Top Banner
Quantum optical models in noncommutative spaces Sanjib Dey Universite de Montr´ eal & Concordia University Seminar Physique Math´ ematique, September 15, 2015 S. Dey; Phys. Rev. D 91, 044024 (2015), S. Dey, V. Hussin; Phys. Rev. D 91, 124017 (2015) S. Dey, A. Fring, V. Hussin; arxiv: 1506.08901 1 / 25
52

Quantum optical models in noncommutative spaces

Apr 15, 2017

Download

Education

Sanjib Dey
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum optical models in noncommutative spaces

Quantum optical models in noncommutativespaces

Sanjib Dey

Universite de Montreal & Concordia University

Seminar Physique Mathematique, September 15, 2015

S. Dey; Phys. Rev. D 91, 044024 (2015),

S. Dey, V. Hussin; Phys. Rev. D 91, 124017 (2015)

S. Dey, A. Fring, V. Hussin; arxiv: 1506.08901

1 / 25

Page 2: Quantum optical models in noncommutative spaces

Noncommutative spaces

Snyder’s noncommutative space

[xµ, xν ] = iθ (xµpν − xνpµ)

[xµ, pν ] = i~ (δµν + θpµpν)

[pµ, pν ] = 0

Lorentz covarient, but Poincare symmetry is violated [H. S.Snyder; Phys. Rev. 71, 38 (1947)].

Poincare symmetries were deformed to make the algebra compatiblewith Snyder’s version [R. Banerjee, S. Kulkarni, S. Samanta; JHEP2006, 077 (2006)].

Flat noncommutative space

[xµ, xν ] = iθµν , [xµ, pν ] = i~δµν and [pµ, pν ] = 0

θµν is constant antisymmetric tensor, which breaks Lorentz-Poincaresymmetry [N. Seiberg, E. Witten; JHEP 1999, 032 (1999)].

2 / 25

Page 3: Quantum optical models in noncommutative spaces

q-deformed noncommutative spaces

Deformed oscillator algebras in 3D

AiA†j − q2δijA†jAi = δij ,

[A†i ,A

†j

]= [Ai ,Aj ] = 0, q ∈ R

The limit q → 1 gives standard Fock space Ai → ai :[ai , a

†j

]= δij , [ai , aj ] =

[a†i , a

†j

]= 0.

Consider X = α(A†+A

)and P = iβ

(A†−A

), α, β ∈ R,

Deformed canonical commutation relation:

[X ,P] =4iαβ

1 + q2

[1 +

q2 − 1

4

(X 2

α2+

P2

β2

)]Constraints =⇒ α = ~

2β , q = e2τβ2, τ ∈ R+

Non-trivial limit β → 0

3 / 25

Page 4: Quantum optical models in noncommutative spaces

Physical consequences

[X ,P] = i~(1 + τP2

)Generalised uncertainty relation:

∆X∆P ≥ 1

2

∣∣∣ 〈[X ,P]〉∣∣∣

≥ ~2

[1 + τ (∆P)2 + τ〈P〉2

]

Standard case: [X ,P] = Constant; give up knowledge aboutP, for ∆X = 0

Noncommutative case: [X ,P] ≈ P2; give up knowledge alsoabout P, for ∆X 6= 0

4 / 25

Page 5: Quantum optical models in noncommutative spaces

Minimal lengths, areas and volumes

Minimal length

∆Xmin = ~√τ√

1 + τ〈P2〉,

from minimizing with (∆X )2 = 〈X 2〉 − 〈X 〉2[B. Bagchi, A. Fring; Phys. Lett. A 373, 4307–4310 (2009)]

2D&3D-versions are more complicated and lead to “minimal areas”and “minimal volumes” [S. Dey, A. Fring, L. Gouba; J. Phys. A:Math. Theor. 45, 385302 (2012)]

Hermitian representation of X = α(A† + A),P = iβ(A† − A):

A =i√

1− q2

(e−i x − e−i x/2e2τ p

), A† =

−i√1− q2

(e i x − e2τ pe i x/2

)with x = x

√mω/~ and p = p/

√mω~ , [x , p] = i~

X † = X , P† = P for q < 1PT : x → −x , p → p, i → −i

5 / 25

Page 6: Quantum optical models in noncommutative spaces

Why is Hermiticity a good property to have?

