Top Banner
- 1 - 4. 5. Pythagorova věta Pythagorova věta - úvod Pythagorova věta popisuje vztah, který platí mezi délkami stran v pravoúhlém trojúhelníku. Věta zní: Geometrická definice: Obsah čtverce sestrojeného nad přeponou (nejdelší stra- nou) pravoúhlého rovinného trojúhelníku je roven součtu obsahů čtverců nad jeho od- věsnami (dvěma kratšími stranami). Formálně Pythagorovu větu vyjadřuje rovnice 2 2 2 c a b , kde c označuje délku přepony pravoúhlého trojúhelníka a délky odvěsen jsou označeny a a b. Pythagorova věta umožňuje dopočítat délku třetí strany trojúhelníka, jestliže jsou známé dél- ky dvou zbývajících stran: - Výpočet délky přepony c: 2 2 2 2 2 c a b c a b - Výpočet délky odvěsny a: 2 2 2 2 2 a c b a c b - Výpočet délky odvěsny b: 2 2 2 2 2 b c a b c a Algebraická definice: V každém pravoúhlém trojúhelníku je druhá mocnina délky pře- pony rovna součtu druhých mocnin délek obou odvěsen.
90

PYTHAGOROVA VĚTA - zsholysov.cz

Oct 24, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PYTHAGOROVA VĚTA - zsholysov.cz

- 1 -

4.

5. Pythagorova věta

Pythagorova věta - úvod

Pythagorova věta popisuje vztah, který platí mezi délkami stran v pravoúhlém trojúhelníku.

Věta zní:

Geometrická definice: Obsah čtverce sestrojeného nad přeponou (nejdelší stra-

nou) pravoúhlého rovinného trojúhelníku je roven součtu obsahů čtverců nad jeho od-

věsnami (dvěma kratšími stranami).

Formálně Pythagorovu větu vyjadřuje rovnice 2 2 2c a b , kde c označuje délku přepony

pravoúhlého trojúhelníka a délky odvěsen jsou označeny a a b.

Pythagorova věta umožňuje dopočítat délku třetí strany trojúhelníka, jestliže jsou známé dél-

ky dvou zbývajících stran: - Výpočet délky přepony c:

2 2 2 2 2c a b c a b

- Výpočet délky odvěsny a: 2 2 2 2 2a c b a c b

- Výpočet délky odvěsny b: 2 2 2 2 2b c a b c a

Algebraická definice: V každém pravoúhlém trojúhelníku je druhá mocnina délky pře-

pony rovna součtu druhých mocnin délek obou odvěsen.

Page 2: PYTHAGOROVA VĚTA - zsholysov.cz

- 2 -

1. Je dán pravoúhlý trojúhelník KLM se stranami délek k = 4 cm, l = 5 cm, m = 3 cm. Ověřte

platnost Pythagorovy věty.

Řešení: Přepona je nejdelší strana, proto musí platit: 2 2 2l m k . Dosadíme číselné hodnoty: 2 2 25 3 4

25 9 16

25 25

Pythagorova věta platí.

Pythagorovu větu lze použít i obráceně ke zjištění, zda je daný trojúhelník pravoúhlý.

Obrácená Pythagorova věta zní: Jestliže v trojúhelníku platí, že součet obsahů čtverců

sestrojených nad kratšími stranami je roven obsahu čtverce sestrojeného nad nejdelší

stranou, potom je tento trojúhelník pravoúhlý.

2. Rozhodni, zda dané úsečky jsou stranami pravoúhlého trojúhelníku:

a) 4,5 cm, 6 cm, 7,5 cma b c

b) 0,6 cm, 9 mm, 0,11 dmm n p

Řešení:

a) 2 2 2 24,5 6 20,25 36 56,25a b 2 27,5 56,25c

Platí Pythagorova věta: 2 2 2c a b , úsečky jsou stranami pravoúhlého trojúhelníku.

b) 2 2 2 26 9 36 81 117m n 2 27,5 56,25c

Neplatí Pythagorova věta: p2

≠ m2 + n

2 ,úsečky nejsou stranami pravoúhlého trojúhel-

níku.

