Top Banner
Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2 , H.Sasao 3 , H.Kiriyama 1 , M.R.Asakawa 2 , K.Kondo 1 , and P. R. Bolton 1 1 Kansai photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0216, Japan 2 Faculty of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan 3 Naka Fusion Institute, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311- 0193, Japan Poster Session II Ultra-intense Laser Design And Performance The International Committee on Ultra-High Intensity Lasers (ICUIL 2014) October 14, 2014 Hotel Cidade De Goa, Goa, India
10

Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Dec 23, 2015

Download

Documents

Jared Lyons
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Random phase noise effect on the contrastof an ultra-high intensity laser

Y.Mashiba1, 2, H.Sasao3, H.Kiriyama1,M.R.Asakawa2, K.Kondo1, and P. R. Bolton1

1Kansai photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0216, Japan

2Faculty of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

3Naka Fusion Institute, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193, Japan

Poster Session II Ultra-intense Laser Design And PerformanceThe International Committee on Ultra-High Intensity Lasers (ICUIL 2014)

October 14, 2014Hotel Cidade De Goa, Goa, India

Page 2: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Outline

• Objective

• Origin of spectral random phase noise (SRPN)

• Numerical analysis

• Calculation results on temporal contrast with SRPN

• Conclusion

Page 3: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

In the application of a high-intensity laser to solid-target experiments, a pedestal can generate unwanted plasmas before the main pulse arrive on the target.

Solid-target

Main pulse

Pedestal

The unwanted plasmas modify the experimental condition.

A part of pedestal goes ahead of main pulse

The pedestal intensities have reached up to W/cm .1110 2

Page 4: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Limiting factors in temporal contrast

We have evaluated the spectral random phase noise (SRPN).

High order spectral phase dispersion

1

-500 -400 -300 -200 -100 0 10010-12

10-10

10-8

10-6

10-4

10-2

Amplified spontaneous emission

Spectral random phase noise

Ref. H.Kiriyama et al.Opt. Lett. 37, 3363-3365 (2012)

Nor

mal

ized

inte

nsity

Time [ps]

Page 5: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Origin of spectral random phase noise (SRPN)

Noise of the surface flatness is directly converted tospectral random phase noise (SRPN).

Chirped-pulse from the amplifier

Grating 2

Grating 1

Grating 3

Grating 4

Large gratings “2,3” have the surface roughness.

Compressor

Compressed pulse

Page 6: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Our large grating (W:420 mm, H:210 mm) have the surface roughness of 9-12 nm (peak to valley; P-V) along the center.

50 10 15 20 25Distance [cm]

0

4

8

12

Hei

ght [

nm] 12 nm

Photo of our large grating

420 mm

210 mm 25.9 cm

Measured surface roughness

The roughness is measured to be 9-12 nm (P-V).

0

3

6

9

9 nm

Laser beam

Grating 2

Grating 3

Page 7: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

md )sin(sin

1.0

1.2

1.4

1.6

1.8

750 790770 810 830 850Wave length ( ) [nm]

Spec

trum

rand

om

phas

e no

ise

(δ) [

rad]

2

)21( ZZ

Spectrum random phase noise

d: lattice constantα: angle of incidence at grating 1β: angle of emergence at grating 1m: degree

Numerical analysis (1/2)

Spectral random phase noiseLaser having wavelength

ΔZ1 ΔZ2

Grating 2 Grating 3

Dispersed laser from the grating 1 to grating “2,3”

Optical path difference due to the roughnessΔZ1 and ΔZ2 are from the measured surface roughness.

Page 8: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

dkekItf ckti )()()(

I(k): Spectral intensityc: speed of lightk: wave number

0

0.4

0.8

1.2

1.6

0.0750 790770 810 830 850

Wave length ( ) [nm]Sp

ectr

al in

tens

ity( I

(k) )

[arb

.u.]

Contrast analysis based on Fourier inverse transformation

Equation

• We have taken account of grating “2,3” for calculation of the spectral random phase noise (Grating “1,4” have flat surface) .

• We have considered the temporal contrast in one dimensional analysis.

Assumption

Numerical analysis (2/2)

Page 9: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

This SRPN generates a pedestal in ±100 ps range, which is in fairly good agreement with the experimental observation.

The SRPN can be a good explanation for the pedestal observed in our contrast measurement.

0-500 -400 -300 -200 -100 100

1e-12

1e-10

1e-8

1e-6

1e-4

1e-2

1

Nor

mal

ized

inte

nsity

Time [ps]

Measured contrastCalculated contrast

Page 10: Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.

Conclusion

• Our large gratings (W:420 mm, H:210 mm) have the

surface roughness of 9-12 nm (P-V) along the center.

• The spectral random phase noise generated

in the grating in a compressor is the most probable

factor causing the pedestal.

• Two dimensional analysis

• Larger gratings (W:565 mm, H:360 mm) evaluation……

Next step