Top Banner
Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy Introduction to Quantum Dynamics: Solving the Time-Dependent Schrödinger Equation Graham Worth Dept. of Chemistry, University College London, U.K. 1 / 30 Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy Dynamical phenomena are described by the Time-Dependent Schrödinger Equation i ~ t Ψ(R, r, t )= ˆ H Ψ(R, r, t ) (1) A wavepacket evolves in time driven by the Hamiltonian Ψ(q, t )= X i c i ψ i e - i ~ E i t (2) where ψ i are the eigenfunctions of the Hamiltonian D.J. Tannor “Introduction to Quantum Mechanics: A Time-Dependent Perspective” (2007) University Science Books http://www.weizmann.ac.il/chemphys/tannor/Book/ G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics” (2004) Oxford K.C. Kulander “Time-dependent methods for quantum dynamics” (1991) Elsevier 2 / 30
15

Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Jun 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Introduction to Quantum Dynamics:Solving the Time-Dependent Schrödinger Equation

Graham Worth

Dept. of Chemistry, University College London, U.K.

1 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Dynamical phenomena are described by theTime-Dependent Schrödinger Equation

i~∂

∂tΨ(R, r, t) = HΨ(R, r, t) (1)

A wavepacket evolves in time driven by the Hamiltonian

Ψ(q, t) =∑

i

ciψie−i~ Ei t (2)

where ψi are the eigenfunctions of the Hamiltonian

• D.J. Tannor “Introduction to Quantum Mechanics: A Time-DependentPerspective” (2007) University Science Bookshttp://www.weizmann.ac.il/chemphys/tannor/Book/

• G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover

• P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics” (2004) Oxford

• K.C. Kulander “Time-dependent methods for quantum dynamics” (1991) Elsevier

2 / 30

Page 2: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Aim of lectures:

• Introduce Chemical Dynamics• Molecular Beams (scattering)• Time-resolved spectroscopy (femtochemistry)

• The Time-dependent Schr"odinger Equation (TDSE)• Born-Oppenheimer Approximation.• Adiabatic and Diabatic Pictures

• Techniques used to solve TDSE numerically• What is possible (bottlenecks / restrictions)

3 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Molecular Beams and ScatteringCollimated beams of reactants intersect at right angles in highvacuum (> 10−7 Torr)

VelocityDistribution

Angular Distribution

Source A

Source BCrossedMolecularBeams

Single collision (if any) occurs in crossing zone.

4 / 30

Page 3: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Collisions may result in 3 types of scattering:

• Elastic – Translational ∆EA + BC(ν, J) −→ A + BC(ν, J)

• Inelastic – Rotational / vibrational ∆EA + BC(ν, J) −→ A + BC(ν′, J′)

• Reactive – New chemical productsA + BC(ν, J) −→ AB(ν′, J′) +C

Must be able to distinguish new products from the background ofelastic / inelastic scattered reactants. Implies sensitive and selectivedetector

• Time-of-flight mass spectrometer (TOF)• “universal detector”• velocity and product identification

• specific rotational / vibrational states probed by laser

5 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

The Cross-section

Differential cross-section, dσcdω , is

effective target size as a functionof scattering angle.

σc =

∫ 2π

0dθ∫ π

0dφ

dσc

Not every collision results in reac-tion Reaction cross-section

σr < σc

b – impact parameterR, θ – coordinatesCollision cross-section, σc , iseffective target size.

Expect a minimum trans-lation energy for reaction

6 / 30

Page 4: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Example: F + D2 −→ DF + DDifferential cross section at a relativeenergy of 1.82 kcal mol−1 shows prob-ability of DF appearing at angle Θ

and velocities (distance from scatteringcentre).

Θ = 180◦ initial direction of F beam

• Contour map inhomogenous:Preferential orientations.

• Mostly back scattered⇒ head-on.

• All collisions have samerelative velocities (kineticenergies). Each reactionreleases same energy,distributed betweentranslational and internal(vib-rot)

• Higher vibration⇒slower recoil

7 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

F + H2 Potential Surfaces

Product is hot with populated high vibrational states.Infrared chemiluminescence results – emission due to excited statesgenerated in chemical reaction

8 / 30

Page 5: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

H + H2 −→ H2 + H

Simplest “Reaction”

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5

�T=300K �=0;1[� A2 ]Etrans

ν = 1

ν = 0

Reaction Cross-section(probability) for H + D2

0.5 0.75 1 1.25 1.5 1.75

Energy [eV]

0

0.2

0.4

0.6

0.8

1

Rea

ctio

n P

roba

bili

ty0.8 1 1.2 1.4 1.6 1.8 2

Energy [eV]

0

0.1

0.2

0.3

0.4

0.5

Rea

ctio

n P

roba

bili

ty

ν = 0→ ν = 0

~ω = 0.27eV

ν = 1→ ν = 1

~ω = 0.79eV

State-to-state cross-sectionsH + H2

9 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Pump-Probe Experiments: Femtochemistry

10 / 30

Page 6: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Ultrafast molecular vibrations are the fundamental motions thatcharacterize chemical bonding and determine molecular dynamics atthe molecular level.