Důkaz Pythagorovy věty:

Důkazů je několik, nejnázornější je důkaz pomocí obsahů. Vezměme dva shodné čtverce, kte-

ré mají stejný obsah. Jejich strana má délku a b . Čtverec na prvním obrázku je rozdělen na

čtyři shodné pravoúhlé trojúhelníky s odvěsnami a, b (světle šedé) a na dva čtverce s obsahy

a2

a b2

(tmavě šedé). Druhý čtverec je rozdělen na čtyři shodné pravoúhlé trojúhelníky

s odvěsnami délek a (světle šedé) a na čtverec se stranou délky c, jehož obsah je c2

(tmavě še-

dý). Šedé trojúhelníky jsou navzájem shodné, proto jsou si obsahy zbylých částí (tmavě šedé)

rovny. Proto platí: 2 2 2c a b .

Page 3: PYTHAGOROVA VĚTA - zsholysov.cz

- 3 -

Na dalším obrázku vidíme, že pokud čtverce nad odvěsnami (rovnoramenný pravoúhlý

trojúhelník) rozdělíme na trojúhelníky, lze z nich vytvořit čtverec nad přeponou s délkou

strany rovnající se délce přepony základního trojúhelníku.

Historie

Pythagorova věta byla pojmenována podle Pythagora ze Samu (asi 580 až 500 př. naším le-

topočtem, řecký filozof, vědec a politik), který zřejmě jako první tuto větu dokázal. Věta byla

pravděpodobně známa i v jiných starověkých civilizacích dávno před starověkým Řeckem. V

Číně a částečně i v Egyptě.

Pythagorejská čísla a jejich výpočet

Pythagorejská čísla jsou tvořena trojicí přirozených čísel a, b, c, pro které platí 2 2 2c a b .

Jsou to tedy přirozená čísla vyhovující Pythagorově větě. Pythagorejská čísla lze vytvořit

podle následující věty: Čísla a, b, c jsou pythagorejská právě tehdy, jestliže je lze vyjádřit ve

tvaru 2 2a p q , 2b pq , 2 2c p q pro libovolná přirozená čísla p, q, pro která platí

p q .

Např. pro p = 1 a q = 2 dostaneme trojici a = 3, b = 4, c = 5; pro p = 2 a q = 5 dostaneme troji-

ci a = 20, b = 21, c = 29.

Haperdonapté – napínači lan ve starověkém Egyptě

Před více než 4 000 lety při stavbách egyptských chrámů a pyramid vytyčovali pravý úhel na-

pínači lan. Na provaze uvázali 13 uzlů stejně od sebe vzdálených. První uzel spojili

s třináctým a provaz napnuli do trojúhelníku se stranami 3, 4, a 5 dílů. Z obr. Je zřejmé, že

pravý úhel leží proti nejdelší straně.

Page 4: PYTHAGOROVA VĚTA - zsholysov.cz

- 4 -

3. Zjistěte, zda trojúhelník daný těmito stranami je pravoúhlý:

a) 5 cm, 7 cm, 8 cm

b) 20 cm, 4,8 dm, 0,52 m

Řešení: Aby byl trojúhelník pravoúhlý, musí pro délky jeho stran platit Pythagorova věta.

Přeponou je nejdelší strana.

a) a = 5 cm, b = 7 cm, c = 8 cm 2 2 2

2 2 28 5 7

64 25 49

64 74

c a b

Trojúhelník není pravoúhlý, neplatí Pythagorova věta.

b) a = 20 cm, b = 4,8 dm = 48 cm, c = 0,52 m = 52 cm 2 2 2

2 2 252 20 48

2704 400 2304

2704 2704

c a b

Trojúhelník je pravoúhlý, Pythagorova věta platí.

4. Vypočítejte délku přepony pravoúhlého trojúhelníku, jestliže délky odvěsen jsou:

a) 6 cm, 8 cm

b) 15 mm, 2 cm

Řešení:

a) a = 6 cm, b = 8 cm, c = ? 2 2 2

2 2

2 26 8

36 64

100

10 cm

c a b

c a b

c

c

c

c

Délka přepony je 10 cm.

b) a = 15 mm, b = 2 cm = 20 mm, c = ? 2 2 2

2 2

2 215 20

225 400

625

25 cm

c a b

c a b

c

c

c

c

Délka přepony je 25 cm.

