Top Banner
1 / 11 Quantum correlations and entanglement in far-from-equilibrium spin systems Mauritz van den Worm National Institute of Theoretical Physics Stellenbosch University NITheP Bursars Workshop
37

Quantum correlations and entanglement in far-from-equilibrium spin systems

Jul 28, 2015

Download

Science

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum correlations and entanglement in far-from-equilibrium spin systems

1 / 11

Quantum correlations and entanglement infar-from-equilibrium spin systems

Mauritz van den Worm

National Institute of Theoretical Physics

Stellenbosch University

NITheP Bursars Workshop

Page 2: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 3: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 4: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 5: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 6: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 7: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 8: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Page 9: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

What do we use to study this?

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ = lim

t→∞

1

t

∫ t

0

⟨e−iHtAe iHt

⟩dτ

Page 10: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

What do we use to study this?

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ = lim

t→∞

1

t

∫ t

0

⟨e−iHtAe iHt

⟩dτ

A system is said to thermalize if

limt→∞

1

t

∫ t

0〈A〉 (τ)dτ =

1

ZTr[Ae−βH

]

Page 11: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Introductory words 2 / 11

Interaction satisfies:

Ji ,j ∝ r−α

0 < α < dim(System)

Gravitating Masses Coulomb Interactions (no screening)

Page 12: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 3 / 11

Page 13: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 4 / 11

Long-Range Ising: Time evolution of expectation values

Page 14: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 4 / 11

Long-Range Ising: Time evolution of expectation values

Ingredients

D dimensional lattice Λ

H =⊗

j∈Λ C2j

Ji ,j = |i − j |−α

Long-range Ising Hamiltonian

H = −∑

(i ,j)∈Λ×Λ

Ji ,jσzi σ

zj − B

∑i∈Λ

σzi

Page 15: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 4 / 11

Long-Range Ising: Time evolution of expectation values

Orthogonal Initial States

ρ(0) =∑

i1,··· ,i|Λ|∈Λ

∑a1,··· ,a|Λ|∈{0,x ,y}

Ra1,··· ,a|Λ|i1,··· ,i|Λ| σ

a1i1· · ·σa|Λ|i|Λ|

Page 16: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 4 / 11

Long-Range Ising: Time evolution of expectation valuesGraphical Representation of Correlation Functions

XΣ0x\HtL

XΣ-1x Σ1

x\HtLXΣ-1

yΣ1

y\HtLXΣ-1

yΣ1

z \HtL

Α = 0.4

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

XΣiaΣ j

b\HtL

Figure : Time evolution of the normalized spin-spin correlators. The respectivegraphs were calculated for N = 102, 103 and 104. Notice the presence of thepre-thermalization plateaus of the two spin correlators.

Page 17: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson Bounds

Page 18: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson Bounds

‖ [OA(t),OB (0)] ‖ ≤ K exp

[v|t| − d(A, B)

ξ

] ~v t

x

t

Short-Range

Page 19: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson Bounds

‖ [OA(t),OB (0)] ‖ ≤ Kev|t| − 1

[d(A, B) + 1]D−α

~ ln x

x

t

Long-Range

Page 20: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson Bounds

Ρ Π B

TrL� B @e- iHt UA ΡUA†

e iHt D

TrL� B @e- itH ΡeiHt D

0 t

Tt

N t

Page 21: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson Bounds

Product Initial State

pt ≥ 1− exp

−4t2

5

∑j∈B

[1 + d (A, j)]−2α

Entangled Initial State

pt ≥ 1− 1

2

1 + cos

t∑j∈B

[1 + d (A, j)]−α

Page 22: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson BoundsExact results for Ising

H =1

2

∑i 6=j

1

|i − j |α σzi σ

zj , 〈σx

i σxj 〉(t)− 〈σx

i 〉(t)〈σxj 〉(t)

α = 1/4 α = 3/4 α = 3/2

0 50 100 150

0.00

0.02

0.04

0.06

0.08

0.10

t

0 50 100 150

0.00

0.05

0.10

0.15

0.20

20 40 60 80

0.0

0.1

0.2

0.3

0.4

Figure : Density contour plots of the connected correlator 〈σx0σ

xδ 〉c(t) in the

(δ, t)-plane for long-range Ising chains with |Λ| = 1001 sites and three differentvalues of α. Dark colors indicate small values, and initial correlations at t = 0are vanishing.