Hermiticity of H ensures real eigenvalues, Hψ = Eψ

〈ψ|H|ψ〉 = E 〈ψ|ψ〉〈ψ|H†|ψ〉 = E ∗〈ψ|ψ〉

}= 0 = (E − E ∗)〈ψ|ψ〉

Hermiticity ensures conservation of probability densities

|ψ(t)〉 = e−iHt |ψ(0)〉

〈ψ(t)|ψ(t)〉 =〈ψ(0)|e iH†te−iHt |ψ(0)〉 = 〈ψ(0)|ψ(0)〉

Hermiticity is not essential:Operators O which are left invariant under an antilinear involutionI and whose eigenfunctions φ also respect this symmetry,

[O, I] = 0 ∧ Iφ = φ,

have real eigenvalues [E. Wigner; J. Math. Phys. 1, 409 (1960)]6 / 25

Page 7: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :

εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 8: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :

εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 9: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :

εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 10: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :

εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 11: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ

= HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 12: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ

= PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 13: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ = PT HΦ

= PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 14: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ

= ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 15: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ

= ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 16: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 17: Quantum optical models in noncommutative spaces

PT -symmetry (an example)

Unbroken PT -symmetry guarantees real eigenvalues

PT -symmetry: PT : x → −x p → p i → −i(P : x → −x , p → −p; T : x → x , p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

-PT-symmetry is only an example of an antilinear involution

7 / 25

Page 18: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metric

Proof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉

= 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 19: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉

= 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 20: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉

= 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 21: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉

=

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 22: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉

= 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 23: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉

= 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 24: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉

= 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 25: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉

= 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 26: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉

= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 27: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 28: Quantum optical models in noncommutative spaces

Pseudo-Hermiticity

H is Hermitian with respect to a new metric

∗ Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metricProof :

〈Ψ|HΦ〉η = 〈Ψ|η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ|ηHη−1φ〉 =

〈ψ|hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ〉= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal

M. Froissart; Nuovo Cim. 14, 197 (1959)

A. Mostafazadeh; J. Math. Phys. 43, 2814 (2002)8 / 25

Page 29: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 30: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 31: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 32: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A

= f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 33: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n)

= f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 34: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a

∼ f 2(n)n = En

9 / 25

Page 35: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n

= En

9 / 25

Page 36: Quantum optical models in noncommutative spaces

Coherent states

Glauber coherent states:

a|α〉 = α|α〉 or |α〉 = D(α)|0〉, D(α) = eαa†−α∗a

⇒ |α〉 =1

N (α)

∞∑n=0

αn

√n!|n〉, α ∈ C

⇒ Very close to classical objects

Nonlinear coherent states:

(a, a†)⇒ (A,A†) :

{A = af (n) = f (n + 1)aA† = f (n)a† = a†f (n + 1)

A|α, f 〉 = α|α, f 〉 ⇒ |α, f 〉 =1

N (α, f )

∞∑n=0

αn

√n!f (n)!

|n〉

f (n) can be associated with the eigenvalues of a Hamiltonian

H ∼ A†A = f (n)a†af (n) = f 2(n)a†a ∼ f 2(n)n = En

9 / 25

Page 37: Quantum optical models in noncommutative spaces

1D perturbative noncommutative harmonic oscillator

H =P2

2m+

mω2

2X 2 − ~ω

(1

2+τ

4

),

defined on the noncommutative space

[X ,P] = i~(1 + τP2

), X = (1 + τp2)x , P = p

Reality of spectrum, h = ηHη−1, with η = (1 + τp2)−1/2

h =p2

2m+

mω2x2

2+ωτ

4~(x2p2 + p2x2 + 2xp2x)− ~ω

(1

2+τ

4

)+O(τ2)

Eigenvalues and eigenfunctions:

En = ~ωen = ~ωn[1 +

τ

2(1 + n)

]+O(τ2)

|φn〉 = |n〉 − τ

16

√(n − 3)4 |n − 4〉+

τ

16

√(n + 1)4 |n + 4〉+O(τ2)

Pochhammer function (x)n := Γ(x + n)/Γ(x)

10 / 25

Page 38: Quantum optical models in noncommutative spaces

Nonlinear coherent states as superposition of Fock states:

|α, f 〉 =1

N (α, f )

∞∑n=0

C(α, n)√n!f (n)!

|n〉

C(α, n) =

{αn − τ

16αn+4 f (n)!

f (n+4)! , 0 ≤ n ≤ 3

αn − τ16α

n+4 f (n)!f (n+4)! + τ

16αn−4 n!

