Top Banner
Thermodynamic Aspects of Heterogeneous Catalysis Raimund Horn Ways to cope with Thermodynamics!
49

Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

Jun 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

Thermodynamic  Aspects  of  Heterogeneous  Catalysis    

Raimund  Horn  

Ways  to  cope  with  

Thermodynamics!    

Page 2: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

01  

1.   Applica:on  of  the  First  Law  of  Thermodynamics  in  Catalysis  

a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

       

2.   Applica:on  of  the  Second  Law  of  Thermodynamics  in  Catalysis  

a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

b.  Cataly;c  Reactors  for  Thermodynamically  Limited  Reac;ons  

c.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  

Reac;ons  

Outline  

Page 3: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

02  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Example  1:  selec;ve  cataly;c  oxida;on  of  

o-­‐xylene  to  phthalic  anhydride  

Ø  esters  are  used  as  plas;cizers  Ø  4.5  Mio  t/a  

Ø  catalyst  V2O5  

Ø  mul;-­‐tubular  fixed  bed  reactor  

Page 4: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

03  

.

.

o xylene O PSA H O

PSA O CO CO H O

o xylene O CO CO H O

3 3

6 5 2 6 2

9 5 2 6 5

k

k

k

2 2

2 2 2

2 2 2

1

2

3

- + +

+ + +

- + + +

.

.

.

exp

exp

exp

k RT

k RT

k RT

27000 19 84

31400 20 86

28600 18 97

1

2

3

= - +

= - +

= - +

SSS

XXX

[ ]k kg h atmkmol

icat

2$ $=

r k p p

r k p p

r k p p

o xylene O

PSA O

o xylene O

1 1

2 2

3 3

2

2

2

$ $

$ $

$ $

=

=

=

-

-

stoichiometry  and  kine;cs  

.R mol Kcal1 98 $=

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 5: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

04  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

thermodynamic  data  at  reac;on  condi;ons  (220°C):  

species   o-­‐xylene   PSA   CO2   CO   H2O   O2  

hi  /  (kJ/mol)   -­‐0.419   -­‐425.4   -­‐394.0   -­‐110.1   -­‐243.3   8.4  

.c kg KkJ1 089p $=

heat  capacity  of  the  reac;on  mixture  (assumed  constant)  

.

.

o xylene O PSA H O H T kJ mol

PSA O CO CO H O H T kJ mol

o xylene O CO CO H O H T kJ mol

3 3 1235

6 5 2 6 2 2700

9 5 2 6 5 3880

kr in

kr in

kr in

2 2 11

2 2 2 21

2 2 2 31

1

2

3

$

$

$

D

D

D

- + + = -

+ + + = -

- + + + = -

%

%

%

-

-

-

Q Q QV V V

Page 6: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

.

.

( )

.

.

.

tubes

d cm

p atm

kg cat m reactor

T C

m kg h

b g o xylene kg air

M g mol

h W m K

T C

8928

2 5

1 5

1350

220

1 96 10

32 6

29 7

116

343

°

°

tube

reactor

bed

in

inair

ino xylene

in

cooling

cooling

3 1

4 1

1

1

2 1

$

$ $

$

$

$ $

t

=

=

=

=

=

= -

=

=

=

-

-

- -

-

- -

o

r

Q V

05  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

reactor  data  

Page 7: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

06  

Conserva;ons   laws   (species   conserva;on,   energy   conserva;on,   mass  conserva;on,   momentum   conserva;on)   are   always   formulated   for   a  system.  A  system  is  a  certain  amount  of  ma]er  with  mass  m.    

dzdQ h Pdz T Tcool cool= -o Q V

h s m KJ

m KW

cool 2 2$ $ $= =! $

P dtuber=

control  volume  (CV)  

We  define  our  system  as  the  mass  m  that  occupies  the  control  volume  at  this  very  moment  (;me  t0)!  

system at t0

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 8: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

07  

dz

CV  

Because   temperature   and   concentra;ons  will   change   along   the   tube   we   make   the  control   volume   small   (dz)   and   assume  plug  flow   (no   radial   gradients,   no   diffusive  transport  in  flow  direc;on).    

dtdm M dVi

sysi i

CV

~= oS X #

/reactor volume time

consumption production rate of species im smol

i i 3$~ ~= =o o! $r

ri i

j

ij j

bed

1 11

1

1 1

h hgjgh h

~

~

o

o

o

ot=

o

o

J

L

KKKKKKUN

P

OOOOOOZ# & r kg s

molm

kgj

catbed

cat3t= =! !$ $

species  balance  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 9: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

08  

Exercise:  Formulate  the  matrix  of  the  stoichiometric  coefficients  for  our  reac;on  system!      

