (IR)/Eclipse  2  set  up    

The   tests   performed   with   Satsuma   laser   (IR)   on   fixed   D1   cell-­‐laden   fibers   are  summarized  in  Table  5.  

 Table  5:  Parameters  used  in  Satsuma  (IR)  tests  

  Wavelength   Repetition  rate  

Energy  per  pulse  

Pulse  duration  

Cells  used  

Satsuma  (IR)   1030  nm   50  kHz    3  µJ   350  fs   Fixed  D1    

Page 30: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  30  

The  main  energy  tests  performed  on  Satsuma  (IR)  are  summarized  Table  6.    

Table  6:  Energy  tests  on  Satsuma  (IR)  

𝑷𝒕𝒂𝒓𝒈𝒆𝒕  (mW)   Energy  (𝛍𝐉)   Number  of  fibers   Result:  did  it  work?  150     3   20   Yes  n=18  

No  n=2      A   ‘yes’   result   in   the   table   corresponds   to  an  observable   channel   created   inside   the  

fiber,  as  in  Fig  17  to  19.  At   3  µμJ,   twenty   fibers   were  machined,   and   90  %   of   these   presented   observable   channels  during  confocal  observation.  The  created  channels  were  well  distinguishable  on  the  confocal  observation.      The  average  diameter  of  the  channels  created  inside  the  fibers  12.8± 4.5  µμ𝑚  (average  of  78  values   of   the   diameter   from   three   different   fibers   patterned).   It   was   measured   with   the  measure  tool  of  the  confocal  software.    

Figure  12:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  of  the  two  previous  images  

 

 Figure  13:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  

of  the  two  previous  images  

 

Page 31: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  31  

 Figure  19:  Zoom  on  a  part  of  the  fiber  (a)  DAPI  label  on  D1  cells  (b)  autofluorescence  of  the  collagen  (c)  merge  

of  the  two  previous  images  

2. Influence  of  the  pulse  duration  on  the  machining    

The   influence   of   the   pulse   duration  was   studied   by   comparing   two   different   pulse  duration:   the   picosecond   regime,   with   Sirius   laser   on   the   Eclipse   1   set   up   and   the  femtosecond  regime  with  Satsuma  laser  on  Eclipse  2  set  up  at  comparable  energies  (3  𝜇𝐽  in  both  regimes).  The  size  of  the  created  channels  in  the  fibers  are  summarized  in  Table  7.    Table  7:  Size  of  the  channels  depending  on  the  pulse  duration  for  a  machining  at  3  µJ  

  Number  of  measures  performed  

Average  diameter  of  the  canal  (𝜇𝑚)  

Standard  deviation  of  the  diameter  of  the  canal  (𝜇𝑚)  

Picosecond  regime  

71   10.07   3.63  

Femtosecond  regime  

78   12.79   4.48  

 

3. Influence  of  the  wavelength  on  the  machining    

Some   tests  were   performed   in   order   to   study   the   effect   of   the  wavelength   on   the  machining.  The  settings  of  the  lasers  used  are  summarized  in  Table  8.    Table  8:  Characteristics  of  the  lasers  used  for  wavelength-­‐dependent  test  

Laser  used   Wavelength   Repetition  rate  

Energy  per  pulse  

Pulse  duration   Cells  used  

Satsuma  (green)  

515  nm   50  kHz   2.12  µJ   350  fs   Fixed  D1  

Sirius  (green)   532  nm   50  kHz   3  µJ   10  ps   Fixed  D1    

Some  tests  were  performed  with  the  frequency  doubling  systems  on  Satsuma  (green)  laser  with  Eclipse  2  set  up  and  Sirius  (green)  laser  with  Eclipse  1  set  up.  

Page 32: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  32  

Nevertheless,  no  machining  could  be  observed  on  the  fibers  machined  with  Satsuma  (green)   laser  and  Eclipse  2  set  up  under  confocal  microscopy.  The  results  on  Sirius   (green)  with  Eclipse  1  set  up  highlighted  the  limits  of  the  sample-­‐holding  system  V2  (see  Annex  2).  

 

B. Fabrication  of  capillary  substitutes  

1. Whole  fiber  machining    Satsuma   IR  with  Eclipse  2   set  up  was  used   in  order   to   test  whole   fiber  machining  as   they  present   optimal   conditions.   The  mean   target   power  was   146  mW.  Whole   fixed   fibers   and  unfixed   fibers   were   processed,   using   a   bit-­‐by-­‐bit   machining:   as   the   fiber   is   very  inhomogeneous,  in  diameter,  the  processing  of  the  fiber  was  done  only  on  a  few  hundreds  of   micrometers   each   time,   adjusting   the   position   of   the   fiber   after   each   shoot   thanks   to  stages.  

The  machining  was  achieved  on  ten  whole  fibers  with  a  length  of  1.5-­‐2  mm  (Fig.  20).  Each  fiber  was  machined  in  approximately  20  to  25  minutes.  

 

 Figure  14:  Whole  fiber  machined  by  Satsuma  laser  (IR)  

2. Cell  viability    

In  order  to  test  the  cell  viability  during  the  process,  tests  were  carried  on  non-­‐fixed  fibers,  laden  with  endothelial  cells.  These  tests  were  performed  on  the  Sirius  (IR)  machining  tests  on  Eclipse  1  set  up.  