(n−4)!f (n)!

f (n−4)! , n ≥ 4

Uncertainties of X = (A + A†)/√

2, Y = i(A† − A)/√

2:

(∆X )2 = R + τ

(1

4+|α|2

2

), (∆Y )2 = R − τ

(1

4+|α|2

2

)R =

1

2

∣∣〈α, f |[X ,Y ]|α, f 〉η∣∣ =

1

4

[2 + τ − τ(α− α∗)2

]Generalised Uncertainty Relation:

∆X∆Y ≥ 1

2

∣∣〈α, f |[X ,Y ]|α, f 〉η∣∣

∗ ∆X∆Y = R, with Y being squeezed ⇒ ideal squeezed state11 / 25

Page 39: Quantum optical models in noncommutative spaces

Photon number squeezing

Number squeezing ⇒ photon number distribution is narrowerthan the average number of photons, (∆n)2 < 〈n〉Mandel parameter:

Q =(∆N)2

〈N〉− 1 = −τ |α|

2

2

In the limit τ = 0, Q = 0 (ordinary harmonic oscillator)

Coherent states for NCHO⇓

Quadrature squeezed+

Photon number squeezed⇓

Nonclassical

12 / 25

Page 40: Quantum optical models in noncommutative spaces

Quantum beam splitter

Input: X → a, Y → b,Output: W : c → BaB†, Z : d → BbB†, [c , c†] = [d , d†] = 1

B = eθ2

(a†be iφ−ab†e−iφ) ⇐ Beam splitter operator

Output states are entangled, when at least one of the input statesis nonclassical

13 / 25

Page 41: Quantum optical models in noncommutative spaces

Entanglement measureFock state |n〉 at input X and vacuum state |0〉 at input Y :

B|n〉X |0〉Y =n∑

q=0

(nq

)1/2

tqrn−q |q〉W |n − q〉Z

Noncommutative coherent states at input X and vacuum at Y :

|out〉 = B|α, f 〉X |0〉Y =1

N (α, f )

∞∑n=0

C(α, n)√n!f (n)!

B|n〉X |0〉Y

=1

N (α, f )

∞∑q=0

∞−q∑m=0

C(α,m + q)√m!q!f (m + q)!

tqrm |q〉W |m〉Z

Partial trace: ρA =

1

N 2(α, f )

∞∑q=0

∞∑s=0

∞−max(q,s)∑m=0

C(α, ζ,m + q)C∗(α, ζ,m + s)

m!√q!s!f (m + q)!f (m + s)!

tqts |r |2m |q〉〈s|

14 / 25

Page 42: Quantum optical models in noncommutative spaces

Linear entropy

S = 1− Tr(ρ2A)

= 1− 1

N 4(α, f )

∞∑q=0

∞∑s=0

∞−max(q,s)∑m=0

∞−max(q,s)∑n=0

|t|2(q+s)|r |2(m+n)

× C(α,m + q)C∗(α,m + s)C(α, n + s)C∗(α, n + q)

q!s!m!n!f (m + q)!f (m + s)!f (n + s)!f (n + q)!

τ = 2.0 (a)

τ = 0.6

τ = 1.5

τ = 1.0

0.5 1.0 1.5α

0.1

0.2

0.3

0.4

Entropy S

15 / 25

Page 43: Quantum optical models in noncommutative spaces

Schrodinger cat states

|α, f 〉± =1

N (α, f )±

(|α, f 〉 ± | − α, f 〉

)with

N 2(α, f )± = 2± 2

N 2(α, f )

∞∑k=0

(−1)k |α|2k

n!f 2(n)!

Uncertainties:

(∆X )2± = R±+U±, (∆Y )2

± = R±− U± R± ⇒ RHS of GUR

with U+ =

α2 + α∗2

2+|α|2 tanh(|α|2)+

τ

4

[1−(α2−α∗2)2+2|α|2 tanh(|α|2)− 4|α|4

cosh2(|α|2)

]Quadrature Y is squeezed for even and odd cat states!!