Typical periods of motion: Vibrational ∼ 100 fs (1 fs = 10−15 s)Rotational ∼ 100 ps (1 ps = 10−12 s)

Short (femtosecond) laser pulses allow us to “watch” the molecularmotion

Basic scheme:

1. pump laser pulse starts reaction2. probe laser pulse probes molecules as reaction proceeds3. Detection of probe signal

11 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Transient Spectra for NaI dissociation

NaI∗ −→ [Na · · · I]‡∗ −→ Na + I

Pump constant, change probe • (c) is resonant with Na D-lines

• step-wise escape of Na• non-resonant same frequency

• trapped portion ofwavepacket

• T = 1.2 ps

12 / 30

Page 7: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Energetics described by the covalent (NaI) and ionic (Na+I−) potentialenergy curves which cross at an internuclear distance RC

Non-adiabatic (2 interactingstates).

• In adiabatic picturecurves do not cross

• If system isadiabatic,bound-state

• In diabatic picture curvescross

• If system is diabatic,dissociation

Which it is depends on cou-pling between states.

13 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Time-resolved study - Rhodopsin

• Initial excitation - HOOPmode

• after 50 fs S1 −→ S2

• energy −→ HT

Kukura et al Science 310: 1006 (2005)

14 / 30

Page 8: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

The Time-Dependent Schrödinger Equation

i~∂

∂tΨ(R, r, t) = HΨ(R, r, t) (3)

If the Hamiltonian is time-independent, formal solution

Ψ(t) = exp(−iHt

)Ψ(0) (4)

Further, if we can write

Ψ(x , t) = Ψi (x)e−iωi t (5)

theni~∂

∂tΨ(x , t) = ~ωi Ψi (x)e−iωi t (6)

by comparison with the TDSE, Ψi are solutions to thetime-independent Schrödinger equation

HΨi = Ei Ψi = ~ωi Ψi (7)

Phase factor

&%'$�

���

15 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Ψi is a Stationary State as expectation values (properties) aretime-independent

〈O〉 = 〈Ψi |O|Ψi〉eiωi te−iωi t = 〈Ψi |O|Ψi〉 (8)

If wavefunction is a superposition of stationary states,

χ(x , t) =∑

i

ci Ψi (x)e−iωi t (9)

now,〈O〉(t) = −i~

∑i

∑j

c∗i cj〈Ψi |O|Ψj〉ei(ωi−ωj )t (10)

An expectation value changes with time and depends on the initialfunction (ci coefficients).

A non-stationary wavefunction is called a WAVEPACKET.

16 / 30

Page 9: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Free Particle

The functionsΨk = eikxe−i E

~ t

represent a particle with an exact momentum

pΨk = −i~ddx

Ψk = k~Ψk

But, particle is not localised. Take a superposition

χ(x , t) =

∫ ∞−∞

dk C(k)Ψk (x , t)

where C(k) is a suitable function

17 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

E.g. Form a Gaussian wavepacket

C(k) = N exp[−a2(k − k0)2

2

]

χ(x , t) = N0eiγ exp[−x − x0(t)x0(t)

2a2δ+ ik0x

]where

x0(t) =~k0tm

so wavepacket moves to right with velocity ~k0m .

The functions Ψk form a basis sutiable to describe free motion.

18 / 30

Page 10: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Further, width of density, < x2 > − < x >2, is

∆(t) = a[

(ln 2)

(1 +

~2t2

m2a4

)] 12

and as time increases. packet spreads out.

t0

t0 + ∆t

k0~

k0~

19 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Bound Motion

E

12~ω

32~ω

52~ω

H = − ~2

2m∂2

∂x2 + 12 mω2x2

Ψ0 = N0e−12

mω2~ x2

Ψ1 = N1

√mω2

~xe−

12

mω2~ x2

Ψ2 = N2

(4

mω2

~x2 − 2

)e−

12

mω2~ x2

The functions Ψk form a basis su-tiable to describe bound motion.

χ(x , t) =∑

i

ci (t)Ψi (x , t)

20 / 30

Page 11: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

The Born-Oppenheimer Approximation

Start using Born representation

Ψ(q, r) =∑

i

χi (q)Φi (r; q) , (11)

where electronic functions are solutions to clamped nucleusHamiltonian

HelΦi (r; q) = Vi (R)Φi (r; q) . (12)

The full Hamiltonian is

H(q, r) = Tn(q) + Hel(q, r) , (13)

Integrate out electronic degrees of freedom to obtain[− 1

2M(∇1 + F)2 + V

]χ = i~

∂χ

∂t, (14)

21 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

The Adiabatic Picture

whereFij = 〈Φi |∇Φj〉 (15)

is the derivative coupling vector

Assuming FM ≈ 0 [

Tn + V]χ = i~

∂χ

∂t(16)

and nuclei move over a single adiabatic potential energy surface, V ,which can be obtained from quantum chemistry calculations.

