Top Banner
Hartmut Häffner Institute for Quantum Optics and Quantum Information Innsbruck, Austria  Quantum computing with trapped ions Berkeley, Nov 25 th  2008 $ SCALA QGATES FWF SFB Industrie Tirol IQI GmbH  Basics of ion trap quantum computing  Measuring a density matrix  Quantum gates  Deutsch Algorithm
99

Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Mar 20, 2018

Download

Documents

truonglien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Hartmut HäffnerInstitute for Quantum Optics and Quantum InformationInnsbruck, Austria

 Quantum computing with trapped ions

Berkeley, Nov 25th 2008

€$

SCALAQGATES

FWF SFB

IndustrieTirol

IQIGmbH

• Basics of ion trap quantum computing

• Measuring a density matrix 

• Quantum gates

• Deutsch Algorithm

Page 2: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

000001010011

100011110011

Quantumprocessor

Cavity QED

Superconducting qubits

Trapped ions

Quantum dots

NMR

© A. Ekert

Which technology ?

Page 3: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

000001010011

100011110011

Quantumprocessor

Cavity QED

Superconducting qubits

Trapped ions

Quantum dots

NMR

© A. Ekert

Which technology ?

Page 4: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Good things about ion traps:

­ Ions are excellent quantum memories; single qubit    coherence times > 10 minutes have been demonstrated   (Boulder 1991)

(

­ Ions can be controlled very well 

­ Many ideas to scale ion traps

Bad things about ion traps:

­ Slow (~1 MHz) 

­ Technically demanding 

Why trapped ions ?

Page 5: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The hardware

S1/2

P1/2

D5/2

  Qubit

Page 6: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Trapped ions form the quantum register

Innsbruck quantum processor

Trap electrodes

Page 7: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

• Scalable physical system, well characterized qubits       

• Ability to initialize the state of the qubits

• Long relevant coherence times, much longer than gate operation time

• “Universal” set of quantum gates

• Qubit­specific measurement capability

DiVincenzo criteria

Page 8: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

1. Initialization in a pure quantum state     P1/2 D5/2

=1s

S1/2

40Ca+

P1/2

S1/2

D5/2P1/2

S1/2

D5/2D5/2

S1/2

Experimental procedure

Page 9: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

1. Initialization in a pure quantum state     P1/2 D5/2

=1s

S1/2

40Ca+

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2D5/2

S1/2

Experimental procedure

Page 10: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

2. Quantum state manipulation on    S1/2 – D5/2 transition      

Quantum statemanipulation

1. Initialization in a pure quantum state     P1/2

S1/2

D5/2D5/2

S1/2

Experimental procedure

Page 11: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

P1/2 D5/2

=1s

S1/2

40Ca+

1. Initialization in a pure quantum state:     

2. Quantum state manipulation on    S1/2 – D5/2 transition      

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2

Quantum statemanipulation

P1/2

Fluorescencedetection

3. Quantum state measurement    by fluorescence detection

S1/2

D5/2

Experimental procedure

Page 12: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

P1/2 D5/2

=1s

S1/2

40Ca+

1. Initialization in a pure quantum state:     

2. Quantum state manipulation on    S1/2 – D5/2 transition      

P1/2

S1/2

D5/2

Dopplercooling Sideband

cooling

P1/2

S1/2

D5/2

Quantum statemanipulation

P1/2

Fluorescencedetection

3. Quantum state measurement    by fluorescence detection

S1/2

D5/2

Experimental procedure

5µm

50 experiments / s

Repeat experiments100­200 times

Spatially resolveddetection withCCD camera

Two ions:

Page 13: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

D­s

tate

 pop

ulat

ion

Rabi oscillations

P1/2

S1/2

D5/2D5/2

Page 14: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

D­s

tate

 pop

ulat

ion

Rabi oscillations

P1/2

S1/2

D5/2D5/2

Page 15: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

D­s

tate

 pop

ulat

ion

Rabi oscillations

P1/2

S1/2

D5/2D5/2

Page 16: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The phase ...

++ =

++e =­ωt

Page 17: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The phase ...

