Top Banner
1 Franck ARTZNER Institut de Physique de Rennes UMR CNRS 6251 Université Rennes 1 Auto-assemblages bio-inspirés : peut-on fabriquer sans effort des structures complexes avec une précision sub-nanométriques ? Journée "Nanosciences pour l’énergie" Auto-assemblages bio-inspirés : peut-on fabriquer des structures complexes avec une précision sub-nanométriques ? - Introduction + Exemple d’enjeux de la précision sub-nanométrique + Intérêts des auto-assemblages biologiques - Deux mécanismes d’auto-assemblages : + Contrôle du diamètre de nanotubes de silice + Cristallisation de nanoparticules Quantum Dots : QDs λ émission d = 2 nm r Fluorescent semi-conductor nanocrystal d = 6 nm d Shell (ZnS) Core (CdSe) Hydrophobic Ligands VB CB Noginov, Nature 2009 Some nanostructures… with well defined lengths Spaser effect quenching no coupling Resonance : d optimum d d d LPN Fedotov, PRL 2010 Some nanostructures… with well defined lengths Purcell effect Coherence High Accuracy (<1nm) is required Tobacco Mosaic Virus (TMV) Self-assembly Self-assembly of 2130 proteins - Monodisperse (length, diameter) - Spontaneous self-assembly - Reproducibility - Parallel Processes - Triggering
9

Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

Aug 19, 2019

Download

Documents

voxuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

1

Franck ARTZNERInstitut de Physique de Rennes

UMR CNRS 6251Université Rennes 1

Auto-assemblages bio-inspirés : peut-on fabriquer sans effort des structures complexes avec une

précision sub-nanométriques ?

Journée "Nanosciences pour l’énergie" Auto-assemblages bio-inspirés : peut-on fabriquer des structures complexes

avec une précision sub-nanométriques ?

- Introduction+ Exemple d’enjeux de la précision sub-nanométrique+ Intérêts des auto-assemblages biologiques

- Deux mécanismes d’auto-assemblages :+ Contrôle du diamètre de nanotubes de silice+ Cristallisation de nanoparticules

Quantum Dots : QDs

λémission

d = 2 nm

r

Fluorescent semi-conductor nanocrystal

d = 6 nm

d

Shell (ZnS) Core (CdSe)

HydrophobicLigands

VB

CB

Noginov, Nature 2009

Some nanostructures…with well defined lengths

Spasereffect

quenching no couplingResonance :doptimum

d d d

LPNFedotov, PRL 2010

Some nanostructures…with well defined lengths

Purcell effect

Coherence

High Accuracy (<1nm) is required

Tobacco Mosaic Virus (TMV) Self-assembly

Self-assemblyof 2130 proteins

- Monodisperse (length, diameter)- Spontaneous self-assembly- Reproducibility - Parallel Processes- Triggering

Page 2: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

2

Virus-Enabled Silicon Anode for Lithium-Ion BatteriesChen, ACS NANO, 2010

Dujardin, NanoLetters, 2003

Belcher, Science, 2002

Gold nanoparticles

SiliconZnS nanoparticles

18nm

Applications… Silica Marine Sponge : Euplectella sp.

Aizenberg, PNAS, 2004

Aizenberg, Science 2005, …

A perfectoptical fiber

inout

Silica Marine Sponge : Euplectella sp.

1μm

10μm

100nm

100μm

1mm

1cm

10cm

5mm

20μm

5μm

1cm

500nm

HierarchicalOrganization :

From centimeter to nanometer

1μm

10μm

100nm

100μm

1mm

1cm

10cm

10µm

1cm

Bio-inspired self-assembliesSome advantages …

1cm500nm

+ Monodispersity+ Reproducibility+ High Accuracy- Length tuning

+ Hierarchical self-organisation

+ Simple and low cost :No external work,…

+ Simultaneous processesHigh throughput,…

Objective :Design of bottom-up processes

generating well-defined nanostructures ??

Bio-inspired Scaffolds to manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Objectives :+ Shape+ Crystallization+ Monodispersity+ Length Modulation

Objectives :+ Shape+ Crystallization+ Monodispersity+ Length Modulation

Which Scaffolds or template ????

Bio-inspired Scaffoldsto manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Page 3: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

3

Bio-inspired Scaffolds to manufacture hybrids materials :

Silica nanotubes & QDs metacrystals

Biological Self-Assemblies…

Virus φ=25nmProteins :

Size : 3-6 nm

Part 1 Part 2

Outline : 2 examples with- Scaffold- Nanomaterials- Properties

A Peptidic Template to Manufacture Silica Nanotubes

Self-assembly process ?

1,8nm

2+

Self-assembly process ?