.

.

o xylene O PSA H O

PSA O CO CO H O

o xylene O CO CO H O

3 3

6 5 2 6 2

9 5 2 6 5

k

k

k

2 2

2 2 2

2 2 2

1

2

3

- + +

+ + +

- + + +

o xylenePSACOCOH OO

123456

2

2

2

= -=====

J

L

KKKKKKKKKKKKKKK

N

P

OOOOOOOOOOOOOOO

Remember:   The  s to i ch iomet r i c  coeffic ients   o f  r e a c t a n t s   a r e  nega;ve,  those  of  products  posi;ve!  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

. .

110033

016226 5

106259 5

o =

-

-

-

-

-

-

J

L

KKKKKKKKKKKKKKK

N

P

OOOOOOOOOOOOOOO

Page 10: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

09  

While  conserva;on  equa;ons  can  only  be  formulated  for  systems,  a  certain  amount  of   ma]er,   a   flowing   system   is   hard   to  track   as   it   leaves   the   control   volume.  While  the  catalyst  stays  in  place,  the  fluid  mass  moves  out  and  breaks  apart.        

The   Reynolds   transport   theorem   relates  the   ;me   rate   of   change   of   an   extensive  property   (e.g.   m,   mi,   p,   E)   in   a   flowing  system   to   a   fixed   control   volume   that  coincides  with  the  system  at  an  instant  in  ;me.  

dtdN

t dV dAv nsystem

CV CS

$22 ht ht= + v vS QX V# #

N  (ext.)   η=N/m  (int.)  

m   1  

mi   yi  p=mv   v  

E   e  

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 11: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

10  

Applying  the  Reynolds  transport  theorem  to  our  species  balance  yields:  

dtdN

t dV dAv nsystem

CV CS

$22 ht ht= + v vS QX V# #dt

dm M dVi

sysi i

CV

~= oS X #

M dV t y dV y dAv ni i

CV

i

CV

i

CS

$22~ t t= + v vQ V# # #

Using   the   Gauss   divergence   theorem,   the   surface   integral   can   be  converted  into  a  volume  integral.   y vitv nv

dA  y dA y dVv n vi

CS

i

CV

$ 4$t t=v v vQ V# #

M dV t y y dVvi i

CV

i i

CV

4$22~ t t= + vQ QV V" %# #

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

miyi

Page 12: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

11  

Let‘s  assume  our  PSA  reactor  operates  at  steady  state:  

M dV t y y dVvi i

CV

i i

CV

4$22~ t t= + vQ QV V" %# # M dV y dVvi i

CV

i

CV

4$~ t= vQ V# #

dz

mo

mo

CV  

Because   we   assumed   no   radial   gradients  (plug  flow)  and  a  vanishingly   small  dz,   the  integrands   in   both   volume   integrals   are  constant.  

y Mvi i i4$ t ~=v

Wri;ng   the   divergence   operator   in  cylindrical  coordinates  yields.  

y zy v

r rry v

ry v

v 1 1i

i z i r

plug flow

i

plug flow0 0

4$ 22

22

22

tt t

it

= + +i

vQ Q QV V V

1 2 344444 44444 1 2 34444 4444 zy v

Mi z

i i22 t

~=Q V

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 13: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

12  

Because   we   assume   steady   state,   mass   conserva;on   tells   us   (same  analysis  as  before  with  m  as  extensive  quan;ty):    

zv

0z

22 t

=Q V

Mass  cannot  be  lost,  so  in  steady  state  the  mass  flux  must  be  the  same  at   every   axial   coordinate   z.   With   this   we   obtain   for   each   species   i   a  simple  ODE  which  can  be  easily  integrated  (e.g.  Runge  Ku]a).  