16 / 25

Page 44: Quantum optical models in noncommutative spaces

Quadrature squeezing and photon distribution function

0 2 4 6 8 1 0 1 2 1 40 . 0

0 . 1

0 . 2

0 . 3

0 . 4 C o h e r e n t E v e n c a t

P(n)

n

( a )

8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 00 . 0

5 . 0 x 1 0 4 7

1 . 0 x 1 0 4 8

1 . 5 x 1 0 4 8

2 . 0 x 1 0 4 8

2 . 5 x 1 0 4 8

3 . 0 x 1 0 4 8

C o h e r e n t O d d c a t

P(n)

n

( b )

17 / 25

Page 45: Quantum optical models in noncommutative spaces

Photon number squeezing

18 / 25

Page 46: Quantum optical models in noncommutative spaces

Entanglement

NCHO

HO (a)

0.5 1.0 1.5α

0.1

0.2

0.3

0.4

0.5

0.6

Entropy (S+ )

NCHO

HO

(a)

0.5 1.0 1.5α

0.2

0.4

0.6

Entropy (S- )

19 / 25

Page 47: Quantum optical models in noncommutative spaces

Coherent states

Classicality Nonclassicality

Ordinary HO X ×Noncommutative HO × X

Even cat states

Quadrature squeezing Number squeezing

Ordinary × ×Noncommutative X X

Odd cat states

Quadrature squeezing Number squeezing

Ordinary × XNoncommutative × X

Order of squeezing and/or nonclassicality is/are higher for NCHO

20 / 25

Page 48: Quantum optical models in noncommutative spaces

Squeezed states

|α, ζ〉 = D(α)S(ζ)|0〉, D(α) = eαa†−α∗a, S(ζ) = e

12

(ζa†a†−ζ∗aa)

21 / 25

Page 49: Quantum optical models in noncommutative spaces

Alternative definition of squeezed states:

(A + ζA†)|α, f , ζ〉 = α|α, f , ζ〉, α, ζ ∈ C, |ζ| < 1

Consider:

|α, f , ζ〉 =1

N (α, f , ζ)

∞∑n=0

I(α, ζ, n)√n!f (n)!

|n〉

Eigenvalue equation definition yields

I(α, ζ, n + 1) = α I(α, ζ, n)− ζ nf 2(n) I(α, ζ, n − 1)

Special case: f (n) = 1 ⇒ squeezed states of ordinary HO:

|α, ζ〉ho =1

N (α, ζ)

∞∑n=0

1√n!

(ζ2

)n/2Hn(

α√2ζ

)|n〉

22 / 25

Page 50: Quantum optical models in noncommutative spaces

Noncommutative squeezed states

|α, ζ〉 =1

N (α, ζ)

∞∑n=0

I(α, ζ, n)√n!f (n)!

|φn〉

=1

N (α, ζ)

∞∑n=0

S(α, ζ, n)√n!f (n)!

|n〉,

where S(α, ζ, n) ={I(α, ζ, n)− τ

16f (n)!

f (n+4)!I(α, ζ, n + 4), 0 ≤ n ≤ 3

I(α, ζ, n)− τ16

f (n)!f (n+4)!I(α, ζ, n + 4) + τ

16n!

(n−4)!f (n)!

f (n−4)!I(α, ζ, n − 4), n ≥ 4

and

I(α, ζ, n) = in (ζB)n/2

(1 +

A

B

)(n)

2F1

[− n,

1

2+

A

2B+

2√ζB

; 1 +A

B; 2

]

23 / 25

Page 51: Quantum optical models in noncommutative spaces

Entangled noncommutative squeezed states

NCHO

HO

(a)

1 2 3 4α

0.1

0.2

0.3

0.4

0.5

0.6

Entropy S

NCHO

HO

(b)

1 2 3 4α

0.05

0.10

0.15

Entropy S

24 / 25

Page 52: Quantum optical models in noncommutative spaces

Conclusions

Coherent states in noncommutative spaces are nonclassical

Noncommutative cat states are found to be more nonclassicalthan the ordinary case

Noncommutative squeezed states are more entangled than theHO squeezed states

Thank you for your attention

25 / 25