Live/dead   assays   were   performed   after   the   patterning   in   order   to   check   for   cell  damage  from  the  exposure  of  the  layer  of  cells  to  the  laser  beam  (Figs  21  and  22).    

 

Page 33: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  33  

Figure  15:  Live/dead  protocol  on  a  non-­‐fixed  fiber  of  endothelial  cells  machined  at  3  µJ:  observation  at  the  confocal  microscope  (green:  live  cells,  red:  dead  cells).  This  live/dead  assay  is  representative  for  n=6  fibers  

  On  Figure  22,   the  two  top   images  show  respectively  the  dead  cells   (in  red)  and  the  live  cells   (in  green).  Below,  a  merge  of   the  two  top   images  give  three  different  sections   (2  longitudinal  sections  along  different  axes,  and  a  transverse  section).  Most  of  the  cells  were  viable  except  in  one  place:  this  place  corresponds  to  the  place  where  the  laser  shot  through  the  cell  layer,  as  we  can  see  on  the  transverse  section.  

 Figure  16:  Live/dead  assay  on  a  non-­‐fixed  fiber  of  endothelial  cells  machined  at  3  µJ:  observation  on  the  

confocal  microscope  (green:  live  cells,  red:  dead  cells),  on  thee  different  sections  (longitudinal  and  transverse  sections)  

IV. Discussion  A. Influence  of  the  laser  parameters  on  the  machining  

1. Influence  of  the  energy  on  the  machining:  threshold  determination    The  tests  on  the  threshold  energy  showed  that  under  2  µμJ,  no  patterning  is  observed.  At  

2.2  µμJ,   50   %   of   fibers   were   patterned,   and   at   3   µJ,   90   %  were   patterned.   Therefore,   the  threshold   energy   seems   to   be   around   2.2  µμJ,   but   the   threshold   energy   for   a   reproducible  

Page 34: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  34  

machining  of   the   fibers   is  3  µJ.  This  corresponds   to  a   fluence  of  36.2   J/cm2  on  Sirius  Laser  and  37.7  J/cm2  on  Satsuma  laser.    The   non   reproducibility   of   the  machining   at   2.2  µμJ  could   be   due   to   the   inhomogeneity   of  collagen:   indeed,   depending   on   the   microfiber   machined,   a   different   pattern   can   be  obtained.  The  collagen  used  is  extracted  from  rat  bone  marrow.  The  health  and  age  of  the  rats  used  vary  inducing  a  huge  variability  in  the  collagen  used  to  create  the  microfibers.  Therefore,   the  conclusion   is   that  a  minimum  energy  of  3  µμJ  should  be  used   to  pattern   the  fibers.    However,  the  channels  created  had  a  quite  similar  diameter  with  an  energy  per  pulse  of  2.2  µμJ  and   3  µμJ:  𝑑!,!!! = 8.65± 3.11  µμm  and  𝑑!!! = 10.07± 3.63  µμm.   Therefore,   there   is   a  relative  flexibility  in  the  energy  that  has  to  be  used  on  the  fibers.    The   sample-­‐holding   system   (V3)   induces   no   spherical   aberration   in   the   laser   beam,  which  creates   a   focal   spot   size   close   to   the   theoretical   size.   As   the   fluence   is   evaluated   as     the  target  energy  divided  by  the  surface  of  the  spot,  having  a  tiny  focal  spot  allows  to  maximize  the   fluence   for   a   fixed   energy.   Therefore,   a   smaller   energy   is   needed   to   get   the   same  fluence.  This  way  the  collateral  damages  on  the  cells  can  be  reduced.    

Applegate   et   al.   (32)   were   also   using   a   femtosecond   laser   with   an   pulse   duration  close   to   ours   (100   fs),   but  with   a   slightly   different  wavelength   (810   nm)   and   a   numerical  aperture  of  0.3.  The  difference  between  his  approach  and  the  one  developed  here  is  that  the  voids  Applegate  created  were  patterned  in  a  hydrogel  block  that  was  seeded  with  cells.    The  cell-­‐laden  fibers  were  patterned  after  the  cells  were  seeded  on  the  fiber.  Applegate  was  obtaining  thinner  voids  (5  µm  in  diameter).  This  is  probably  due  to  the  difference  in  the  used  energies  (under  2  nJ  per  pulse  for  Applegate  versus  3  µJ  for  our  study),  and  the  difference  of  repetition  rates  (80  MHz  versus  50  kHz).    

 

2. Influence  of  the  pulse  duration    Yaoming  Liu  et  al.   (33)  used  a  similar  wavelength   (800  nm)  but  with  a  much  smaller  pulse  duration   (45   fs)   and   a   smaller   numerical   aperture   (NA=0.25).   Their   threshold   fluence   for  ablation  of  the  scaffold  was  0.06  J/cm2  which  is  also  much  smaller  than  what  was  obtained  here  because  the  bigger  pulse  duration  might  have  produced  thermal  effects  on  the  collagen  in  our  case.  