v zy

Mzi

i i22

t ~=

From  the  mass  frac;ons,  all  other  quan;;es  can  be  calculated.  

numerical  integra;on  ( )y zi

M My

i

i

i

1

=-

r T Y| x y MM

i ii

=r

n My m

ii

i=o

oX n

n no xylene

o xylenein

o xylenein

o xylene=-

--

- -

oo o

S n nn

PSAo xylenein

o xylene

PSA= -- -o oo Y X SPSA o xylene PSA$= -

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

Page 14: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

13  

Before   we   turn   to   the  energy   balance   (first  law  of  thermodynamics)  we  should  ask  ourselves  for   how   many   species  do  we  have  to  solve  the  species  balance.      

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

To   answer   this   ques;on   we   construct   the   Element   Species   Matrix  (ESM).    

1  

2  

3  4  

5  

6  

6   6  

ESMCHO

C H C H O CO CO H O O8100

843

102

101

021

002

8 10 8 4 3 2 2 2

=

R

T

SSSSSSSSSSS

V

X

WWWWWWWWWWW

( )rank ESM 3=

3  key  species  

3  non  key  species  Non  key  species  must  contain  all  elements!  

Page 15: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

14  

Now  we   take   advantage   of   stoichiometry.   Regardless   of   the   reac;ons  taking  place  between  the  species,  no  atoms  can  appear  or  disappear!    

1.a.  Composi;on  and  Temperature  Profiles  in  Cataly;c  Reactors  

ESM n 0$D =o ESM ESMnn

0kc nckkc

nkc

DD

=oo

! #$ &n ESM ESM nnkc kcnkc 1

1D D= - -o o

... .

nnn

nnn

100 5

00 50 25

000 5

8100

843

102

CO

H O

O

C H

C H O

CO

2

2

8 10

8 4 3

2

$ $DDD

DDD

= -- -

ooo

ooo

J

L

KKKKKK

J

L

KKKKKK

N

P

OOOOOO

N

P

OOOOOO

R

T

SSSSSSS

R

T

SSSSSSS

V

X

WWWWWWW

V

X

WWWWWWW

We  only  need  to  solve  three  species  balances  for  the  key  components  o-­‐xylene,  PSA  and  CO2.  The  molar  flow  rates  of  all  reac;ng  species  are  then  obtained  from    

n n ni iin

iD= +o o o

Page 16: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

15  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

The  species  balances  of   the  key  components  cannot  be   integrated  yet  because   ωi(T)   and   we   don‘t   know   the   temperature   profile   of   the  reactor.   Now   thermodynamics   comes   into   play.   Again,   the   1st   law   of  thermodynamics  (conserva;on  of  energy)  can  only  be  formulated  for  a  system,  viz.  a  defined  mass  of  ma]er.    

dtdE

dtdQ

dtdWt = +

1st  law  of  thermodynamics  

v zy

Mzi

i i22

t ~=numerical  integra;on  

( )y zi

The  total  energy  of  a  system  can  only  change  if  heat  flows  into  or  out  of  a  system  or  if  work  is  done  on  or  by  the  system!  

Page 17: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

16  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

The   total   energy  of   the   system   includes   internal,   kine;c  and  poten;al  energy.  

internal  energy    Ø  random  mo;on  Ø  vibra;ons  Ø  rota;ons  Ø  energy  in  bonds  Ø  intermolecular  forces  

mE e u v v g r2

1tt $ $= = + -S Q V X

kine:c  energy  Ø  directed  mo;on  

poten:al  energy    Ø  displacement  of  

system  rela;ve  to  some  reference  plane  

Page 18: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

17  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

If  we  neglect  kine;c  and  poten;al  energy  and  we  assume  again  that  our  system  occupies  our  control  volume  at  this  very  moment  in  ;me  we  can  rewrite  the  1st  law  in  the  following  way:  

dtdE

dtdQ

dtdWt = +

u dA dQ p dAv n v nCS CS

$ $t = -o# #

up

dA dQv nCS

$t t+ = oS X#

h dA dQv nCS

$t = o#

( )up

h enthalpyt+ =

Page 19: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

18  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

In  cataly;c  reactors,  heat  is  in  most  cases   removed   or   added   through  the   reactor  wall.   The   processes   of  heat  transfer  from  the  bed  through  the  wall  and  into  a  cooling  (hea;ng  fluid)   are   rather   complicated.   The  main  resistance  is  on  the  bed  side!  