Page 23: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 5 / 11

Light-Cones and Lieb-Robinson BoundstDMRG results for XXZ

H =1

2

∑i 6=j

1

|i − j |α

[Jzσz

i σzj +

J⊥

2

(σ+i σ−j + σ+

j σ−i

)], 〈σz

0σzδ〉c(t)

α = 3/4 α = 3/2 α = 3

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

t

0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t

0.0 0.5 1.0 1.5 2.0 2.5

- 5

- 4

- 3

- 2

- 1

0

ln ∆

lnt

0.0 0.5 1.0 1.5 2.0 2.5

- 5

- 4

- 3

- 2

- 1

0

ln ∆

0.0 0.5 1.0 1.5 2.0 2.5

- 5

- 4

- 3

- 2

- 1

0

1

ln ∆

Page 24: Quantum correlations and entanglement in far-from-equilibrium spin systems

| What is being done experimentally? 6 / 11

Page 25: Quantum correlations and entanglement in far-from-equilibrium spin systems

| What is being done experimentally? 6 / 11

Current state of the art

H =1

2

∑i 6=j

[JxijS

xi S

xj + Jy

ij Syj S

yi + Jz

ijSzi S

zj

][To appear in PRA, Arxiv:1406.0937 - Kaden Hazzard, MVDW, Michael Foss-Feig, et al.]

Page 26: Quantum correlations and entanglement in far-from-equilibrium spin systems

| What is being done experimentally? 6 / 11

Long-range Ising Hamiltonian

H =∑i<j

Ji ,jσzi σ

zj − Bµ ·

∑i

σi

Page 27: Quantum correlations and entanglement in far-from-equilibrium spin systems

| What is being done experimentally? 6 / 11

Graphical Representation of Correlation Functions

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 0.25

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

YΣix]

YΣiy

Σ jz]

YΣiy

Σ jy]

YΣix

Σ jx]

Α = 1.5

0.01 0.1 1 10t

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure : Time evolution of the normalized spin-spin correlations. Curves of thesame color correspond to different side lengths L = 4, 8, 16 and 32 (from rightto left) of the hexagonal patches of lattices. In figure (a) α = 1/4, results aresimilar for all 0 ≤ α < ν/2. In figure (b) α = 3/2, with similar results for allα > ν/2.

Page 28: Quantum correlations and entanglement in far-from-equilibrium spin systems

| What is being done experimentally? 6 / 11

Ising XXZ

Page 29: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 7 / 11

Page 30: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 8 / 11

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 31: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 8 / 11

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 32: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 8 / 11

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 33: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 8 / 11

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 34: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 8 / 11

Long-Range Ising: Time evolution of expectation values

Product Initial States

|ψ(0)〉 =⊗j∈Λ

[cos

(θj2

)e iφj/2| ↑〉j + sin

(θj2e−iφj/2

)| ↓〉j

]

Page 35: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Exact analytic results 9 / 11

dB spin squeezing entanglement entropy concurrenceϕ

=π/2

a

0.0 0.5 1.0 1.5 2.00

2

4

6

8

Α

t

b

0.0 0.5 1.0 1.5 2.00

2

4

6

8

Α

t

c

0.0 0.5 1.0 1.5 2.00

2

4

6

8

Α

t

α=

3/4

d

4

Π

2

3 Π

0

2

4

6

8

j

t

e

4

Π

2

3 Π

0

2

4

6

8

j

tf

4

Π

2

3 Π

0

2

4

6

8

jt

Page 36: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Take home message 10 / 11

Take home message

In long-range systems...

Relaxation process might include long-livedquasi-stationary states

Information can propagate instantaneously ifinteraction range is long-enough

Lieb-Robinson bounds greatly overestimatemaximum group velocities

Different types of entangled states can be created

Page 37: Quantum correlations and entanglement in far-from-equilibrium spin systems

| Collaborators 11 / 11

Collaborators

Michael KastnerSupervisor

John BollingerNIST

Boulder, Colorado

Brian SawyerNIST

Boulder, Colorado

Emanuele Dalla TorreBar Ilan UniversityTel Aviv, Isreal

Tilman PfauUniversitat StuttgartStuttgart, Germany

Ana Maria ReyJILA

Boulder, Colorado

Kaden HazzardJILA

Boulder, Colorado

Michael Foss-FeigJQI

Gaithersburg, Maryland

Salvatorre ManmanaUniversity of GottingenGottingen, Germanay

Jens EisertFreie UniversitatBerlin, Germany