 At  3  µμJ   (fixed  energy),   the  standard  deviation  of   the  results   in   femtosecond  regime  (fs)  

and  picosecond   regime   (ps)  overlap.   Therefore,   it   seems   that   the  pulse  duration  does  not  have   an   impact   on   the   channel   diameter.   Given   that   femtosecond   lasers   are  much  more  expensive   compared   to   picosecond   lasers,   this   is   a   relevant   information   to   decrease   the  general   cost   of   the   process.   By   using   a   picosecond   laser,   the   patterning   of   collagen  microfibers  would  therefore  be  accessible  at  much  lower  costs,  which,  in  a  purpose  of  future  commercialization  of  the  process  is  a  huge  advantage.    Nevertheless,   further   tests   should   be   done   using   Second   Harmonic   Generation   (SHG)   in  order   to   study   the   impact   of   fs   versus   ps   on   the   collagen   fibrils   inside   the   fibers.   Indeed,  femtosecond  lasers  do  not  have  thermal  effects  on  matter,  but  the  thermal  effects  usually  

Page 35: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  35  

occur  from  a  few  tens  of  picoseconds  which  is  the  pulse  duration  of  Sirius  laser.  Therefore,  there  might  be  some  thermal  effects  affecting  the  collagen  fibrils  of  the  fiber.  A  SHG  imaging  would   allow   to   check   the   orientation   of   the   fibrils   and   check   how   the   lasers   modify   the  collagen  hydrogel.    

3. Influence  of  the  wavelength  

The  tests  performed  at  532  nm  were  not  conclusive.  Indeeed,  the  sample  holding  system  V2  does   not   suit   for   green   laser   light  machining   on   Eclipse   1   because   the   energy   needed   to  engrave   the   glass   (0.4  µμJ)   is   lower   than   the   energy   needed   to   engrave   the   microfiber   of  collagen  (3  µμJ).  

Besides,   the   absorption   coefficient   of   the  water   has   a   zero   value   at   532   nm   (Fig   23).   The  collagen   fibrils   absorption   coefficient  has  an  order  of  magnitude  of  102   cm-­‐1.   The   collagen  hydrogel   used   to   build   the   fibers   is   composed   of   95   %   of   water   so   the   collagen   fibril  absorption  coefficient  has  no  influence  on  the  machining.  This  is  an  explanation  of  why  the  fibers  processed  at  the  green  wavelength  did  not  have  any  channel  created.  

 

 Figure  17:  Absorption  coefficients  of  several  species  including  collagen  (collagen  fibrils)  and  water  (39)    Hribar  (34)  added  gold  nanorods  to  the  collagen  hydrogen  used  in  order  to  increase  

the   near-­‐infrared   femtosecond   laser   beam   absorption   to   thermally   denaturates   the  surrounding  collagen  matrix  with  a  low  fluence  machining.  However,  we  did  not  use  any  gold  nanorod   particles   in   order   to   use   as   little   external   elements   as   possible   from   the   natural  environment  of  the  cell.  Nevertheless,  the  approach  developed  in  our  project  has  a  fluence  smaller  than  the  one  used  by  Hribar  (fluence  of  54  𝐽/𝑐𝑚!    for  him,  fluence  of  37  𝐽/𝑐𝑚!).        

B. Fabrication  of  blood  capillaries  substitutes  

Page 36: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  36  

1. Machining  on  the  collagen    

On  all  the  confocal  images,  a  lack  of  collagen  is  observed  (black  regions  in  the  green  autofluorescent  collagen).  A  change  of  contrast  or  apparition  of  bubbles  were  also  observed  on  the  CCD  camera  during  the  machining.  The  void  created  pushed  collagen  on  the  sides  of  the  void.    As  the  collagen  is  a  hydrogel  (95  %  of  water),  the  water  filled  the  voids  created  by  the  laser  machining   inside   the   fiber.   As   water   and   collagen   have   a   similar   refraction   index,   the  contrast   between   the   collagen   and   the   void   disappeared   rapidly   (within   a   few   minutes  maximum)   when   observed   on   the   CCD   camera.   The   sample   had   to   be   observed   under  confocal  microscopy  to  visualize  the  collagen-­‐free  region  inside  the  fiber.  

2. Size  of  the  channels    

The  theoretical  spot  size  of  the  laser  beam  at  the  focal  point  was  3  µm.    The  huge  difference  between  the  theoretical  spot  size  and  the  void  created  can  be  explained  by   the  high   frequency   rate  of   the   laser   (50  kHz):   the  optical  breakdown  zones  are  created  close  to  each  over,  even  overlapping.  Besides,   if  a  void   is  created  directly  where  the   laser   is   focused,  the  water  contained   in  the  collagen  fills  the  void  after  the  machining  and  can  play  a  magnification  effect  when  the  laser  beam  goes  through  the  collagen,  focusing  on  a  different  place  than  originally  planned.    At  the  start  and  stop  places  of  the  laser  shoot,  a  bigger  void  can  be  observed  (20  to  30  µm)  (Fig  20  and  21).  This  could  be  due  to  the  accelerating  and  decelerating  phases  of  the  stage  motion.    In  the  channels  created,  some  parts  of  the  voids  are  larger  than  others  (up  to  20  or  30  µm  wide  -­‐  see  Figs  20  and  21).  This  corresponds  to  the  accelerating  and  decelerating  phases  of  the  stages  motion:  it  slows  down  the  pace  of  the  machining  and  increases  the  overlap  of  the  focal  zones  between  two  shots;  therefore  creates  bigger  voices.    