In  our  simple  1D  plug  flow  model  we  lump  these  complex  processes  into  a   single   heat   transfer   coefficient   hcooling.   This   overall   heat   transfer  coefficient   depends   on   the   packing   (Raschig   rings,   cylinders,   spheres,  split  etc.),  the  flow  condi;ons  inside  the  tube  (gas,  liquid,  flow  velocity  etc.)  and  the  cooling  mechanism  (salt  melt,  boiling  water  etc.).  It  needs  to  be  measured  or  calculated.  

dQ h Pdz T Tcooling cooling= -o Q QV V

Page 20: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

19  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

Applying   the   Gauss   divergence   theorem   we   can   convert   the   surface  integral  into  a  volume  integral.  

h dA h Pdz T Tv nCS

cooling cooling$t = -Q QV V#

h dV h Pdz T TvCV

cooling cooling4$t = -Q QV V#

If  we  make  our  control  volume  differen;ally  small,  the  integrand  will  be  a  constant  and  can  be  taken  out  of  the  integral.  

h dV h V h Pdz T Tv vCV

cooling cooling4$ 4$t t d= = -Q QV V#

Page 21: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

20  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

Wri;ng   the   divergence   in   cylindrical   coordinates,   dropping   the   radial  and  angular   terms   (plug  flow)  and  considering  that   the  total  mass  flux  does  not  change  in  a  cataly;c  reac;on  (ρvz=const)  we  get:      

zhv

r rr hv

rv h

d dz

d dz T T1 1

4

z rcooling

tube

V

tube

P

cooling

0 0

222

22

22t ti r

r+ + = -i

d

Q V6 7 8444 444 M M1 2 34444 4444

h dV h V h Pdz T Tv vCV

cooling cooling4$ 4$t t d= = -Q QV V#

This  equa;on  shows  that  the  enthalpy  of  the  reactant  mixture  does  only  change   by   heat   transfer   through   the   tube   wall.   If   the   reactor   was  adiaba;c  (hcooling=0),  the  enthalpy  of  the  mixture  would  be  constant.  

dzd hv

h d T T4zcooling

tubecooling

t= -

Q QV V

Page 22: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

21  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

The  ODE   derived   above   looks   already  much  more   useful   than   the   1st  law   of   thermodynamics.   However   we   need   to   manipulate   it   a   li]le  further  to  get  an  ODE  that  involves  temperature  as  dependent  variable.  

Let‘s  assume  that  our  reac;on  mixture  behaves  like  an  ideal  gas  (good  assump;on  for  cataly;c  gas  phase  reac;ons  in  many  cases).  The  mass-­‐averaged  mean  proper;es  of  the  reac;on  mixture  are  then  given  by:  

h y h c y c ,i ii

p i p ii

= =| |

v dzdh h d T T4

z coolingtube

coolingt = -Q V

v dzdh v dz

d y h v y dzdh v h dz

dyz z i i

iz i

i

c dT

iz i

i

mole balance

i

,p i

t t t t= = +S XL L

| | |

Page 23: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

22  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

v zy

Mzi

i i22

t ~=v dzdh v y dz

dh v h dzdy

z z ii

c dT

iz i

i

mole balance

i

,p i

t t t= +L L

| |

v dzdh v dz

dT y c h M,z z i p ii

c

i i ii

p

t t ~= +6 7 8444 4444| |

v dzdh h d T T4

z coolingtube

coolingt = -Q VdzdT

v c h d T T h M1 4z p

coolingtube

cooling i i ii

t ~= - -Q V# &|

mole  balance  

heat  balance  

Star;ng  from  the  1st  law  we  derived  an  ODE  that  allows  calcula;ng  the  temperature   profile   of   the   reactor.   It   must   be   solved   numerically  together  with  the  mole  balance  (e.g.  Runge  Ku]a).  