I] PeptidicNanotubes

II] Mineralization

A Peptidic Template to Manufacture Silica Nanotubes

A

300 nm300nm

A Peptidic Nanotube Template

Freeze Etching EM

Lanreotide: synthetic octapeptideColl. Maité Paternostre (Saclay)

Diameter :24.4 nm

Wall thicknesse = 2 nm

water

5%(w/w)

Structure by Fiber Diffraction =>Valery & al, PNAS (2003)

Phase diagram in water :Valery & al, Biophys. J. (2004)

Self-assembly mechanism :Pouget & al, J.A.C.S (2010)

Ipsen-Pharma

Céline Valery PhD thesis 2003

Page 4: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

4

3) Hydrophilic :+ H20

+

+

+

2) Aliphatic/Aliphatic :

4) Hydrogen Bonds :

1) Aromatic/Aromatic :

1,8nm

2+

Biological Interactions in Water :A nanometer scale Lego

Orientation !!!

aliphatic

aromatic

Self-assembly Rules

A Hierarchical Organisation

Step 1 Step 2

Step 3

26 protofilaments

18 Å

+ water

+

+

+

An dynamical equilibrium in water

+

++

++

++++

+

+++

++

++

+

+ ++

++

++

+

++

++

+ + +

- Electrostatic repulsion- Translation entropy

- Aromatic- Aliphatic

2+

Nanotube mineralization1 the organic template:

Lanreotide

1,8nm

24 nm

2 nm

octapeptide

2+

H2O

2 the inorganic compounds:silica

TEOS: Si(OEt)4

?Emilie Pouget PhD thesis 2006Christope Tarabout PhD thesis 2009

Morphological control: limited diffusion by a gel containing the peptide in a solution of silica precursors (TEOS)

Synthesis: spontaneous organic/inorganic assembly

"chimie douce" : in water, room T°, neutral pH

time≈48h

peptide

TEOS/waterFibers

~1cm

Capillarydiameter=1,5mm

Pouget & al, Nature Materials (2007)

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Macroscopique FibersPolarising Ligth Optical Microscopy

=> Orientationnal order parallel to fiber axis

200μm

Dry Fiber

1mm

As synthesised

1mm

=> Centimeter Length

Page 5: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

5

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Transmission Electron Microscopy

Nanotubes Bundles

1 μm

Mineralisation possible !!

Coll. Erik Dujardin, Annie Cavalier

200nm

Long nanotubes with a monodisperse diameter

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

B

C

A

25nm 25nm

50nm

Silica Double walled Nanotubes

2 spatial frequencies :- 3.4nm with cos-like phase = FT (double dirac ) => double wall- 25.4nm with Jo-like phase = FT (thin cylinder)

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

SAXS (Small Angle X-ray Scattering)SAXS Beam Line ID O2, ESRF, T. Narayanan, T. Weiss

0,2Å-1

TemplateStructure

isconserved

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0,05 0,15 0,25 0,35 0,45

q(A-1)

log

(I

0,096Å-1

Δq=0,025Å-1

q(Å-1)

Log

(I)

Lanreotide

Silica

<d> = 24.6nm

Simple model

r (nm)

SiLan

Siρ

1.4 2.0 1.4

1μm

10μm

100nm

100μm

1mm

1cm

10nm

1nm

Hierarchical Characterisation

Formation mechanism ?

Silica : 1,4nm

Lanreotide: 2nm

<d> = 24,6nm

Initial template Mineralisation ?

Lanreotide.Initial Nanotubes

TEOS/water

Dynamical template

Time ≈48h

Page 6: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

6

++

++

2+2+

--

++

++

--

Pouget & al, Nature Materials (2007)

- dynamical template- kinetic coupling of reactions

A step by step construction :- dynamical template- kinetic coupling of reactions

A step by step construction :

Infinite growing ?????

Optical fibers ?

Duval et al, Electronic Letters, 2008

Diameter (µm) Loss (dB/cm)

4 -1.2

10 -2.3

20 -5.7

50 -6.6

35nm

9nm

Diameter Control ? Coll. J.C Cintrat (CEA Saclay)N. Fay, M. Paternostre (Saclay)

… a Peptides Library.

Close contact model :Diameter prediction : > 95%

NH

NN

N

O

O

O

H

H

H O

NH2

NN

O

OH

H

O

N

H

N

O

H

NH2

OH

HN

+H3N

OH

SS

A Diameter library from ..