3. Whole  fiber  machining:  choice  of  optimal  settings    

Satsuma   IR  with   Eclipse   2   seems   to   offer   the   best  machining   set   up.   The   Eclipse   2  allows  machining  from  the  top  which  prevents  the  laser  beam  to  cross  a  medium  different  than  air  when  patterning  the  fiber.    

 Besides,   it  offers  a  good  visualization  of   the   fiber  and  easy   focalization  of   the   laser  

beam  in  the  middle  of  the  fiber.  The  tests  done  on  the  Eclipse  1  set  up  have  all  faced  the  same  issue  with  focalizing  the  laser  beam  in  the  middle  of  the  fiber:  in  bottom-­‐up  machining,  the  CCD  camera  does  not  allow  to  see  the  top  of  the  fiber  but  only  the  glass  plate  on  which  the  fiber  lies.    On  Eclipse  2  set  up,  the  CCD  camera  is  above  the  sample  which  means  both  the  top  of  the  fiber   and   the   glass   plate   of   the   sample-­‐holding   system   are   sharp   and   easily   observed.  Therefore,  the  average  between  two  ‘z’  positions  (top  and  bottom  of  the  fiber)  can  easily  be  found  with  the  stages  and  the  middle  of  the  fiber  assumed.    Eclipse  2  gives  the  best  results  in  terms  of  repeatability  and  diameter  control  of  the  voids.    

Page 37: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  37  

The  optimal  parameters  that  give  a  repeatable  pattern  on  the  fibers  are  summed  up  in  Table  9.    Table  9:  Optimal  parameters  

Set  up   Eclipse  2  +  Satsuma  laser  Wavelength   1030  nm  Pulse  duration   350  fs  Repetition  rate   50  kHz  Mean  power   150  mW  Energy!"#$%!   3  µJ  Stage  speed   0,5  mm/s  

 This   is   the   Eclipse   2   set   up   that   influences   the  machining,   so   another   laser   than   Satsuma  laser  could  be  used.    

In  order   to  achieve  a  clean  patterning,   the  machining  should  not  be  done  on  more  than  300  µμm  in  a  row.  Indeed,  the  fibers  do  not  have  a  smooth  surface  (they  can  be  50  µm  thick  in  one  place  and  100  µm  thick  300  of  µm  further  in  the  length  of  the  fiber).  Therefore,  the  machining  has  to  be  adapted  that  is  shooting  slantwise  into  the  fiber,  without  shooting  the  cells  on  the  outskirt.  

 

4. Cell  viability       The  tests  on  unfixed  cell-­‐laden  fibers  gave  interesting  results  concerning  the  viability  of  the  cells:  the  live/dead  protocols  showed  that  most  cells  are  alive  after  the  transport  and  machining  process,  except  where  the  laser  got  through  the  cell  layer  through  the  cell  layer.  This  is  encouraging  for  further  developments  of  the  process  even  if  quantification  essays  and  DNA  analysis  have  to  be  performed  to  assess  cells  viability.      

Conclusion  and  Perspectives  Micromachining  of  the  fibers  was  achieved  with  femtosecond  and  picosecond  lasers,  

demonstrating  the  feasibility  of  the  process.  The  energy  threshold  for  laser  machining  was  3  µJ,  whatever  pulse  duration  was  used.  

 It  was  found  that  there  is  a  great  freedom  on  the  parameters  for  machining:  a  change  

in  the  target  energy  of  0.8  µJ  only  changes  the  mean  average  diameter  of   the  channels  of  1.42  ± 3  µμ𝑚,   that   is   a   0.8   µJ   change   of   energy   does   not   have   any   effect,   regarding   the  standard  deviation  obtained.  Besides,   the   change   from   picosecond   to   femtosecond   only   changed   the   diameter   of   the  channel  of  2.7  ±  4  µμm,  which  means  the  pulse  duration  does  not  have  any  effect,  regarding  the  standard  deviation  on  the  result.  

Page 38: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  38  

This   freedom   in   the   parameters   offers   a  wide   range   of   choices   in   the   lasers   used   for   the  patterning,  which  can  decrease  the  general  cost  of  the  process.    

 Further   tests  should  be  performed  on  collagen   in  order   to  determine  the  effects  of  

different   pulse   duration   (picosecond   and   femtosecond   regimes)   and   in   order   to   visualize  whether  collagen  remodeling  takes  place  after  the  laser  machining.  Femtosecond   lasers   create   an   athermal   machining:   the   impulsion   lasts   less   than   the  characteristic  diffusion  time  of  heat.  Nevertheless,  the  Sirius  laser  has  an  impulsion  length  of  5   to   10   ps,  which   is   the   limit   for   thermal   effects.   Further   investigation   should   be   done   in  order  to  determine  whether  there  are  thermal  effects  or  not.    