Page 18: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The phase ...

Page 19: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

CCD

Paul trap

Fluorescencedetection 

electrooptic deflector

coherentmanipulation of qubits

dichroicbeamsplitter

­ inter ion distance: ~ 4 µm

­ addressing waist: ~ 2 µm

< 0.1% intensity on neighbouring ions

­10 ­8 ­6 ­4 ­2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Exc

itatio

nDeflector Voltage (V)

D

Addressing single qubits

Page 20: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Memory errors:

 ­ Bit­flips

 ­ Dephasing

Operationial errors

 ­ technical imperfections …

Decoherence mechanisms

Page 21: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Ramsey Experiment

 = 15.9 ms

π / 2 π / 2Ramsey Time

Dephasing of qubits

Page 22: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Zeeman shift

Page 23: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

10­6 s         

10­1 s

103 s

10­4 s

10­3 s

101 s

Single qubit gates

Two qubit gates  (Geometric phase gates)

T

  

Single qubit coherence (magnetic field sensitive)

S

Coherence of the motion

10­5 s         

10­2 s         

100 s         

102 s         

Two qubit gates (Cirac­Zoller approach)

T

Realized time scales 

Page 24: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

qubit

Raman transitions:

Excited state

Ground state

Long lived qubits

Page 25: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Raman transitions:

Excited state

Ground state

Long lived qubits

Page 26: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

From: C. Langer et al., PRL 95, 060502 (2005), NIST 

Level scheme of 9Be+:

Long lived qubits

Page 27: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

From: C. Langer et al., PRL 95, 060502 (2005), NIST 

Long lived qubits

Page 28: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

10­6 s         

10­1 s

103 s

10­4 s

10­3 s

101 s

Single qubit gates

Two qubit gates  (Geometric phase gates)

T

  

Single qubit coherence (magnetic field sensitive)

S

Coherence of the motion

10­5 s         

10­2 s         

100 s         

102 s         

Two qubit gates (Cirac­Zoller approach)

T

Realized time scales 

Single qubit coherence (magnetic field insensitive)

S

Single qubit coherence (magnetic field insensitive + RF drive)

S

Page 29: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The common motionacts as the quantumbus.

Having the qubits interact

Page 30: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

50 µm

The common motionacts as the quantumbus.

Having the qubits interact

Page 31: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

harmonic trap

……

Ion motion

Page 32: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

harmonic trap

2­level­atom joint energy levels

Ion motion

Page 33: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

carrier

carrier and sidebandRabi oscillationswith Rabi frequencies

 Lamb­Dicke parameter

Coherent manipulation

Page 34: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

• Introduction to quantum information 

• Entangled states

• Teleportation

• Scaling of ion trap quantum computers

• Wiring up trapped ions

Page 35: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

… …

Generation of Bell states

Page 36: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

π

… …

Generation of Bell states

Page 37: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

π/2

… …

Generation of Bell states

Page 38: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

π…

… …

 

Generation of Bell states

Page 39: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

π…

… …

 

Bell states with atoms

­ 9Be+:   NIST (fidelity: 97 %)

­ 40Ca+:  Oxford (83%)

­ 111Cd+: Ann Arbor (79%)

­ 25Mg+: Munich 

­ 40Ca+:   Innsbruck (99%)

Generation of Bell states

Page 40: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Fluorescencedetection withCCD camera:

Coherent superposition or incoherent mixture ?

What is the relative phase of the superposition ? 

Analysis of Bell states

Measurement of the density matrix:SSSDDS

DD SSSDDSDD

Page 41: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A measurement yields the z­component of the Bloch vector 

=> Diagonal of the density matrix

Measuring a density matrix

Page 42: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A measurement yields the z­component of the Bloch vector 

=> Diagonal of the density matrix

Rotation around the x­ or the y­axis prior tothe measurement yields the phase informationof the qubit. 

Measuring a density matrix

Page 43: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A measurement yields the z­component of the Bloch vector 

=> Diagonal of the density matrix

=> coherences of the density matrix

Rotation around the x­ or the y­axis prior tothe measurement yields the phase informationof the qubit. 