Page 5: PYTHAGOROVA VĚTA - zsholysov.cz

- 5 -

5. Vypočítejte délku odvěsny v pravoúhlém trojúhelníku, jestliže:

a) a = 2 dm, c = 5,2 dm

b) a = 0,16 m, c = 3,4 dm

Řešení:

a) a = 2 dm, c = 5,2 dm, b = ? 2 2 2

2 2

2 25,2 2

23,04

4,8 dm

b c a

b c a

b

b

b

Délka odvěsny je 4,8 dm.

b) a = 0,16 m = 1,6 dm, c = 3,4 dm, b = ? 2 2 2

2 2

2 23,4 1,6

9

3 dm

b c a

b c a

b

b

b

Délka odvěsny je 3 dm.

6. Vypočítejte délku úhlopříčky obdélníku ABCD, jestliže délky stran AB a BC jsou:

a) 16 cm, 12 cm

b) 24 mm, 0,45 dm

Řešení:

a) Úhlopříčka obdélník rozdělí na dva pravoúhlé trojúhelníky. a = 16 cm, b = 12 cm,

u = ?

Page 6: PYTHAGOROVA VĚTA - zsholysov.cz

- 6 -

2 2 2

2 2

2 216 12

400

20 cm

u a b

u a b

u

u

u

Délka úhlopříčky obdélníku je 20 cm.

b) a = 24 mm = 2,4 cm, b = 0,45 dm = 4,5 cm, u = ? 2 2 2

2 2

2 22,4 4,5

26,01

5,1 cm

u a b

u a b

u

u

u

Délka úhlopříčky obdélníku je 5,1 cm.

7. Vypočítejte délku úhlopříčky čtverce:

a) jehož obvod je 8 m

b) jehož obsah je 25 dm2

Řešení:

a) Úhlopříčka čtverec rozdělí na dva pravoúhlé trojúhelníky. o = 8 m, a = ?, u = ?

4

: 4

8 : 4

2 cm

o a

a o

a

o

2 2 2

2 2

2

2

2

2

2 2

8

2,83 cm

u a a

u a

u a

u

u

u

Délka úhlopříčky čtverce je 2,83 cm

Page 7: PYTHAGOROVA VĚTA - zsholysov.cz

- 7 -

b) S = 25 dm2, a = ?, u = ?

2

25

5 cm

S a

a S

a

a

2 2 2

2 2

2

2

2

2

2 5

50

7,1 dm

u a a

u a

u a

u

u

u

Délka úhlopříčky čtverce je 7,1 dm

8. Vypočítejte délku strany čtverce, jehož úhlopříčka má délku 18 cm.

Řešení: u = 18 cm, a = ?

Délka strany čtverce je 12,7 cm.

9. Vypočítejte výšku rovnoramenného trojúhelníku, jestliže má základna délku 24 cm a ra-

mena mají délku 15 cm.

Řešení:

AB = z = 24 cm, AC = BC = r = 15 cm, v = ?

2 2 2

2 2

22

2

2

2

2

2

18

2

162

12,7 cm

u a a

u a

ua

ua

a

a

a

Page 8: PYTHAGOROVA VĚTA - zsholysov.cz

- 8 -

Výška půlí základnu a rozdělí rovnoramenný trojúhelník na dva shodné pravoúhlé trojú-

helníky. V trojúhelníku ASC platí: AS = 24 : 2 = 12 cm, AC = 15 cm

2 2 2

2 22

2 2

2 215 12

81

9 cm

AC AS v

v AC AS

v AC AS

v

v

v

Výška rovnoramenného trojúhelníku má délku 9 cm.

10. Vypočítejte výšku rovnostranného trojúhelníku, jehož obvod je 15 cm.

Řešení: Výška rovnostranného trojúhelníku půlí stranu ke které je kolmá a rozdělí trojúhelník

na dva shodné pravoúhlé trojúhelníky.

o = 15 cm, a = ?, v = ?

Výpočet strany a:

3

3

15

3

5 cm

o a

oa

a

o

Výpočet výšky v: 2 2 2

2 22

2 2

2 25 2,5

18,75

4,3 cm

AC AS v

v AC AS

v AC AS

v

v

v

Výška rovnostranného trojúhelníku má délku 4,3 cm.

Page 9: PYTHAGOROVA VĚTA - zsholysov.cz

- 9 -

11. Vypočítej obvod a obsah obdélníkové zahrady, jestliže úhlopříčka měří 2,6 m a jedna

strana 1,5 m.

Řešení: a = 1,5 m, u = 2,6 m, b = ?, o = ?, S = ?

