Top Banner
10.1098/rsta.2004.1454 Raman spectroscopy of graphite By Stephanie Reich 1 and Christian Thomsen 2 1 Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK ([email protected]) 2 Institut f¨ ur Festk¨ orperphysik, Technische Universit¨ at Berlin, Hardenbergstr. 36, 10623 Berlin, Germany Published online 14 September 2004 We present a review of the Raman spectra of graphite from an experimental and theoretical point of view. The disorder-induced Raman bands in this material have been a puzzling Raman problem for almost 30 years. Double-resonant Raman scat- tering explains their origin as well as the excitation-energy dependence, the over- tone spectrum and the difference between Stokes and anti-Stokes scattering. We develop the symmetry-imposed selection rules for double-resonant Raman scattering in graphite and point out misassignments in previously published works. An excellent agreement is found between the graphite phonon dispersion from double-resonant Raman scattering and other experimental methods. Keywords: Raman scattering; graphite; phonon dispersion; double-resonant scattering; symmetry 1. Introduction Graphite is one of the longest-known forms of pure carbon and familiar from everyday life. It is built from hexagonal planes of carbon atoms. In ideal graphite these planes are stacked in an ABAB manner. Macroscopic single crystals of graphite do not occur in nature. So-called kish graphite—which is often referred to as a single crystal— consists of many small crystallites (up to 100×100 µm 2 ) which are oriented randomly. Highly oriented pyrolytic graphite (HOPG) is artificially grown graphite with an almost perfect alignment perpendicular to the carbon planes. Along the in-plane directions, however, the crystallites are again small and randomly oriented. The disorder in a graphite sample gives rise to a number of Raman peaks with quite peculiar properties (Tuinstra & Koenig 1970). Vidano et al. (1981) found that the disorder-induced Raman modes depend on the energy of the incoming laser light; their frequencies shift when the laser energy is changed. This puzzling behaviour was shown by Thomsen & Reich (2000) to originate from a double-resonant Raman process close to the K point of the graphite Brillouin zone. For a given incoming laser energy, the double-resonant condition selectively enhances a particular phonon wave vector; the corresponding frequency is then observed experimentally. Double resonances also explain the frequency difference between Stokes and anti- Stokes scattering in graphite (Tan et al. 1998). Particularly interesting is that the One contribution of 13 to a Theme ‘Raman spectroscopy in carbons: from nanotubes to diamond’. Phil. Trans. R. Soc. Lond. A (2004) 362, 2271–2288 2271 c 2004 The Royal Society
18

Raman spectroscopy of graphite

Jun 23, 2023

Download

Documents

Engel Fonseca
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.