Measuring a density matrix

Page 44: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

Decoherence properties of qubits

Page 45: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Bell­state survives

Roos et al., Science 304, 1478 (2004)

Measurementof the center ion

A “real” thought experiment

Page 46: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Generalized Bell states

Page 47: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

   656100 measurements~ 10 h measurement time

Genuine 8­particle entanglement

Häffner et al., Nature 438, 643 (2005) 

Generalized Bell states

Page 48: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Quantum gates …

Page 49: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

control target

...allows the realization of a universal quantum computer !

Having the qubits interact

Page 50: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

control target

...allows the realization of a universal quantum computer !

Having the qubits interact

Most popular gates:  ­ Cirac­Zoller gate (Schmidt­Kaler et al., Nature 422, 408 (2003)).  ­ Geometric phase gate (Leibfried et al., Nature 422, 412 (2003)).  ­ Mølmer­Sørensen gate (Sackett et al., Nature 404, 256 (2000)).

Page 51: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Control bit

Target bit

Target

A controlled­NOT operation

Page 52: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A controlled­NOT operation

Ion 1:

Vibration:

Ion 2:

SWAP­1SWAPControl qubit

Target qubit

Page 53: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A controlled­NOT operation

Ion 1

Vibration

Ion 2

SWAP­1SWAPControl qubit

Target qubit

Ion 1

Ion 2

Pulse sequence:Laser frequencyPulse lengthOptical phase

Page 54: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

1

2

3

4

Composite phase gate (2π rotation)

 

Page 55: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

4

3

2

1

Action on |S,1> ­ |D,2>

Page 56: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

0=ϕ 0=ϕ 2πϕ =

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (µs)

 D5/

2 ­ e

xcita

tion

Single ion composite phase gate

Page 57: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Time (µs)

T

 D5/

2 ­ e

xcita

tion

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase gate

0.978 (5)

­π/2π/2

Single ion composite CNOT gate

Page 58: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

A controlled­NOT operation

Ion 1

Vibration

Ion 2

SWAP­1SWAPControl qubit

Target qubit

Ion 1

Ion 2

Pulse sequence:Laser frequencyPulse lengthOptical phase

Page 59: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

OutputInput

Probability

Truth table of the CNOT

Page 60: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

prepare CNOT detect

Using a CNOT to create a Bell state

output

Page 61: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Raman transitions between

Interaction of two ions via common motion.

n=0

n=1

Mølmer­Sørensen gate

Page 62: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Raman transitions between

Interaction of two ions via common motion.

Mølmer­Sørensen gate

Page 63: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Raman transitions between

Interaction of two ions via common motion.

Mølmer­Sørensen gate

Page 64: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

bicromatic beam applied to both ions

Technical realization

Page 65: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

entangled ?

Entangling ions

J. Benhelm et al., Nature Physics 4, 463 (2008)

Theory: C. Roos, NJP 10, 013002 (2008) 

Page 66: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

gate duration

average fidelity: 99.3 (2) % 

entangled

measure entanglementvia parity oscillations

Entangling ions

J. Benhelm et al., Nature Physics 4, 463 (2008)

Theory: C. Roos, NJP 10, 013002 (2008) 

Page 67: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The
Page 68: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

maximally entangled states

Gate concatenation

Page 69: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Gate performance

Page 70: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The MS gate operation is optimized by

• pulse shaping, minimizes off­resonant excitation

• phase relation of amplitude modulated dual­frequency beam

C. Roos, NJP 10, 013002 (2008).

Optimization of the gate

Page 71: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The
Page 72: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

• Scalable physical system, well characterized qubits      / ? 

