Top Banner
Quantum random walks Andre Kochanke Planck-Institute of Quantum Optics 7/27/2011
30

Quantum random walks

Jan 01, 2016

Download

Documents

Robert Page

Quantum random walks. Andre Kochanke. 7/27/2011. Max-Planck-Institute of Quantum Optics. Motivation. Motivation. ?. ?. ?. ?. Overview. Density matrix formalism Randomness in quantum mechanics Transition from classical to quantum walks Experimental realisation. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum  random walks

Quantum random walks

Andre Kochanke

Max-Planck-Institute of Quantum Optics 7/27/2011

Page 2: Quantum  random walks

2

Motivation

a.kochanke
what are we about to hear, so the following slides make sense at allmaybe: start with bean machine and then atom into the machine????gaussian at the bottom! BUT USE BINS
Page 3: Quantum  random walks

Motivation

3

?

??

?

a.kochanke
what are we about to hear, so the following slides make sense at allmaybe: start with bean machine and then atom into the machine????
Page 4: Quantum  random walks

4

Overview

• Density matrix formalismRandomness in quantum mechanics

• Transition from classical to quantum walks

• Experimental realisation

Page 5: Quantum  random walks

5

Density matrix approach

• Two state system 12

12

-1 10

a.kochanke
insert blochspheretrace?
Page 6: Quantum  random walks

6

Density matrix approach

• Two state system

• Density operator

12

12

0-1 1

a.kochanke
insert blochspheretrace?
Page 7: Quantum  random walks

7

Density matrix approach

• Density operator

Pure state Mixed state

12

12

0-1 1

a.kochanke
insert blochspheretrace?
Page 8: Quantum  random walks

8

Galton box

• Binomial distribution

a.kochanke
put in animation of the dots according to the density matrix.
Page 9: Quantum  random walks

9

Galton box

• Statistical mixture

• First four steps

a.kochanke
highlightingmehr matrizen bis lvl 5?
Page 10: Quantum  random walks

10

Quantum analogy

• Used Hilbert space

• Specify subspaces

0-1-2-3 1 2 3

Page 11: Quantum  random walks

11

Quantum analogy

• Evolution with shift and coin operators

0-1-2-3 1 2 3

Page 12: Quantum  random walks

12

Quantum analogy

• Evolution with shift and coin operators

0-1-2-3 1 2 3

Page 13: Quantum  random walks

13

Quantum analogy

• Evolution with shift and coin operators

0-1-2-3 1 2 3

Page 14: Quantum  random walks

14

Quantum analogy

• State transformation

• Density matrix transformation

Page 15: Quantum  random walks

15

Quantum analogy

Page 16: Quantum  random walks

Quantum analogy

16

Position

pc

pq

Variances

pc

pq

pc

pq

Position

Position

100 steps

Page 17: Quantum  random walks

17

• Phase shift• Transformed density matrix

• Average

• Decoherence effect

Decoherence

Page 18: Quantum  random walks

18

Different realisations

• C. A. Ryan et al., “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”, PRA 72, 062317 (2005)

• M. Karski et al., “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009)

• A. Schreiber et al., “Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations”, PRL 104, 050502 (2010)

• F. Zähringer et al., “Realization of a Quantum Walk with One and Two Trapped Ions”, PRL 104, 100503 (2010)

Page 19: Quantum  random walks

19

SetupCCD

Microwave

Dipole trap laser

Objective

Fluorescence picture

Cs

jF = 4;mF =4i

jF = 3;mF =3i

Mic

row

ave

M. Karski et al., Science 325, 174 (2009)

a.kochanke
new pic, focus on the standing wave trap!
Page 20: Quantum  random walks

20

Setup

Polarizations and

Page 21: Quantum  random walks

21

Setup

Polarizations and

Page 22: Quantum  random walks

22

Results

M. Karski et al., Science 325, 174 (2009)

Page 23: Quantum  random walks

23

Results

M. Karski et al., Science 325, 174 (2009)

Theoretical expectation

6 steps

Page 24: Quantum  random walks

24

Results

Theoretical expectationM. Karski et al., Science 325, 174 (2009)

6 steps

Page 25: Quantum  random walks

25

Results

Theoretical expectation

Page 26: Quantum  random walks

26

Results

Theoretical expectationM. Karski et al., Science 325, 174 (2009)

Page 27: Quantum  random walks

27

Results

Gaussian fitM. Karski et al., Science 325, 174 (2009)

Page 28: Quantum  random walks

28

Conclusion

• The density matrix formalism allows you to describe cassical and quantum behavior

• Karski et al. showed how to prepare a quantum walk with delocalized atoms

• The quantum random walk is not random at all

M. Karski et al., Science 325, 174 (2009)

Page 29: Quantum  random walks

29

Page 30: Quantum  random walks

30

References

• C. A. Ryan et al., “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”, PRA 72, 062317 (2005)

• M. Karski et al., “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009)

• SOM for “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009)

• A. Schreiber et al., “Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations”, PRL 104, 050502 (2010)

• F. Zähringer et al., “Realization of a QuantumWalk with One and Two Trapped Ions”, PRL 104, 100503 (2010)

• M. Karksi, „State-selective transport of single neutral atoms”, Dissertation, Bonn (2010)• C. C. Gerry and P. L. Knight, „Introductory Quantum Optics“, Cambridge University Press,

Cambridge (2005)• M. A. Nielsen and I. A. Chuang, „Quantum Computation and Quantum Information“,

Cambridge University Press, Cambridge (2000)