Top Banner
Janet Anders University of Exeter, UK Quantum Thermodynamics joint work with : Philipp Kammerlander Sai Vinjanampathy Harry Miller …. XXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina
24

Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Oct 25, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Janet Anders University of Exeter, UK

Quantum Thermodynamics

joint work with : Philipp Kammerlander Sai Vinjanampathy Harry Miller ….

XXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina

Page 2: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Lecture overview

I - Work extraction from quantum coherences (long)

III - Thermodynamics beyond the weak coupling limit (long)

II - Maxwell’s demon and his exorcism - experimental evidence (short)

IV - Optional: Non-equilib. temperature of levitated nanospheres (short)

Page 3: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Quantum thermodynamics - Motivation

Thermodynamics ● temperature, work, heat, entropy ● 1st law, 2nd law, 3rd law ● Carnot efficiency, engines

MACROSCOPIC WORLD ● gases, fluids, solids ● pistons and weights

MICROSCOPIC WORLD ● atoms, electrons, photons

Quantum Mechanics ● superpositions ● quantum correlations

1nm/1amu 1m/1kg

photon

atom

bio-molecule

micro-meter resonator

Page 4: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Outline

• Macroscopic quantum superpositions

• Non-equilibrium temperatures of levitated nanospheres

Page 5: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Quantum ground state experiments

How large an object can still be in a quantum superposition state?

Page 6: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Quantum ground state experiments

Nature Com 2, 263 (2011)

bio-molecules with up to 7k AMU

C60

How large an object can still be in a quantum superposition state?

Page 7: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Macroscopic superpositions

Page 8: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Quantum ground state experiments

Optomechanics. Cool mechanical oscillators through interaction with light, e.g. by feedback and cavity cooling.

Page 9: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Light-levitated nano-spheres

silica spheresradius R = 100nm - 10mu

contain 108 - 1018 atoms

laser creates ➤ trap frequencies of 10kHzkBT = ~�

interesting temperature regime: µK

instead of an oscillator connected to an environment by a bridge

➤ use nanospheres that are levitated

trapped nanosphere

Page 10: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

built by Dr J. Millen, recorded by FurnaceTV

Page 11: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Setup and Question

centre of mass motionsurface

Does the CM motion actually have a temperature?

And how to measure the surface temperature?

Aim: cooling to the ground state …

But even without cooling techniques:How does surface (bulk) temperature of sphere affect its CM motion temperature?

Page 12: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Brownian motion position measurements in 2D

if thermal, expect power spectrum

QPD tracks movement in 2D in µs

P (�) =2k

B

TCM

M

�CM

(�2x

� �2)2 + (� �CM)2

underdamped regime:

Page 13: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Increasing laser intensity

expect to find

if thermal, expect power spectrum P (�) =2k

B

TCM

M

�CM

(�2x

� �2)2 + (� �CM)2

underdamped regime:

increases trap frequency

Page 14: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Increasing laser intensity

expect to find

if thermal, expect power spectrum P (�) =2k

B

TCM

M

�CM

(�2x

� �2)2 + (� �CM)2

underdamped regime:

increases trap frequency

find: increased CM temperature

Page 15: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Two temperature model

heating due to absorption from laser

cooling due to blackbody radiation

Troom

T sur > Troom

TCM

Page 16: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Two temperature model

heating due to absorption from laser

cooling due to blackbody radiation

cooling due to collisions with gas particles

Troom

TCM

Timp

Tem

Mx(t) +M(�imp + �emx

) x(t) +M�2x

x(t) = F imp(t) + F emx

(t)Langevin

T sur > Troom

⇡ T sur > Troom

Page 17: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Mx(t) +M(�imp + �emx

) x(t) +M�2x

x(t) = F imp(t) + F emx

(t)

Langevin equation for two baths

Power spectrum

=2k

B

M

T imp �imp + T em �em

(�2x

� �2)2 + �2 (�imp + �em)2.P (�)

assuming that the two baths do not interact hF imp(t)F emx

(t0)i = 0

Knudsen regime

�CM

TCM �CM

�CM(T imp, T em)

how does damping depend on temperatures?

Knudsen number = mean free path/size of objectKn >> 1 fluid mechanics incorrect,

kinetic theory needed

Page 18: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Damping coefficient

1851 Stokes

viscosity of liquidµradius of sphereR

Stokes’ drag force in dense medium

Fd = 6� µR v

Kn << 1

1924 Epstein

Epstein damping in very dilute medium Kn >> 1

Fd =8� + �2

6⇥gas v

imp R2 v

Page 19: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Damping coefficient

1851 Stokes

viscosity of liquidµradius of sphereR

Stokes’ drag force in dense medium

Fd = 6� µR v

Kn << 1

1924 Epstein

Epstein damping in very dilute medium Kn >> 1

Fd =8� + �2

6⇥gas v

imp R2 v

Need to consider the damping of emerging gas at higher temperature

�CM =

1 +

8

rT em

T imp

!�imp

nimpvx

,vy

,vz

nemvx

,vy

,vz

emerging particles

impinging particles

Page 20: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Emerging gas temperature: big spheres

low pressure, medium laser power, big spheres

Parameters:

➤ very strong heating

➤ very large spatial variation

Page 21: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Emerging gas temperature: small spheres

➤ medium heating

➤ no spatial variation

low pressure, high laser power, small spheres

Parameters:

Page 22: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

CM damping as function of Tem

�CM =

1 +

8

rT em

T imp

!�imp

with

�imp =4�

3⇥gas v

imp R2

M

T imp = 294K

= 2� ⇥ 12.1 Hz

➤ fits without any fitting parameter

Page 23: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Leaving from trap

➤ 2.5mu spheres leave trap because they melt!

➤ 105nm spheres leave trap due to a non-temperature related cause, i.e. noise of apparatus

Page 24: Quantum Thermodynamics - qiqfgba.df.uba.arqiqfgba.df.uba.ar/giambiagi2019/BuenosAires19-IV.key.pdfXXI Giambiagi Winter School July 2019 University of Buenos Aires Argentina. Lecture

Summary: Nanosphere temperatures

James Millen Tanapat Deesuwan Peter Barker

Nature Nanotechnology 9:425 (2014)

Nanoscale temperature gradients can be observed.

Future: Exploring underdamped non-equilibrium dynamics and quantum thermodynamics.

Surface temperature of nanoscale objects can be determined by carefully analysing their non-equilibrium dynamics.

Thank you!