Page 24: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

23  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

S  

T  

X   Y  

Tcool=343°C  

Page 25: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

24  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

S  

T  X  

Y  

Tcool=347°C  

Page 26: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

25  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

S  

T  

X  

Y  

Tcool=354°C  

Page 27: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

26  

1.a.  Temperature  and  Composi;on  Profiles  in  Cataly;c  Reactors  

S  

T  

X  

Y  

Tcool=355°C  

parametric  sensi;vity  

Page 28: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

27  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Example   2:   Calculate   the   maximum   NH3   yield   of   the   Haber-­‐Bosch-­‐Process   for   25°C   ≤   ϑ   ≤   600°C   and   1bar   ≤   p   ≤   500bar!   Assume   a  stoichiometric   feed   and   ideal   gases   for   simplicity   (standard   state  pure  ideal  gas  at  1bar)!  

N g H g NH g21

23

2 2 3E+Q Q QV V VThermodynamic  Data  (CRC  Handbook,  NIST  Chemistry  Webbook  etc.):    

J K molc

A B T C Tp1 1

2

$ $$ $= + +

%

- -

Species   ΔHf°  (298K)  /  kJ⋅mol-­‐1  

S°  (298K)  /  J⋅mol-­‐1⋅K-­‐1  

Cp°  (298K)  /  J⋅mol-­‐1⋅K-­‐1    

A   B  /  10-­‐3  K-­‐1   C  /  10-­‐6  K-­‐2  

N2   0   191.6   24.98   5.912   -­‐0.3376  

H2   0   130.7   29.07   -­‐0.8368   2.012  

 NH3   -­‐45.9   192.8   25.93   32.58   -­‐3.046  

Page 29: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

28  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Species   ΔHf°  (298K)  /  kJ⋅mol-­‐1  

S°  (298K)  /  J⋅mol-­‐1⋅K-­‐1  

Cp°  (298K)  /  J⋅mol-­‐1⋅K-­‐1    

A   B  /  10-­‐3  K-­‐1   C  /  10-­‐6  K-­‐2  

N2   0   191.6   24.98   5.912   -­‐0.3376  

H2   0   130.7   29.07   -­‐0.8368   2.012  

 NH3   -­‐45.9   192.8   25.93   32.58   -­‐3.046  

[ ]

[ ]

( )

73815.298314.8

1037.16expexp

37.161005.9915.2989.45

05.998.19217.130)2/3(6.1912/1

9.45)9.45(10)2/3(02/1

3

3

=⎟⎟⎠

⎞⎜⎜⎝

⋅⋅

⋅⋅⋅=⎟⎟

⎞⎜⎜⎝

⎛ Δ−=

−=⋅

⋅−⋅−−=Δ

⋅−=

⋅⋅+⋅−+⋅−=Δ

−=−⋅+⋅−+⋅−=Δ

KJmolKmolJ

RTGK

molkJ

KmolkJK

molkJG

KmolJ

KmolJS

molkJ

molkJH

lnN g H g NH g G H T S RTG K2

123

2 2 3E D D D D+ = - - =% % %%Q Q QV V V

Page 30: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

29  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

N g H g NH g21

23

2 2 3E+Q Q QV V V

d dn1i

ip o= dn di

n

n

i

0,i

i

0

o p=p

# #

extent of reaction molp p =! $n n ,i i i0 o p= +

Stoichiometry:  

Species   νi   ni0/mol   ni/mol   xi  

N2   -­‐1/2   1/2   1/2-­‐1/2ξ   (1/2-­‐1/2ξ)/(2-­‐ξ)  

H2   -­‐3/2   3/2   3/2-­‐3/2ξ   (3/2-­‐3/2ξ)/(2-­‐ξ)  

 NH3   1   0   ξ   ξ/(2-­‐ξ)  

Σ   2   2-­‐ξ   1  

//

X nn n

n Y X S X1 21 2

,

,

,N

N N

N

N

0

0

0

1

2

2 2

2

2 $o p p

p=-

=-

=- -

= = =Q V K

Y X S X1

$ p= = =K

Page 31: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

30  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Species   νi   ni0/mol   ni/mol   xi  

N2   -­‐1/2   1/2   1/2-­‐1/2ξ   (1/2-­‐1/2ξ)/(2-­‐ξ)  

H2   -­‐3/2   3/2   3/2-­‐3/2ξ   (3/2-­‐3/2ξ)/(2-­‐ξ)  

 NH3   1   0   ξ   ξ/(2-­‐ξ)  

Σ   2   2-­‐ξ   1  

N g H g NH g21

23

2 2 3E+Q Q QV V V

Standard  state  of  a  gas  is  the  ideal  gas  at  1bar  pressure!   p bar1=%

/ / / /K T a

pp

pp

pp

pp

pp

pp

21 2 1 2

23 2 3 2

2/ / / /i

i N H

NH

1 2 3 2

1

1 2 3 2

1

i

2 2

3

pp

pp

pp

= = =

--

--

-

% %

%

% %

%

oQ SSS T Q Q

T QT Q Q

V XXX V V Y

V YV V Y%

Page 32: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

31  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

/ / / /K K

barbar

barbar

barbar

298 738

21 2 1 2

11

23 2 3 2

11

2 11

/ /1 2 3 2

1

pp

pp

pp

= =

--

--

-Q T Q QT Q

T Q QV

V V YV Y

V V YOne  way   of   solving   this   equa;on  is  by  plorng  LHS(ξ)  vs.  RHS(ξ)  and  see   where   the   two   are   equal  (Matlab,  Origin,  Excel  etc.)  

( , )

( , ) .

K bar

Y K bar

298 1

298 1 0 968,

max

maxNH3

p =

=

,K bar298 1

Page 33: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

32  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

( , ) .Y K bar298 1 0 968,maxNH3 =

If  we  could  do  ammonia  synthesis  at  room  temperature,  we  could  reach  nearly   97%   yield   of   ammonia   (next   Nobel   prize   is   certain!).  Unfortunately  thermodynamics  says  nothing  about  the  rate  at  which  a  reac;on  occurs.  Ammonia  synthesis  is  immeasurably  slow  at  298K!  

Page 34: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

33  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Species   ΔHf°  (298K)  /  kJ⋅mol-­‐1  

S°  (298K)  /  J⋅mol-­‐1⋅K-­‐1  

Cp°  (298K)  /  J⋅mol-­‐1⋅K-­‐1    

A   B  /  10-­‐3  K-­‐1   C  /  10-­‐6  K-­‐2  

N2   0   191.6   24.98   5.912   -­‐0.3376  

H2   0   130.7   29.07   -­‐0.8368   2.012  

 NH3   -­‐45.9   192.8   25.93   32.58   -­‐3.046  

.c T A B T C T A A etcp i ii

2$ $ oD D D D D= + + =% Q V |

lnT

KRT

Hp

222 D=

%S X ( )ln lnK T K T RTH T

dTref

T

T

2

ref

D= +

%Q QV V#

H T H T c T dTref p

T

T

ref

D D D= +% % %Q Q QV V V#

Page 35: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

34  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

H T H T A T B T C T A T B T C T2 3 2 3

.

ref ref ref ref

const

2 3 2 3$ $ $ $ $ $D D D D D D D D= - - - + + +% %Q QV V6 7 844444444444444444444444 44444444444444444444444

( )ln lnK T K T RTH T

dTref

T

T

2

ref

D= +

%Q QV V#

.RTH T

RTconst

RTA

RB

RC T2 32 2 $

D D D D= + + +% Q V

H T H T A B T C T dTref

T

T

2

ref

$ $D D D D D= + + +% %Q Q QV V V#

Page 36: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

35  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

( ) .ln lnK T K T RTconst

RTA

RB

RC T dT2 3ref

T

T

2

ref

$D D D= + + + +Q V # &#

( ) .ln ln lnK T K T Rconst

T T RA

TT

RB T T R

C T T1 12 6ref

ref refref ref

2 2D D D= + - + + - + -Q Q QV V V# &

K T K298 738ref = =Q V

/ / / /K T

pp

pp

pp

21 2 1 2

23 2 3 2

2/ /1 2 3 2

1

pp

pp

pp

=

--

--

-

% %

%Q T Q QT Q

T Q QV

V V YV Y

V V Y

We  know  that  

and  that  

so  we  can  calculate  ξ=Ymax  for  the  temperature  and  pressure  range  we  are  interested  in  (see  Matlab  file  on  class  homepage).  

Page 37: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

36  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Ymax

/T K

/p

bar

Maximum  ammonia  yield  as  func;on  of  temperature  and  pressure.  

industrial  condi;ons  750  K,  300  bar  

N g H g NH g21

23 K

2 2 3+Q Q QV V V

Page 38: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

37  

At  high  pressures  gases  are  not  ideal  anymore.  K(T)  is  only  a  func;on  of  T,   but   Kφ   is   not   longer   unity.   This   changes   Kx   and   hence   ξ=Xmax=Ymax.  Because  fugacity  coefficients  need  to  be  calculated  from  an  equa;on  of  state   requiring   in   turn   mole   frac;ons,   an   itera;ve   computa;on   is  required.  

K a x barp1i

ii

i

K

ii

K

i i

x

i

ii${= =o o oo

{

r S X1 2 344 44 1 2 344 44

% % %|

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

ideal  gas  Kφ=1        

eq.  of  state  Kφ        

Ymax,  converged        ξconverged        

Kx   ξ   x  

Page 39: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

38  

K a x barp1i

ii

i

K

ii

K

i i

x

i

ii${= =o o oo

{

r S X1 2 344 44 1 2 344 44

% % %|

450°C  

p  /  bar   10   30   50   100   300   600  

Kφ   0.994   0.975   0.942   0.877   0.688   0.496  

D.   A.   Mc   Quarrie,   J.   D.   Simon,   Physical   Chemistry   -­‐   A  Molecular  Approach  S.  1080  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  a  Single  Reac;on  

Page 40: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

39  

2.b.  Cataly;c  Reactors  for  Thermodynamically  Limited  Reac;ons  

Ammonia  reactors:   Carl  Bosch  

reactor  1913   moderner  NH3  reactor  

Page 41: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

40  

2.b.  Cataly;c  Reactors  for  Thermodynamically  Limited  Reac;ons  

N H NH21

23 K

2 2 3+

Ammonia  reactors  inside:  

Page 42: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

41  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

Example   3:   Calculate   the   equilibrium   composi;on   for  methane   steam  reforming  at  1000K  and  1bar  pressure.  The  reac;on  mixture  consists  of  CH4,   H2O,   CO,   CO2   and   H2.   The   feed   consists   of   n0,CH4=2mol   and  n0,H2O=3mol.  All  gases  can  be  treated  as  ideal  gases.  

Page 43: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

42  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

Theory:   To   calculate   chemical   equilibrium   we   have   to   solve   the  following  minimiza;on  problem:  

The   ni   cannot   vary   independently   of   each   other,   because   we   cannot  loose  or  create  atoms!    

, , . ., minG G n n n n, ,T p i S T p1 2= =Q QV V

a n bki i ki

S

1

==

|number  of  atoms  of  sort  k  in  species  i    

total  mol  of  atoms  of  sort  k  in  the  reac;on  mixture  

We   have   to   perform   the   minimiza;on   of   G   by   accoun;ng   for   k  constraints!    

mol  species  i  

a n b 0ki i ki

S

1

- ==

|constraints:    

Page 44: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

43  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

We  introduce  k  Lagrange  mul;plies:  

a n b 0ki i ki

S

1

- ==

|constraints   Lagrange  mul;pliers    

a n b 0k ki i ki

S

1

m - ==

T Y| a n b 0k ki i ki

S

k

M

11

m - ===

T Y||

L G a n b,T p k ki i ki

S

k

M

11

m= + -==

Q TV Y||Formula;on  of  the  Lagrange  func;on:  

Minimiza;on  of  the  Lagrange  func;on  yields:  

nL

nG a a 0

, , , ,i T p n i T p nk ki

k

M

i k kik

M

1 1j i j i22

22 m n m= + = + =

= == =Y Y

S SX X | |

Page 45: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

44  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

This  translates  into  the  solu;on  of  the  following  system  of  equa;ons:  

lnRT a a

a n b

0

0

i i k kik

M

ki i ki

S1

1

n m+ + =

- =

%

=

=

|

|

S-­‐equa;ons  (one  for  each  species)  

