Top Banner
Motivation Problem Formulation 1 -Minimization Classification Experiments Future Directions Random Feature Selection for Robust Face Recognition Allen Y. Yang <[email protected]> Department of EECS, UC Berkeley with Shankar Sastry, Yi Ma, & John Wright HSN MIT Review, Sep 24, 2007 Allen Y. Yang < [email protected]> Random Feature Selection for Robust Face Recognition
44

Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Oct 16, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Random Feature Selection for Robust Face Recognition

Allen Y. Yang <[email protected]>

Department of EECS, UC Berkeleywith Shankar Sastry, Yi Ma, & John Wright

HSN MIT Review, Sep 24, 2007

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 2: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Next Generation Sensor Networks

1 Transition from dedicated sensor networks to general-purpose sensor networks.

2 Similar revolutions in IT industry:Computer:

Services:

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 3: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Next Generation Sensor Networks

1 Transition from dedicated sensor networks to general-purpose sensor networks.

2 Similar revolutions in IT industry:Computer:

Services:

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 4: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Advances in Sensor Networks

1 Proliferation

(a) Ubiquitous (b) Mobile (c) Personal

2 More powerful processing units

Intel XScale 600MHz CPU

Memory: 16 MB ROM, 64 MB RAM

Resolution: 1280× 1024 up to 15 fps

Integrated microphone, infrared, motionsensors.

IEEE 802.15.4 protocal, 250 kbps.

Figure: Next generation Berkeleywireless camera mote.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 5: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Advances in Sensor Networks

1 Proliferation

(a) Ubiquitous (b) Mobile (c) Personal

2 More powerful processing units

Intel XScale 600MHz CPU

Memory: 16 MB ROM, 64 MB RAM

Resolution: 1280× 1024 up to 15 fps

Integrated microphone, infrared, motionsensors.

IEEE 802.15.4 protocal, 250 kbps.

Figure: Next generation Berkeleywireless camera mote.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 6: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 7: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 8: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 9: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Contributions

Qualification for feature selection

Data independent.

Application independent.

Fast to generate and compute.

Accurate in preserving true data structures.

Contributions

1 New framework for object/face recognition via compressed sensing.

2 Classification is encoded in a (global) sparse representation.

3 Random projection as universal dimensionality redunction.

4 Efficient solution via `1-minimization outperforms classical algorithms.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 10: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Contributions

Qualification for feature selection

Data independent.

Application independent.

Fast to generate and compute.

Accurate in preserving true data structures.

Contributions

1 New framework for object/face recognition via compressed sensing.

2 Classification is encoded in a (global) sparse representation.

3 Random projection as universal dimensionality redunction.

4 Efficient solution via `1-minimization outperforms classical algorithms.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 11: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 12: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 13: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 14: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 15: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 16: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 17: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 18: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 19: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 20: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 21: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 22: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 23: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 24: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 25: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 26: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 27: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 28: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 29: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 30: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 31: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 32: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 33: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 34: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 35: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 36: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Outlier Rejection

`1-Coefficients for invalid images

Outlier Rejection

When `1-solution is not sparse or concentrated to one subspace, the test sample is invalid.

Sparsity Concentration Index: SCI(x).

=K ·maxi ‖δi (x)‖1/‖x‖1 − 1

K − 1∈ [0, 1].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 37: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Outlier Rejection

`1-Coefficients for invalid images

Outlier Rejection

When `1-solution is not sparse or concentrated to one subspace, the test sample is invalid.

Sparsity Concentration Index: SCI(x).

=K ·maxi ‖δi (x)‖1/‖x‖1 − 1

K − 1∈ [0, 1].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 38: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomface Ensembles

1 Blessing of dimensionality

When D is large for RD , with overwhelmingprobability, the row vectors in R ∈ Rd×D areindependent.

Subspace structures and sample membership arepreserved.

2 Randomface ensemble (For a particular random matrix R, the choice could be bad):Generate multiple projections: R1,R2, · · · ,Rl .For each Rj , solve

min ‖x‖1 s.t. ‖Rj y − RjAx‖2 ≤ εCompute an averaged residual function

ri = mean{r1i , r

2i , · · · , r

li }.