Besides,   tests  will   be   performed   in   a   few  weeks   in   order   to   perfuse   the   patterned  microfibers.   This  will   be   the  opportunity   to  determine  whether   the   fiber   has   to  be   totally  machined  or  only  partially,  which  size  of  voids  is  needed  for  an  optimal  perfusion,  etc.    

Finally,  some  tests  on  the  effect  of  the  wavelength  should  be  carried  out  in  order  to  determine  which  wavelength  could  have  a  positive  effect  on  the  surrounding  cells.  Indeed,  in  the   litterature,  some  studies  have  shown  that  exposition  of  cells  at   low  powers  at  532  nm  gives  a  benefic  proliferation  and  differentiation  effects  (40–42).        

Page 39: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  39  

Annex 1: Example of a G-code program  Here  is  an  example  of  a  G-­‐code  program  used  to  control  the  stages  :       'This  programm  writes  one  line  along  Y  axis.       'Plate  movement  :  line  laser  OFF  -­‐  line  laser  ON-­‐  line  laser  OFF.         dvar  $VMAX     'Maximal  velocity     dvar  $NL   'Number  of  lines  in  serie     dvar  $STEP   'Separation  between  lines     dvar  $LINE   'Line  length     M0       ENABLE  X  Y  Z         $VMAX=0.5     $STEP=5     $LINE=0.8       G92  X0  Y0  Z0     G91       RAMP  RATE  1000       VELOCITY  ON     $AO[1].X  =  5     G1  Y  -­‐$LINE     $AO[1].X  =  0     G1  Y  $LINE     VELOCITY  OFF    G90        G1  X0  Y0  F  $VMAX    

Page 40: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  40  

Annex   2:   Tests  with   Sirius   laser   (green)   on   Eclipse   1:  optimization  of  patterning  set-­‐up  

A.  From  the  sample  holding  system  V2  to  V3  

Fixed  fibers  laden  with  D1  cells  were  used  for  these  experiments.  The  sample  holding  system  V2  was  used.  The  settings  of  the  laser  used  are  summed  up  in  Table  10.    Table  1:  Settings  of  Sirius  (green)  laser  for  tests  on  wavelength  effect  

  Wavelength   Repetition  rate  (used)  

Energy  (used)  

Pulse  duration  

Cells  used  

Sirius  (green)   532  nm   50  kHz   3  µJ  (at  the  objective  output)  

10  ps   Fixed  D1  and  live  D1  

 The   first  objective  was   to   test  different  energies   in  order   to   find  out   the   threshold  

energy  for  micromachining  the  fibers  at  532  nm.  Target  powers  from  10  to  500  mW  were  used  (results  summed  up  in  Table  11).      Table  2:  Energy  tests  on  Sirius  (green)  laser  

𝑷𝒕𝒂𝒓𝒈𝒆𝒕  (mW)   Energy  (𝝁𝑱)   Result:  did  it  work?  14  mW   0,2  µμJ   No  (n=2)  103  mW   2  µμJ   No  (n=2)  170  mW   3,4  µμJ   Fiber  exploded  (n=1)  224  mW   4,5  µμJ   Works  out  (n=1)  480  mW   8  µμJ   Fiber  destroyed  (n=1)  

According  to  these  tests,  the  threshold  power  seems  to  be  between  2  µμJ  and  3,4  µμJ  but  the  fourth  result  (at  4,5  µμJ)  differs.    When  the  laser  is  focused  in  the  middle  of  the  fiber,  some  bubbles  appear  under  the  fiber,  at  the  interface  with  the  sample-­‐holding  system  (Fig  24).  

 Figure  18:  Microscope  observation  of  the  fiber  machined  at  4,48  µJ  (obj  10x)  (a)  before  (b)  after  the  machining  occured  

Under  confocal  microscopy,  a  void  is  observable  inside  the  fiber  (see  Fig  25),  with  a  diameter  of  40  µm,  and  a  thin  layer  of  collagen  is  left  on  both  sides  of  the  hole  which  means  that  the  fiber  was  not  torn  or  the  cell  layer  was  not  damaged.  

Page 41: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  41  

 Figure  19:  Confocal  observation  of  the  fiber  machined  at  4,48  µJ  (three  different  sections)  

A  series  of   tests   (on  N=4   fibers)  were  done  at  112  mW  (2,24  µJ)   in  order   to   study   the  repeatability   of   the   machining.   Different   types   of   behaviour   were   obtained:   a   fiber   was  micropatterned  (Figure  26A),  another  was  torn  (Figure  26C),  one  was  exploded  (Figure  26B),  and  on  the  last  one,  some  bubbles  of  void  were  created  (Figure  26D).    

 Figure  20:  Different  fibers  machined  at  2,24  µJ  (a)  Fiber  machined  (b)  Exploded  fiber  (c)  Torn  fiber  (d)  Void  bubbles  

appearance  in  the  fiber  

The  theoretical  fluence  of  this  machining  process  was  calculated:  the  theoretical  spot  has   a   radius   twice   smaller   than   in   the   infrared   wavelength   so  𝑟 = 0,8  µμ𝑚,   which   gives   a  theoretical   fluence   of  145,1  𝐽/𝑐𝑚!,  which   is   quite   surprising   compared   to  what   had   been  obtained  in  the  trials  with  the  other  lasers  (fluence  of  about  35  𝐽/𝑐𝑚!.    