Unfortunately,

Fij =〈Φi |

(∇Hel

)| Φj〉

Vj − Vifor i 6= j . (17)

22 / 30

Page 12: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

The Diabatic Picture

First we separate out a group of coupled states from the rest[(Tn1(g) + F(g))2 + V(g)

]χ(g) = i~

∂χ(g)

∂t, (18)

To remove singularities, find a suitable unitary transformation

Φ = S(q)Φ (19)

such that the Hamiltonian can be written

[TN1 + W]χ = i~∂χ

∂t, (20)

where all elements of W are potential-like terms

Worth and Cederbaum Ann. Rev. Phys. Chem. (2004) 55: 127

23 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

• Result 1: Electronic motion contained in potential energysurfaces which can be calculated using quantum chemistry

• Problem 1: Potential surfaces are calculated in the adiabaticpicture. Dynamics run in the diabatic picture

Solution is to diabatise adiabatic surfaces for the dynamics.Non-trivial.

24 / 30

Page 13: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Conical Intersections

Butatriene Radical Cation

θ (deg)

V [e

V]

FC

CoIn

Amin •

Xmin

• TS

-2 -1 0 1 2 3 4 Q14 -90-60

-300

3060

90

8.5

9

9.5

10

10.5

11

C C C

H

H

C

H

H

Adiabatic

Diabatic

-90-60

-30 0

30 60

90

-2 -1 0 1 2 3 4

8.5

9

9.5

10

10.5

11

V [e

V]

θ

Q14

25 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Coordinates: The Kinetic Energy OperatorIn Cartesian coordinates,

T =N∑

i=1

− 12mi

3∑α=1

∂2

∂x2iα

(21)

This includes COM and ROT - continua. To remove thesecontributions use, e.g. Jacobi coordinates

r

R

θ

B

C

A

QQQQQQ

QQQQQQQQ

Sukiasyan and MeyerJCP (02) : 116

T = − 12µRR2

∂2

∂R2 −1

2µr r2∂2

∂r2

+(1

2µRR2 +1

2µr r2 )j2

− 12µRR2 (J(J + 1)− 2K 2)

− 12µRR2

√(J(J + 1)− K (K ± 1)j±

(22)

26 / 30

Page 14: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

6 Dimensional Jacobi Coordinates

2T = −3∑

i=1

1µiRi

∂2

∂R2i

Ri + (1

µ1R21

+1

µ3R23

)(~L†1~L1)BF

+(1

µ2R22

+1

µ3R23

)(~L†2~L2)BF

+(~J2 − 2~J(~L1 + ~L2) + 2~L1

~L2)BF

µ3R23

. (23)

Gatti et al JCP (05) 123: 174311

Other coordinates: Hyperspherical, Radau, ....

27 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Normal modesFinal example, choose rectilinear coordinates so that force constantmatrix (Hessian) is diagonal,

Wij =∂2V∂xi∂xj

(24)

then expanding around the minimum on the potential surface

V =3N−6∑

i=1

ωi

2Q2

i + O(3) (25)

COM and ROT removed and

T =3N−6∑

i=1

−ωi

2∂2

∂Q2i

(26)

Very simple, but PES only suitable for small displacements.

Wilson, Cross and Decius “Molecular Vibrations” (1980) Dover

28 / 30

Page 15: Quantum Dynamics I - University of Warwick...G. C. Schatz and M.A. Ratner “Quantum mechanics in chemistry” (2002) Dover P.W. Atkins and R.S. Friedman “Molecular Quantum Mechanics”

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

• Result 2: Can select coordinates so that COM (and some ROT)motion removed and KEO has a simple form.

• Problem 2: In general, simple KEO coordinates are not optimalfor PES representation.

In general, simple KEO coordinates are not optimal for PESrepresentation and vice versa

29 / 30

Introduction Scattering Femtochemistry Potential Energy Surfaces Adiabatic / Diabatic Kinetic Energy

Summary• Chemical physics is study of molecular interactions and resulting

dynamics• Molecular beam scattering experiments provide details of

interactions on ground-state• Cross-section relates to probability of process, e.g. reaction,

occuring• Femtochemistry experiments probe dynamics on excited surface

• pump-probe experiments create and watch wavepacket

• Initialisation of a reaction creates a wavepacket, a solution of theTDSE

• Starting point to solving the TDSE is the Born-OppenheimerApproximation• Nuclear / electronic coupling leads to breakdown of BO• Adiabatic and Diabatic Pictures

• To solve TDSE need H: PES + KEO30 / 30