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 39: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomface Ensembles

1 Blessing of dimensionality

When D is large for RD , with overwhelmingprobability, the row vectors in R ∈ Rd×D areindependent.

Subspace structures and sample membership arepreserved.

2 Randomface ensemble (For a particular random matrix R, the choice could be bad):Generate multiple projections: R1,R2, · · · ,Rl .For each Rj , solve

min ‖x‖1 s.t. ‖Rj y − RjAx‖2 ≤ εCompute an averaged residual function

ri = mean{r1i , r

2i , · · · , r

li }.

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 40: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Extended Yale B 38 Subjects (Illumination Variance)

Table: Nearest Neighbor (Left) and Nearest Subspace (Right).

Dimension 30 56 120 504

Eigen [%] 74.3 81.4 85.5 88.4Laplacian [%] 77.1 83.5 87.2 90.7Random [%] 70.3 75.6 78.8 79Down [%] 51.7 62.6 71.6 78Fisher [%] 87.6 N/A N/A N/A

Dimension 30 56 120 504

Eigen [%] 89.9 91.1 92.5 93.2Laplacian [%] 89 90.4 91.9 93.4Random [%] 87.3 91.5 93.9 94.1Down [%] 80.8 88.2 91.1 93.4Fisher [%] 81.9 N/A N/A N/A

Table: `1-Minimization

Dimension 30 56 120 504

Eigen [%] 86.5 91.6 94 96.8Laplacian [%] 87.5 91.7 94 96.5Random [%] 82.6 91.5 95.5 98.1Down [%] 74.6 86.2 92.1 97.1Fisher [%] 86.9 N/A N/A N/A

Ensemble [%] 90.7 94.1 96.4 98.3

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 41: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

AR Database 100 Subjects (Illumination and Expression Variance)

Table: Nearest Neighbor (Left) and Nearest Subspace (Right).

Dimension 30 54 130 540

Eigen [%] 68.1 74.8 79.3 80.5Laplacian [%] 73.1 77.1 83.8 89.7Random [%] 56.7 63.7 71.4 75Down [%] 51.7 60.9 69.2 73.7Fisher [%] 83.4 86.8 N/A N/A

Dimension 30 54 130 540

Eigen [%] 64.1 77.1 82 85.1Laplacian [%] 66 77.5 84.3 90.3Random [%] 59.2 68.2 80 83.3Down [%] 56.2 67.7 77 82.1Fisher [%] 80.3 85.8 N/A N/A

Table: `1-Minimization.

Dimension 30 54 130 540

Eigen [%] 71.1 80 85.7 92Laplacian [%] 73.7 84.7 91 94.3Random [%] 57.8 75.5 87.6 94.7Down [%] 46.8 67 84.6 93.9Fisher [%] 87 92.3 N/A N/A

Ensemble [%] 78.5 85.8 91.2 95

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 42: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Partial Features

Features Nose Right Eye Mouth & ChinDimension 4,270 5,040 12,936

`1-Minimization [%] 87.3 93.7 98.3NS [%] 83.7 78.6 94.4NN [%] 49.2 68.8 72.7

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 43: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

ROC Curves on AR database

Figure: ROC curve on Eigenfaces and AR database.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 44: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang <yang@eecs.berkeley.edu>

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Future Directions

1 Facial occlusion.

2 Pose variations.

3 Action segmentation and recognition.

References

1 Face recognition

http://www.eecs.berkeley.edu/~yang/software/face_recognition/

Feature selection in face recognition: A sparse representation perspective. UC Berkeley Tech ReportUCB/EECS-2007-99.

2 Compressed sensing

Candes, Compressive sampling, 2006.Donoho, For most large underdetermined systems of equations, the minimal `1-norm near-solution approximates thesparsest near-solution, 2004.Donoho, Neighborly polytopes and sparse solution of underdetermined linear equations, 2004.

3 Random projections of smooth manifolds

Baraniuk & Wakin, Random projection of smooth manifolds, 2006.Baraniuk et al., The Johnson-Lindenstrauss lemma meets compressed sensing, 2007.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition