Top Banner
QFT methods for gravitational wave astronomy application to spin effects and dynamic tides Jan Steinhoff Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany Fields and Strings Seminar, Humboldt University Berlin, June 1st, 2016 Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 1 / 19
58

QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Oct 31, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

QFT methods for gravitational wave astronomyapplication to spin effects and dynamic tides

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany

Fields and Strings Seminar, Humboldt University Berlin, June 1st, 2016

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 1 / 19

Page 2: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Outline

1 IntroductionSpin and tidal effectsUpcoming ObservatoriesCommon view on analytic description of binariesEffective field theory for compact objects in gravity

2 Spin effectsTwo Facts on Spin in RelativityPoint Particle Action in General RelativityPost-Newtonian ApproximationSpin and GravitomagnetismResults for post-Newtonian approximation with spin (conservative)

3 Dynamical tidesNeutron starsNeutron Star Equations of StateDynamical tidesConvenient concept: response functionRelativistic effects on dynamic tides

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 2 / 19

Page 3: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

Page 4: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

GW150914 a.k.a. The Event

peak strain 10−21 at ∼ 1 Gly⇒ strain 10−7 at 1 AU

3 M radiated in a fraction of a second⇒ power > all stars in the visible universe

Page 5: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

Page 6: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

Page 7: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/neutronstar

www.astroscu.unam.mx/neutrones/

Page 8: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

Page 9: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

Page 10: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

pics/grb3

pics/swift

Swift/BAT

Page 11: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

pics/grb3

gamma ray burstsgravitationalwaves

→ mode spectrum

pics/swift

Swift/BAT

Page 12: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

pics/grb3

gamma ray burstsgravitationalwaves

→ mode spectrum

pics/swift

Swift/BAT

Page 13: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/binarywave2

binary black holes

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

pics/crust

crustneutron star model

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

pics/grb3

gamma ray burstsgravitationalwaves

→ mode spectrum

pics/spectral

pics/swift

Swift/BAT

Page 14: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and tidal effects

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19

pics/ligo

LIGO, www.ligo.org

black holes→ large spinstrong precession→ tests of gravitycompute spin effects!

tidal forces↔ oscillation modes⇒ resonances & dynamic tides!

pics/grb3

gamma ray burstsgravitationalwaves

→ mode spectrum

pics/spectral

pics/swift

Swift/BAT

pics/binarywave2

pics/crust

−→ spin effects

−→ dynamical tides

Page 15: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Upcoming and Planned Observatories

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 4 / 19

Gravitational wave detectors:

pics/et

Page 16: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Upcoming and Planned Observatories

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 4 / 19

Gravitational wave detectors:

pics/et

Einstein Telescope

LIGO like detectors:

Virgo (Italy)LIGO-IndiaKagra (Japan)

Page 17: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Upcoming and Planned Observatories

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 4 / 19

Gravitational wave detectors:

pics/et

Einstein Telescope

pics/lisa

eLISA space mission

LIGO like detectors:

Virgo (Italy)LIGO-IndiaKagra (Japan)

Page 18: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Upcoming and Planned Observatories

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 4 / 19

Radio astronomy:

pics/ska

Square Kilometre Array (SKA)

Gravitational wave detectors:

pics/et

Einstein Telescope

pics/lisa

eLISA space mission

LIGO like detectors:

Virgo (Italy)LIGO-IndiaKagra (Japan)

Page 19: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Common view on analytic description of binariesmatching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

various zones:inner zone (IZ)

around compact objectsnear zone (NZ)

for the orbitfar zone (FZ)

for the waves

in between: buffer zones (BZ)for the matching

Problematic: different gaugesin different zones

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 5 / 19

pics/zones

from Ireland, etal, arXiv:1512.05650

Page 20: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Common view on analytic description of binariesmatching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

various zones:inner zone (IZ)

around compact objectsnear zone (NZ)

for the orbitfar zone (FZ)

for the waves

in between: buffer zones (BZ)for the matching

Problematic: different gaugesin different zones

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 5 / 19

pics/zones

from Ireland, etal, arXiv:1512.05650

Page 21: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Common view on analytic description of binariesmatching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

various zones:inner zone (IZ)

around compact objectsnear zone (NZ)

for the orbitfar zone (FZ)

for the waves

in between: buffer zones (BZ)for the matching

Problematic: different gaugesin different zones

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 5 / 19

pics/zones

from Ireland, etal, arXiv:1512.05650

Page 22: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Effective field theory for compact objects in gravityGoldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129

zones → scales

separation of scales:scale µobject size rs

orbital size rvelocity v→ frequency ∼ v

r

effective action replaces buffer zonesin traditional approach

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 6 / 19

pics/GRtower

from Goldberger, arXiv:hep-ph/0701129

Page 23: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Effective field theory for compact objects in gravityGoldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129

zones → scales

separation of scales:scale µobject size rs

orbital size rvelocity v→ frequency ∼ v

r

effective action replaces buffer zonesin traditional approach

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 6 / 19

pics/GRtower

from Goldberger, arXiv:hep-ph/0701129

Page 24: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Outline

1 IntroductionSpin and tidal effectsUpcoming ObservatoriesCommon view on analytic description of binariesEffective field theory for compact objects in gravity

2 Spin effectsTwo Facts on Spin in RelativityPoint Particle Action in General RelativityPost-Newtonian ApproximationSpin and GravitomagnetismResults for post-Newtonian approximation with spin (conservative)

3 Dynamical tidesNeutron starsNeutron Star Equations of StateDynamical tidesConvenient concept: response functionRelativistic effects on dynamic tides

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 7 / 19

Page 25: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Two Facts on Spin in Relativity

1. Minimal Extension

R

V

ring of radius R and mass Mspin: S = R M Vmaximal velocity: V ≤ c⇒ minimal extension:

R =S

MV≥ S

Mc

2. Center-of-mass

fast & heavy

slow & light

∆zv

spin

now moving with velocity vrelativistic mass changes inhom.frame-dependent center-of-massneed spin supplementary condition:

e.g., Sµνpν = 0

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 8 / 19

Page 26: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Two Facts on Spin in Relativity

1. Minimal Extension

R

V

ring of radius R and mass Mspin: S = R M Vmaximal velocity: V ≤ c⇒ minimal extension:

R =S

MV≥ S

Mc

2. Center-of-mass

fast & heavy

slow & light

∆zv

spin

now moving with velocity vrelativistic mass changes inhom.frame-dependent center-of-massneed spin supplementary condition:

e.g., Sµνpν = 0

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 8 / 19

Page 27: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Point Particle Action in General RelativityWestpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

SPP =

∫dσ[−m

√gµνuµuν + ...

]Legendre transformation in uµ (from Nambu-Goto to Polyakov action)

SPP =

∫dσ[pµ

Dzµ

dσ− λ

2H+

12

SµνΛAµDΛAν

dσ− pµSµν

pρpρDpνdσ− χµCµ

]

constraint, interactions inM: H := pµpµ +M2 = 0 mass-shell constraint

ΛAµ : frame field on the worldline, “body-fixed” frame

Action is invariant under a “spin gauge symmetry”:spin gauge constraint: Cµ := Sµν(pν + pΛ0

µ) ∼ generator of symmetry

action invariant under a boost of ΛAµ plus transformation of Sµν

gauge related choice of center → spin supplementary condition

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 9 / 19

Page 28: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Point Particle Action in General RelativityWestpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

SPP =

∫dσ[−m

√gµνuµuν + ...

]Legendre transformation in uµ (from Nambu-Goto to Polyakov action)

SPP =

∫dσ[pµ

Dzµ

dσ− λ

2H+

12

SµνΛAµDΛAν

dσ− pµSµν

pρpρDpνdσ− χµCµ

]

constraint, interactions inM: H := pµpµ +M2 = 0 mass-shell constraint

ΛAµ : frame field on the worldline, “body-fixed” frame

Action is invariant under a “spin gauge symmetry”:spin gauge constraint: Cµ := Sµν(pν + pΛ0

µ) ∼ generator of symmetry

action invariant under a boost of ΛAµ plus transformation of Sµν

gauge related choice of center → spin supplementary condition

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 9 / 19

Page 29: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Point Particle Action in General RelativityWestpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

SPP =

∫dσ[−m

√gµνuµuν + ...

]Legendre transformation in uµ (from Nambu-Goto to Polyakov action)

SPP =

∫dσ[pµ

Dzµ

dσ− λ

2H+

12

SµνΛAµDΛAν

dσ− pµSµν

pρpρDpνdσ− χµCµ

]

constraint, interactions inM: H := pµpµ +M2 = 0 mass-shell constraint

ΛAµ : frame field on the worldline, “body-fixed” frame

Action is invariant under a “spin gauge symmetry”:spin gauge constraint: Cµ := Sµν(pν + pΛ0

µ) ∼ generator of symmetry

action invariant under a boost of ΛAµ plus transformation of Sµν

gauge related choice of center → spin supplementary condition

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 9 / 19

Page 30: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Post-Newtonian Approximation

Application: post-Newtonian approximationfor bound orbitsone expansion parameter, εPN ∼ v2

c2 ∼ GMc2r 1 (weak field & slow motion)

propagation “almost” instantaneoustime dependence of metric gµν treated perturbatively

→ Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

ds2 = gµνdxµdxν ≡ e2φ(dt − Aidx i )2 − e−2φγijdx idx j

Leads to gravitomagnetic analogy:φ : gravito-electric fieldAi : gravito-magnetic fieldγij : spin-2 field

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 10 / 19

Page 31: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Post-Newtonian Approximation

Application: post-Newtonian approximationfor bound orbitsone expansion parameter, εPN ∼ v2

c2 ∼ GMc2r 1 (weak field & slow motion)

propagation “almost” instantaneoustime dependence of metric gµν treated perturbatively

→ Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

ds2 = gµνdxµdxν ≡ e2φ(dt − Aidx i )2 − e−2φγijdx idx j

Leads to gravitomagnetic analogy:φ : gravito-electric fieldAi : gravito-magnetic fieldγij : spin-2 field

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 10 / 19

Page 32: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Post-Newtonian Approximation

Application: post-Newtonian approximationfor bound orbitsone expansion parameter, εPN ∼ v2

c2 ∼ GMc2r 1 (weak field & slow motion)

propagation “almost” instantaneoustime dependence of metric gµν treated perturbatively

→ Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

ds2 = gµνdxµdxν ≡ e2φ(dt − Aidx i )2 − e−2φγijdx idx j

Leads to gravitomagnetic analogy:φ : gravito-electric fieldAi : gravito-magnetic fieldγij : spin-2 field

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 10 / 19

Page 33: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Post-Newtonian Approximation

Application: post-Newtonian approximationfor bound orbitsone expansion parameter, εPN ∼ v2

c2 ∼ GMc2r 1 (weak field & slow motion)

propagation “almost” instantaneoustime dependence of metric gµν treated perturbatively

→ Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

ds2 = gµνdxµdxν ≡ e2φ(dt − Aidx i )2 − e−2φγijdx idx j

Leads to gravitomagnetic analogy:φ : gravito-electric fieldAi : gravito-magnetic fieldγij : spin-2 field

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 10 / 19

Page 34: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 35: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 36: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 37: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 38: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 39: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Spin and Gravitomagnetism

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 11 / 19

Interaction with gravito-magnetic field Ai ≈ −gi0:

12

SµνΛAµDΛAν

12

Sij∂iAj

S1

Ai AjS2

LS1S2 =12

Ski1 〈∂k Ai ∂`Aj〉

12

S`j2

=12

Ski1

12

S`j2 δij (−16πG)∂

∂xk1 ∂x`2

∫dk

(2π)3ei~k(~x1−~x2)

~k2

= −GSki1 S`i2

∂xk1 ∂x`2

(1

r12

)

Here: r12 = |~x1 − ~x2|Ignoring factors like δ(t1 − t2)

Feynman rules see e.g. [arXiv:1501.04956]

Status: NNLO (many more diagrams, loops)

Page 40: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Results for post-Newtonian approximation with spinconservative part of the motion of the binary

post-Newtonian (PN) approximation: expansion around 1c → 0 (Newton)

order c0 c−1 c−2 c−3 c−4 c−5 c−6 c−7 c−8

N 1PN 2PN 3PN 4PN

non spin " " " " "

spin-orbit " " "

S21 " " "

S1S2 " " "

Spin3 "(!)

Spin4 "(!)...

. . .

" known (!) partial " derived last yearWork by many people (“just” for the spin sector): Barker, Blanchet, Bohe, Buonanno, O’Connell,Damour, D’Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin,Poisson, Porter, Porto, Rothstein, Schafer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 12 / 19

Page 41: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Outline

1 IntroductionSpin and tidal effectsUpcoming ObservatoriesCommon view on analytic description of binariesEffective field theory for compact objects in gravity

2 Spin effectsTwo Facts on Spin in RelativityPoint Particle Action in General RelativityPost-Newtonian ApproximationSpin and GravitomagnetismResults for post-Newtonian approximation with spin (conservative)

3 Dynamical tidesNeutron starsNeutron Star Equations of StateDynamical tidesConvenient concept: response functionRelativistic effects on dynamic tides

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 13 / 19

Page 42: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

A neutron star model

pics/neutronstar

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in corecondensate of quarks, hyperons,kaons, pions, . . . ?

accumulation of dark matter ?

Related objects:pulsarsmagnetarsquark stars/strange stars

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 14 / 19

Page 43: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

A neutron star model

pics/neutronstar

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in corecondensate of quarks, hyperons,kaons, pions, . . . ?

accumulation of dark matter ?

Related objects:pulsarsmagnetarsquark stars/strange stars

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 14 / 19

Page 44: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

A neutron star model

pics/neutronstar

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in corecondensate of quarks, hyperons,kaons, pions, . . . ?

accumulation of dark matter ?

Related objects:pulsarsmagnetarsquark stars/strange stars

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 14 / 19

Page 45: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Neutron Star Equations of State

pics/NSMassRad

mpifr-bonn.mpg.de

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 15 / 19

Page 46: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Neutron Star Equations of State

pics/NSMassRad

mpifr-bonn.mpg.de

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 15 / 19

However, a measurement of the tidal defor-mations through gravitational waves can be agood alternative to radius measurements.

Page 47: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Dynamical tides of neutron starsJS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

Neutron stars can oscillate→ effective harmonic oscillator action

Ltide ∼DAµν

dσDAµνdσ

− ω20AµνAµν − I0

2AµνEµν +

K4

EµνEµν + ...

(electric) tidal field Eµν = Rαµβνuαuβ

Amplitude Aµν must be SO(3) irreducuble, i.e, symmetric-tracefree:

A[µν] = 0 = Aµµ, Aµνuν = 0

Here: quadrupolar amplitude, strongly couples to gravityMore oscillators in the action→ more modes→ spectrumIn Newtonian limit: easy to compute constants ω0, I0, K , . . .

How to get these constants in relativistic case? → matching

Other important references: Flanagan, Hinderer, PRD 77 (2008) 021502Hinderer, ApJ 677 (2008) 1216 Chakrabarti, Delsate, JS, arXiv:1304.2228Alexander, MNRAS 227 (1987) 843 Bini, Damour, Faye, PRD 85 (2012) 124034

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 16 / 19

Page 48: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Dynamical tides of neutron starsJS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

Neutron stars can oscillate→ effective harmonic oscillator action

Ltide ∼DAµν

dσDAµνdσ

− ω20AµνAµν − I0

2AµνEµν +

K4

EµνEµν + ...

(electric) tidal field Eµν = Rαµβνuαuβ

Amplitude Aµν must be SO(3) irreducuble, i.e, symmetric-tracefree:

A[µν] = 0 = Aµµ, Aµνuν = 0

Here: quadrupolar amplitude, strongly couples to gravityMore oscillators in the action→ more modes→ spectrumIn Newtonian limit: easy to compute constants ω0, I0, K , . . .

How to get these constants in relativistic case? → matching

Other important references: Flanagan, Hinderer, PRD 77 (2008) 021502Hinderer, ApJ 677 (2008) 1216 Chakrabarti, Delsate, JS, arXiv:1304.2228Alexander, MNRAS 227 (1987) 843 Bini, Damour, Faye, PRD 85 (2012) 124034

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 16 / 19

Page 49: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Dynamical tides of neutron starsJS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

Neutron stars can oscillate→ effective harmonic oscillator action

Ltide ∼DAµν

dσDAµνdσ

− ω20AµνAµν − I0

2AµνEµν +

K4

EµνEµν + ...

(electric) tidal field Eµν = Rαµβνuαuβ

Amplitude Aµν must be SO(3) irreducuble, i.e, symmetric-tracefree:

A[µν] = 0 = Aµµ, Aµνuν = 0

Here: quadrupolar amplitude, strongly couples to gravityMore oscillators in the action→ more modes→ spectrumIn Newtonian limit: easy to compute constants ω0, I0, K , . . .

How to get these constants in relativistic case? → matching

Other important references: Flanagan, Hinderer, PRD 77 (2008) 021502Hinderer, ApJ 677 (2008) 1216 Chakrabarti, Delsate, JS, arXiv:1304.2228Alexander, MNRAS 227 (1987) 843 Bini, Damour, Faye, PRD 85 (2012) 124034

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 16 / 19

Page 50: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Dynamical tides of neutron starsJS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

Neutron stars can oscillate→ effective harmonic oscillator action

Ltide ∼DAµν

dσDAµνdσ

− ω20AµνAµν − I0

2AµνEµν +

K4

EµνEµν + ...

(electric) tidal field Eµν = Rαµβνuαuβ

Amplitude Aµν must be SO(3) irreducuble, i.e, symmetric-tracefree:

A[µν] = 0 = Aµµ, Aµνuν = 0

Here: quadrupolar amplitude, strongly couples to gravityMore oscillators in the action→ more modes→ spectrumIn Newtonian limit: easy to compute constants ω0, I0, K , . . .

How to get these constants in relativistic case? → matching

Other important references: Flanagan, Hinderer, PRD 77 (2008) 021502Hinderer, ApJ 677 (2008) 1216 Chakrabarti, Delsate, JS, arXiv:1304.2228Alexander, MNRAS 227 (1987) 843 Bini, Damour, Faye, PRD 85 (2012) 124034

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 16 / 19

Page 51: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Convenient concept: response functionChakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar responseφ ∼ r `

∑2F1 φ ∼ r−`−1∑

2F1

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse fit:

F ≈∑

n

I2n

ω2n − ω2

ωn: mode frequencyIn: coupling constantR: radius

poles⇒ resonances!

pics/resonance

Tacoma Bridge

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 17 / 19

Page 52: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Convenient concept: response functionChakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar responseφ ∼ r `

∑2F1 φ ∼ r−`−1∑

2F1

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse fit:

F ≈∑

n

I2n

ω2n − ω2

ωn: mode frequencyIn: coupling constantR: radius

poles⇒ resonances!

pics/resonance

Tacoma Bridge

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 17 / 19

Page 53: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Convenient concept: response functionChakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar responseφ ∼ r `

∑2F1 φ ∼ r−`−1∑

2F1

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse fit:

F ≈∑

n

I2n

ω2n − ω2

ωn: mode frequencyIn: coupling constantR: radius

poles⇒ resonances!

pics/resonance

Tacoma Bridge

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 17 / 19

Page 54: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Relativistic effects on dynamic tides

All that was said hold also in Newtonian gravity . . .

What is new in the relativistic case?

values of constants ω0, I0, K , . . .is differentNewtonian: K = 0relativistic K 6= 0redshift effectframe dragging effect∼ Zeeman effect

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 18 / 19

Page 55: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Relativistic effects on dynamic tides

All that was said hold also in Newtonian gravity . . .

What is new in the relativistic case?

values of constants ω0, I0, K , . . .is differentNewtonian: K = 0relativistic K 6= 0redshift effectframe dragging effect∼ Zeeman effect

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 18 / 19

Page 56: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Relativistic effects on dynamic tides

All that was said hold also in Newtonian gravity . . .

What is new in the relativistic case?

values of constants ω0, I0, K , . . .is differentNewtonian: K = 0relativistic K 6= 0redshift effectframe dragging effect∼ Zeeman effect

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 18 / 19

Page 57: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Relativistic effects on dynamic tides

All that was said hold also in Newtonian gravity . . .

What is new in the relativistic case?

values of constants ω0, I0, K , . . .is differentNewtonian: K = 0relativistic K 6= 0redshift effectframe dragging effect∼ Zeeman effect

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 18 / 19

frame of the neutron star is draggedin the direction of the orbital motion

Page 58: QFT methods for gravitational wave astronomy fileJan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 3 / 19 pics/binarywave2 binary black holes

Summary

black holes→ large spins→ strong gravitomagnetic effects→ interesting/new tests of gravity

NS structure largely unknown/mysterious→ tidal effects in gravitational waves and electromagnetic

counterparts can enlighten nuclear interactions

GW astronomy exciting new and interdisciplinary field

important to use common language→ effective field theorybut need to go a bit beyond standard techniquese.g., in-in formalism, see [Galley PRL 110, 174301 (2013)]“good” level of abstraction:

DeWitt, The Global Approach to Quantum Field Theory

Jan Steinhoff (AEI) QFT methods for gravitational wave astronomy HU Berlin, June 1st, 2016 19 / 19