 The  fluence  obtained  here  is  actually  the  fluence  at  the  output  of  the  microscope  objective:  the  fluence  on  target  is  smaller  because  of  the  aberrations  introduced  in  the  laser  beam  at  the  objective  output.      

Given  the  difference  of  fluence,  the  point  spread  function  with  a  layer  of  400  µm  of  agarose  and  without  the  agarose  gel  layer  have  been  plotted  in  order  to  study  the  effect  of  spherical  aberration  (Fig.  27)   (43).  The  simulation  was  done  under  Zemax  software  (Zemax  13  release  2  -­‐  2014),  then  the  graphs  plotted  on  Microsoft  Excel  2011.  

Page 42: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  42  

 

 Figure  21:  Point  Spread  Function  of  the  beam  with  an  agarose  gen  layer  of  400  µm  (a)  and  without  (b)  the  agarose  gel  

layer  

The  PSF  is  much  more  degraded  with  an  agarose  gel  layer  of  400  µm  than  without  because  of   the  spherical  aberrations   introduced   in   the   laser  beam.  The  sample-­‐holding  system  was  changed  to  V3  after  these  simulations.      

B. Highlighting  the  need  of  Eclipse  2  set-­‐up    

Fixed  fibers  laden  with  D1  cells  were  used.  The  following  tests  were  done  with  Eclipse  1  set-­‐up  and  the  sample  holding  system  V3.  The  settings  of   the  Sirius   laser   (green)  used  are  summed  up  in  Table  11.  N=10  tests  were    performed  on  the  fibers.  Each  time,  the  laser  was  actually  carving  the  glass  plate   under   the   fiber,   despite   the   settings   of   the   focalization  of   the   laser   and   the   camera  plane.    

A   search   for   optical   breakdown   threshold   in   the   glass   plate   showed   that   the   laser  systematically  engraves  the  glass  plate  instead  of  the  fiber  with  the  green  wavelength  with  these  settings.  The  threshold  energy  for  glass  carving  was  found  to  be  𝐸 = 0,4  µμ𝐽  (𝑃!"#$%! =20  𝑚𝑊)  when  the  focal  spot  is  on  the  glass  surface.  

Still  at  3  µJ  (id  est  the  threshold  energy  for  fiber  patterning),  the  height  of  the  sample  was  changed  thanks  to  the  stage,  so  that  the  focal  point  of  the  laser  beam  is  a  few  tens  of  micrometers  above  the  glass  plate.  The  glass  plate  was  engraved  until  the  focal  point  of  the  laser  was  lifted  40  µm  above  the  glass  plate.      

Therefore,   the   threshold   energy   for   optical   breakdown   in   the   glass   plate   is   smaller  than   the   one   for   the   collagen   fiber:  𝐸 = 3  µμ𝐽  (𝑃!"�!"# = 150  𝑚𝑊 ).   Fewer   photons   are  needed  at  532  nm  to  ablate  the  glass.  Indeed,  as  each  photon  has  an  energy  twice  at  532  nm  compared  to  1064  nm,  less  photons  are  needed  to  carve  the  glass.  Thus,  the  glass  is  carved  even  if  the  beam  is  focalized  in  the  middle  of  the  fiber.    

 This  makes  the  Eclipse  1  set-­‐up  not  usable  for  tests  at  532  nm.  Therefore  a  top-­‐down  

machining  set-­‐up  (Eclipse  2  set-­‐up)  is  preferable  for  fiber  patterning.      

   