M-­‐equa;ons  (one  for  each  sort  of  atom)  

solve  this  system  of  non-­‐linear  equa;ons  for  the  mole  numbers  of  all  species  and  the  Langrange  mul;pliers  

Spezies   CH4   H2O   CO   CO2   H2  

μi°=ΔGf°  (1000K)  /  J⋅mol-­‐1   19475   -­‐192603   -­‐200281   -­‐395865   0  

We  need  the  chemical  poten;als  of  the  species  in  their  standard  states:  

Page 46: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

O-­‐balance  H-­‐balance  C-­‐balance  

45  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

Let‘s  formulate  the  system  of  equa;ons:  

ln ln

a n b

RT a a RTG

a RT a

a barp

barx p

barx bar x

n

n

0

0 0

1 1 11

,

ki i ki

S

i i k kik

Mf i

ik

kik

M

ii i i

i

ii

Si

1

1 1

1

&

$ $

n mmD

- =

+ + = + + =

= = = = =

%%

=

= =

=

|

| |

|atom  balances  (n0,CH4=2mol,  n0,H2O=3mol,  n0,CO=n0,CO2=n0,H2=0mol)  è    

bC=2mol,  bH=14mol,  bO=3mol  

n n n n n

n n n n n

n n n n n

1 0 1 1 0 2 0

4 2 0 0 2 14 0

0 1 1 2 0 3 0

CH H O CO CO H

CH H O CO CO H

CH H O CO CO H

4 2 2 2

4 2 2 2

4 2 2 2

$ $ $ $ $

$ $ $ $ $

$ $ $ $ $

+ + + + - =

+ + + + - =

+ + + + - =

Page 47: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

46  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

. . .lnn

n8 314 100019475

8 314 1000 8 314 10004 0

ii

CH C H4

$ $ $$m m+ + + =U Z|

. . .lnn

n8 314 1000192603

8 314 10002

8 314 1000 0i

i

H O H O2

$ $$

$m m- + + + =U Z|

. . .lnn

n8 314 1000200281

8 314 1000 8 314 1000 0i

i

CO C O

$ $ $m m- + + + =U Z|

. . .lnn

n8 314 1000395865

8 314 1000 8 314 10002 0

ii

CO C O2

$ $ $$m m- + + + =U Z|

.lnn

n8 314 10002 0

ii

H H2

$$ m+ =U Z|

CH4  

H2O  

CO  

CO2  

H2  

Page 48: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

48  

2.a.  Calcula;ng  Thermodynamic  Equilibrium  for  Mul;ple  Reac;ons  

Solving  this  non-­‐linear  system  of  equa;ons  yields  (e.g.  Matlab  ‚fsolve‘):  ......

n moln moln moln moln mol

n mol

0 1750 8561 5070 3195 7958 651

CH

H O

CO

CO

H

ii

4

2

2

2

======|

.

....

xxxxx

x

0 02020 09900 17420 03680 66981

CH

H O

CO

CO

H

ii

4

2

2

2

======|

E q u i l i b r i u m  composi;on   for  steam   reforming   at  1000K   and   1bar  star;ng   from   2mol  CH4  and  3mol  H2O.  

Ini;al  values  for  the  Langrange  mul;pliers  can  be  guesses  using  physico-­‐chemical  knowledge  that  mole  frac;ons  take  on  values  between  0  and  1:  e.g.  for  xH2=0.5  

.. .ln ln

n

n8 314 10002 0 2

8 314 1000 0 5 2881.

,

ii

Si H with x

H

1

0 50

H2

$$ $ $m

m+ = = - =

=

=U Z|

Page 49: Raimund(Horn( - FHI › acnew › department › pages › ...03.. o xylene O PSA H O PSA O CO CO H O oxylene O CO CO HO 33 65 2 6 2 95 2 6 5 k k k 22 222 222 1 2 3-+ + +++-+ + +...

Thank  you  very  much  for  your  a]en;on!