• Ability to initialize the state of the qubits

• Long relevant coherence times, much longer than gate operation time

• “Universal” set of quantum gates

• Qubit­specific measurement capability

Often neglected:

• exceptional fidelity of operations

• low error rate also for large quantum systems

• all requirements have to met at the same time

DiVincenzo criteria

Page 73: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Cirac, Zoller, Kimble, Mabuchi Zoller, Tian, Blatt

Scaling of ion trap quantum computers

Its easy to have thousands of coherent qubits …but hard to control their interaction

Kielpinski, Monroe, Wineland

Page 74: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

The Michigan T trap

Page 75: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

An implementation of the Deutsch­algoritm …

Page 76: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch‘s problem: Introduction

Decide which class the coin is:                   False (equal sides)             or                   Fair

A single measurement does NOT give the right answer

Front 

Back

Page 77: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch‘s problem: Mathematical formulation

4 possible coins are representend by 4 functions

false

fair0110f(1)

(

10 10f(0)

(

Case 4Case 3Case 2Case 1

BalancedConstant

Page 78: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

false

fair

Z­CNOTCNOTNOTIDz + f(x)

)

0110f(1)

(

10 10f(0)

(

Case 4Case 3Case 2Case 1

BalancedConstant

Deutsch‘s problem: Mathematical formulation

4 possible coins are representend by 4 functions

Physically reversible process realized by a unitary transformation+

Page 79: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa quantum circuit

f1

f2

f3

f4

1000010000100001

1000010000010010

0100100000100001

0100100000010010

Ufn

x x

z f(x) + z

NOT

ID

CNOT

Z­CNOT

Case Logic Quantum circuit Matrix

Page 80: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Quantum analysis gives the right answer after a single measurement!

•D. Deutsch, R. Josza, Proc. R. Soc. London A439, 553 (1992)

D

•M. Nielsen, I. Chuang, QC and QI, Cambridge (2000)

M

Uf

x

z

x

z + f(x)

z

|0>

|1>

Deutsch Jozsa quantum circuit

π/2

π/2

­π/2

­π/2

Page 81: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Uf

x

z

x

z + f(x)

z

|0>

|1>

No information in the second qubit

electronic qubit

motional qubit

π/2

π/2

­π/2

­π/2

Page 82: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

D5/2

729 nm

|1>

|0>

internal qubit

Qubits in 40Ca+

S1/2

motional qubit

|0>|1>1

n=0

2

computational subspace

|S,0>

|D,0>|D,1>

|S,1>

Page 83: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Uf

x

z

x

z + f(x)

z

|0>

|1>

No information in the second qubit

electronic qubit

motional qubit

π/2

π/2

­π/2

­π/2

Page 84: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa quantum circuit

f1

f2

f3

f4

1000010000100001

1000010000010010

0100100000100001

0100100000010010

Ufn

x x

z f(x) + z

NOT

ID

CNOT

Z­CNOT

Case Logic Quantum circuit Matrix

Page 85: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Page 86: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Page 87: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

|S,0>

|D,0>|D,1>

|S,1>

3­step composite SWAP operation

1

2

3

1

3

I. Chuang et al., Innsbruck (2002)

I

Page 88: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Page 89: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Phasegate

Page 90: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

1

2

3

4

Composite phase gate (2π rotation)

 

Page 91: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

4

3

2

1

Action on |S,1> ­ |D,2>

Page 92: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Phasegate

Page 93: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Phasegate

Page 94: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

x x

z f(x) + z

Swap Swap

Phasegate

Phasegate

Page 95: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

Page 96: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Realization

Time (µs)

T

Page 97: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

Deutsch Jozsa: Result

0.986(4)

0

0.931(9)

0

0.90(1)

0

­­measured |<1|w>|2

1111expected |<1|w>|2

0.975(2)

0

0.975(4)

0

0.087(6)

0

0.019(6)

0

measured  |<1|a>|2

1100expected |<1|a>|2

Case 4Case 3Case 2Case 1

BalancedConstant

S. Gulde et al., Nature 412, 48 (2003) 

Page 98: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The

• Basics of ion trap quantum computing

• Measuring a density matrix 

• Quantum gates

• Deutsch Algorithm

 Conclusions

Berkeley, Nov 25th 2008

€$

SCALAQGATES

FWF SFB

IndustrieTirol

IQIGmbH

Page 99: Quantum computing with trapped ionscs191/fa08/lectures/lecture23... · Innsbruck quantum processor Trap electrodes • Scalable physical system, well characterized qubits ... The