Page 43: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  43  

References  

1.     Drosse  I,  Volkmer  E,  Capanna  R,  Biase  PD,  Mutschler  W,  Schieker  M.  Tissue  engineering  for  bone  defect  healing:  An  update  on  a  multi-­‐component  approach.  Injury.  2008  Sep;39:S9–20.    2.     Langer  R.  I  ARTICLES.  Science.  1993;260:5110.    3.     Blitterswijk  CA  van,  Moroni  L,  Rouwkema  J,  Siddappa  R,  Sohier  J.  Tissue  engineering  –  an  introduction.  In:  Tissue  Engineering  [Internet].  Elsevier;  2008  [cited  2016  Jun  1].  p.  xii  –  xxxvi.  Available  from:  http://linkinghub.elsevier.com/retrieve/pii/B9780123708694000240  4.     Groll  J,  Boland  T,  Blunk  T,  Burdick  JA,  Cho  D-­‐W,  Dalton  PD,  et  al.  Biofabrication:  reappraising  the  definition  of  an  evolving  field.  Biofabrication.  2016  Jan  8;8(1):013001.    5.     Jain  RK,  Au  P,  Tam  J,  Duda  DG,  Fukumura  D.  Engineering  vascularized  tissue.  Nat  Biotechnol.  2005  Jul;23(7):821–3.    6.     2.  Biomaterials2015.pdf.    7.     Takahashi  K,  Tanabe  K,  Ohnuki  M,  Narita  M,  Ichisaka  T,  Tomoda  K,  et  al.  Induction  of  Pluripotent  Stem  Cells  from  Adult  Human  Fibroblasts  by  Defined  Factors.  Cell.  2007  Nov;131(5):861–72.    8.     Katari  R,  Peloso  A,  Zambon  JP,  Soker  S,  Stratta  RJ,  Atala  A,  et  al.  Renal  Bioengineering  with  Scaffolds  Generated  from  Human  Kidneys.  Nephron  Exp  Nephrol.  2014;126(2):119–119.    9.     Novosel  EC,  Kleinhans  C,  Kluger  PJ.  Vascularization  is  the  key  challenge  in  tissue  engineering.  Adv  Drug  Deliv  Rev.  2011  Apr;63(4-­‐5):300–11.    10.     407249a0  (1).pdf.    11.     Liu  Y,  Chan  JKY,  Teoh  S-­‐H.  Review  of  vascularised  bone  tissue-­‐engineering  strategies  with  a  focus  on  co-­‐culture  systems:  Vascularised  Bone  Tissue  Engineering  using  Coculture  Systems.  J  Tissue  Eng  Regen  Med.  2015  Feb;9(2):85–105.    12.     Janssen  FW,  Oostra  J,  Oorschot  A  van,  van  Blitterswijk  CA.  A  perfusion  bioreactor  system  capable  of  producing  clinically  relevant  volumes  of  tissue-­‐engineered  bone:  In  vivo  bone  formation  showing  proof  of  concept.  Biomaterials.  2006  Jan;27(3):315–23.    13.     Lalan,  B.A.  S,  Pomerantseva,  M.D.  I,  Vacanti,  M.D.  JP.  Tissue  Engineering  and  Its  Potential  Impact  on  Surgery.  World  J  Surg.  2001  Nov  1;25(11):1458–66.    14.     Rivron  NC,  Liu  J,  Rouwkema  J,  Boer  J  de,  Blitterswijk    van  C.  Engineering  vascularised  tissues  in  vitro.  Eur  Cell  Mater.  2008;15:27–40.    15.     Rouwkema  J,  Rivron  NC,  van  Blitterswijk  CA.  Vascularization  in  tissue  engineering.  Trends  Biotechnol.  2008  Aug;26(8):434–41.    16.     Clark  ER,  Clark  EL.  Microscopic  observations  on  the  growth  of  blood  capillaries  in  the  living  mammal.  Am  J  Anat.  1939  Mar;64(2):251–301.    17.     Risau  W,  Flamme  I.  Vasculogenesis.  Annu  Rev  Cell  Dev  Biol.  1995  Nov;11(1):73–91.    18.     Kneser  U,  Polykandriotis  E,  Ohnolz  J,  Heidner  K,  Grabinger  L,  Euler  S,  et  al.  Engineering  of  Vascularized  Transplantable  Bone  Tissues:  Induction  of  Axial  Vascularization  in  an  Osteoconductive  Matrix  Using  an  Arteriovenous  Loop.  Tissue  Eng.  2006  Jul;12(7):1721–31.    19.     Tremblay  P-­‐L,  Hudon  V,  Berthod  F,  Germain  L,  Auger  FA.  Inosculation  of  Tissue-­‐Engineered  Capillaries  with  the  Host’s  Vasculature  in  a  Reconstructed  Skin  Transplanted  on  Mice.  Am  J  Transplant.  2005  May;5(5):1002–10.    