24nm

Tarabout et al, PNAS 2011

From a Bio-inspired Scaffoldto Silica Nanotubes

StructureInteractions

- Aromatic- Aliphatic- Hydrophylic- H-bonding- Coulomb

Mutations+ Diameter

From 9 to 35 nm

- Shape (ribbons,…)Library of 20 mutants

Nano-optics within Bundles

Mineralisation

Part 2 :

Bio-inspired Scaffolds to manufacture nanomaterials :

nanotubes & Quantum Dots arrays

Page 7: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

7

Toward 3D template : lipids multilayers

4 nm

Phospholipids

Lipid membrane in water :

O

O

O

O

N

O

O

O

O

OP

N

O OO

DMTAP

DMPC

++

+

++ +

+

+

++++

+SUV50nm

lipids multilayers

Bending Energy :

E = ½.kbend.u2.q4

E ∝ ½. kbend.u2/d4u

d = 2π/q

Colloid adhesion effects ?

+ Strong adhesion+ Large size

Flat 1D 2D

Can we generate in plane orderwith planar membranes ? Quantum Dots : QDs

λémission

d = 2 nm

r

Fluorescent semi-conductor nanocrystal

d = 6 nm

d

Shell (ZnS) Core (CdSe)

HydrophobicLigands

Coll. Valérie Marchi-Artzner (Chemistry@Rennes)

Functionnalization

1. Hydrosoluble QDs2. Anionic QDs

-

---

-

-

- -

3. QDs size (= λemission)

3.0 nm

dQD~6-8 nm

-Hydrophilic linksSulfur

Coll. Valérie Marchi-Artzner (Chimie@Rennes)

Crystallization by adhesion ?

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

--

-

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

--

- --

-

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

Coll. Marc Schmutz (ICS)

A. Dif, E. Henry et al, J.A.C.S. 2008

Coll. Valérie Marchi-Artzner (Chimie@Rennes)

Page 8: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

8

G-actin

Actin filament

6nm

Anionic Polyelectrolyte

8nm

- 43 kDa- 375 AA- charge 4 à 6 –

Self Assembly

How to improve in-plane order ?

-

---

-

-

- -3.0 nm

dQD~6-8 nm

In-plane (2D) orderVery weak

35nm

300 µm

300 µm

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

++

++++

++

+

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

--

--

- -

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

++

++++

++

+ ++

++++

++

+

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

--

--

- - --

--

- -

380<λex<420 nm

Toward the 3D crystallization ?

2 phases …

Phase 1: 1D crystallization….Small Angle X-ray ScatteringSWING@SOLEILFlorian Meneau

6nm

6nm

10nm

10nm

Chains of Quantum Dots

8

9

10

2

3

0.250.200.150.100.050.00q[Å-1]

Phase 2 : 3D Crystallization

26.5nm

18.9nm

35.5nm

Small Angle X-ray ScatteringSWING@SOLEILFlorian Meneau

expe

3D model

Nanoparticules crystallisation by template strategyHenry et al, Nano Letters 2011

300 µm

380<λex<420 nm

Dynamical Templating

Post doc A. Dif

10

8

6

4

2

0

Inte

nsity

/ a.

u.

600580560540520500wavelength / nm

10

8

6

4

2

0

Inte

nsity

/ a.

u.

600580560540520500wavelength / nm

I (u.

a.)

Longueur d’onde d’émission (nm)

Excitation à 405 nm

Nanostructuration and optical properties

Page 9: Quantum Dots : QDs - sfp.in2p3.frsfp.in2p3.fr/expo/Conf2012/Nanosciences/Nano_Energie_ARTZNER.pdf · Silica Marine Sponge : Euplectella sp. 1μm 10μm 100nm 100μm 1mm 1cm 10cm 5mm

9

b c

2

1

)(0

01)( ∑

=

⋅−=−ΓN

l

rkki leN

kkrrrrr

Superradiance :

Conclusion : The scaffold is the key

Nanosciences pour l’énergie Auto-assemblages bio-inspirés

Transport optique Cohérence optique

AcknowledgementsBiomimetic@Rennes+ Emilie Pouget (Silica nanotubes)+ Christophe Tarabout (Diameter Modulation)+ Etienne Henry (Actin/QDs)+ Cristelle Mériadec (X-ray)+ Marie Postic (QDs crystallization)+ Open Postdoc Position (X-ray, biomimetic)

Synchrotron :T. Narayanan (ESRF)F. Meneau (SOLEIL)

Electron MicroscopyErik Dujardin (Toulouse)Marc Schmutz (Strasbourg)A. Cavalier (Rennes)

CEA@SaclayMaité PaternostreNicolas FayJ.C. CintratB. Rousseau

IPSEN PharmaCéline Valéry

Institut Curie François Amblard (actin)

Chemistry Dpt (Rennes) Valérie Marchi-Artzner (QDs)Aurélien Dif

€ ACI nano (2002-04)Région Bretagne, Rennes Métropoles