Page 44: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  44  

20.     Hassen-­‐Khodja  R,  Kieffer  E.  Radiotherapy-­‐induced  supra-­‐aortic  trunk  disease:  early  and  long-­‐term  results  of  surgical  and  endovascular  reconstruction.  J  Vasc  Surg.  2004  Aug;40(2):254–61.    21.     Chen  X,  Aledia  AS,  Ghajar  CM,  Griffith  CK,  Putnam  AJ,  Hughes  CCW,  et  al.  Prevascularization  of  a  Fibrin-­‐Based  Tissue  Construct  Accelerates  the  Formation  of  Functional  Anastomosis  with  Host  Vasculature.  Tissue  Eng  Part  A.  2009  Jun;15(6):1363–71.    22.     Rouwkema  J,  Rivron  NC,  van  Blitterswijk  CA.  Vascularization  in  tissue  engineering.  Trends  Biotechnol.  2008  Aug;26(8):434–41.    23.     richardson2001.pdf.    24.     Ott  HC,  Matthiesen  TS,  Goh  S-­‐K,  Black  LD,  Kren  SM,  Netoff  TI,  et  al.  Perfusion-­‐decellularized  matrix:  using  nature’s  platform  to  engineer  a  bioartificial  heart.  Nat  Med.  2008  Feb;14(2):213–21.    25.     Perez-­‐Castillejos  R.  Replication  of  the  3D  architecture  of  tissues.  Mater  Today.  2010  Jan;13(1-­‐2):32–41.    26.     Ricard-­‐Blum  S.  The  Collagen  Family.  Cold  Spring  Harb  Perspect  Biol.  2011  Jan  1;3(1):a004978–a004978.    27.     Hoch  E,  Tovar  GEM,  Borchers  K.  Bioprinting  of  artificial  blood  vessels:  current  approaches  towards  a  demanding  goal.  Eur  J  Cardiothorac  Surg.  2014  Nov  1;46(5):767–78.    28.     Engler  AJ,  Humbert  PO,  Wehrle-­‐Haller  B,  Weaver  VM.  Multiscale  Modeling  of  Form  and  Function.  Science.  2009  Apr  10;324(5924):208–12.    29.     Murphy  SV,  Atala  A.  3D  bioprinting  of  tissues  and  organs.  Nat  Biotechnol.  2014  Aug  5;32(8):773–85.    30.     Schiele  NR,  Corr  DT,  Huang  Y,  Raof  NA,  Xie  Y,  Chrisey  DB.  Laser-­‐based  direct-­‐write  techniques  for  cell  printing.  Biofabrication.  2010  Sep  1;2(3):032001.    31.     Smith  NI,  Fujita  K,  Nakamura  O,  Kawata  S.  Three-­‐dimensional  subsurface  microprocessing  of  collagen  by  ultrashort  laser  pulses.  Appl  Phys  Lett.  2001;78(7):999.    32.     Applegate  MB,  Coburn  J,  Partlow  BP,  Moreau  JE,  Mondia  JP,  Marelli  B,  et  al.  Laser-­‐based  three-­‐dimensional  multiscale  micropatterning  of  biocompatible  hydrogels  for  customized  tissue  engineering  scaffolds.  Proc  Natl  Acad  Sci.  2015  Sep  29;112(39):12052–7.    33.     Liu  Y,  Sun  S,  Singha  S,  Cho  MR,  Gordon  RJ.  3D  femtosecond  laser  patterning  of  collagen  for  directed  cell  attachment.  Biomaterials.  2005  Aug;26(22):4597–605.    34.     Hribar  KC,  Meggs  K,  Liu  J,  Zhu  W,  Qu  X,  Chen  S.  Three-­‐dimensional  direct  cell  patterning  in  collagen  hydrogels  with  near-­‐infrared  femtosecond  laser.  Sci  Rep.  2015  Nov  25;5:17203.    35.     Niemz  MH.  Laser-­‐Tissue  Interactions  [Internet].  Berlin,  Heidelberg:  Springer  Berlin  Heidelberg;  2007  [cited  2016  Jun  1].  (Biological  and  Medical  Physics,  Biomedical  Engineering).  36.     Mao  SS,  Qu�r�  F,  Guizard  S,  Mao  X,  Russo  RE,  Petite  G,  et  al.  Dynamics  of  femtosecond  laser  interactions  with  dielectrics.  Appl  Phys  A  [Internet].  2004  Nov  [cited  2016  Jun  1];79(7).  37.     Noack  J,  Vogel  A.  Laser-­‐induced  plasma  formation  in  water  at  nanosecond  to  femtosecond  time  scales:  calculation  of  thresholds,  absorption  coefficients,  and  energy  density.  IEEE  J  Quantum  Electron.  1999  Aug;35(8):1156–67.    38.     Kalisky  J,  Raso  J,  Rémy  M,  Siadous  R,  Bareille  R,  Fricain  JC,  et  al.  An  easy-­‐to-­‐use  and  versatile  method  for  building  cell-­‐laden  microfibers.  Nature  Scientific  Reports.  under  publication.  2016;    

Page 45: rapport FINAL 22 juin - Diva1040138/...! 4! Abstract! The!lack!of!organ!donors!for!transplants!is!becoming!ahuge!burden.!In!attempt!to! palliate! this! shortage! and! to! help! tissues!

  45  

39.     Scholkmann  F,  Kleiser  S,  Metz  AJ,  Zimmermann  R,  Mata  Pavia  J,  Wolf  U,  et  al.  A  review  on  continuous  wave  functional  near-­‐infrared  spectroscopy  and  imaging  instrumentation  and  methodology.  NeuroImage.  2014  Jan;85:6–27.    40.     Poon  VK,  Huang  L,  Burd  A.  Biostimulation  of  dermal  fibroblast  by  sublethal  Q-­‐switched  Nd:YAG  532nm  laser:  Collagen  remodeling  and  pigmentation.  J  Photochem  Photobiol  B.  2005  Oct;81(1):1–8.    41.     Merigo  E,  Bouvet-­‐Gerbettaz  S,  Boukhechba  F,  Rocca  J-­‐P,  Fornaini  C,  Rochet  N.  Green  laser  light  irradiation  enhances  differentiation  and  matrix  mineralization  of  osteogenic  cells.  J  Photochem  Photobiol  B.  2016  Feb;155:130–6.    42.     Anwer  AG,  Gosnell  ME,  Perinchery  SM,  Inglis  DW,  Goldys  EM.  Visible  532  nm  laser  irradiation  of  human  adipose  tissue-­‐derived  stem  cells:  Effect  on  proliferation  rates,  mitochondria  membrane  potential  and  autofluorescence.  Lasers  Surg  Med.  2012  Nov;44(9):769–78.    43.     Desrus  H,  Chassagne  B,  Moizan  F,  Devillard  R,  Petit  S,  Kling  R,  et  al.  Effective  parameters  for  film-­‐free  femtosecond  laser  assisted  bioprinting.  Appl  Opt.  2016  May  10;55(14):3879.