2 2 2

2 2 2

2 2

2 22,6 1,5

2,12 m

u a b

b u a

b u a

b

b

2

2 1,5 2,12

7,24 m

o a b

o

o

2

1,5 2,12

3,18 m

S ab

S

S

Obvod obdélníkové zahrady je 7, 24 m a obsah je 3,18 m2.

12. Okolo obdélníkového lesa 120 m dlouhého a 50 m širokého je vozová cesta. O kolik met-

rů si zkrátí chodec chůzi pěšinou po úhlopříčce tohoto lesa?

Řešení: Potřebujeme se dostat z bodu A do bodu C.

a = 120 m, b = 50 m, u = ?

chůze po úhlopříčce: 2 2 2 2120 50 130 mu a b

chůze okolo: a + b = 120 + 50 = 170 m

rozdíl: 170 – 130 = 40 m

Chodec si zkrátí chůzi pěšinou po úhlopříčce o 40 m.

Page 10: PYTHAGOROVA VĚTA - zsholysov.cz

- 10 -

13. Devět metrů vysoký strom se v bouři přelomil tak, že jeho vrcholek se dotýká země 3 m

od paty stromu. V jaké výšce se zlomil?

Řešení:

výška stromu ..................................... 9 m

vzdálenost od paty stromu ................. 3 m

výška zlomu ....................................... x

vzniklý trojúhelník v nákresu je pravoúhlý, proto platí Pythagorova věta:

2 2 2

2 2

9 3

81 18 9

18 72

4 m

x x

x x x

x

x

Strom se zlomil ve výšce 4 m.

14. Žebřík dlouhý 9 m je spodním koncem opřen 1,75 m od zdi. Do jaké výšky dosahuje na

zdi horní konec žebříku?

Řešení:

délka žebříku ..................................... 9 m

vzdálenost od zdi ............................... 1,75 m

výška na zdi ....................................... x

Page 11: PYTHAGOROVA VĚTA - zsholysov.cz

- 11 -

2 2 2

2

1,75 9

81 3,0625

77,9375

8,8 m

x

x

x

x

Horní konec žebříku dosahuje na zdi do výšky 8,8 m.

15. Pan Dvořák vlastní pozemek ve tvaru rovnoramenného trojúhelníku se stranami 50 m,

50 m, 60 m. Pan Novák vlastní pozemek, který má tvar rovnostranného trojúhelníku se

stranami délky 55 m. Kdo z nich má pozemek o větší rozloze?

Řešení:

pan Dvořák ........................................ rovnoramenný trojúhelník: 50 m, 50 m, 60 m

pan Novák ......................................... rovnostranný trojúhelník: a = 55 m

rozloha pozemku p. Dvořáka ............ S1

rozloha pozemku p. Nováka .............. S2

rovnoramenný trojúhelník rovnostranný trojúhelník

2 2

1

1

1

50 30

900

30 m

v

v

v

11

1

2

1

2

60 30

2

900 m

z vS

S

S

2 2

2

2

2

55 27,5

22268,75

47,63 m

v

v

v

2 22

2

2

2

2

55 47,63

2

1309,8 m

z vS

S

S

Větší pozemek má pan Novák.

Page 12: PYTHAGOROVA VĚTA - zsholysov.cz

- 12 -

16. Do jaké výšky sahá dvojitý žebřík 6 m dlouhý, jsou-li jeho dolní konce od sebe vzdáleny

5 m?

Řešení: dvojitý žebřík je rovnoramenným trojúhelníkem a jeho výška je výškou žebříku

2 26 2,5

29,75

5,5 m

v

v

v

Dvojitý žebřík dosahuje do výšky 5,5 m.

17. Vypočtěte délku strany čtverce a jeho obsah, jestliže jeho úhlopříčka má délku 5 2 cm.

Řešení: 5 2 cmu , a = ?, S = ?

Platí Pythagorova věta:

Page 13: PYTHAGOROVA VĚTA - zsholysov.cz

- 13 -

2 2 2

2 2

22

2

2

2

2

2

5 2

2

50

2

25

5 cm

u a a

u a

ua

ua

a

a

a

a

Délka strany čtverce je 5 cm.

2

2

2

5

25 cm

S a

S

S

Obsah čtverce je 25 cm2.

18. Na těleso působí v témže bodě dvě síly F1= 160 N a F2= 40 N, které svírají úhel velikosti

900. Určete velikost výslednice těchto sil.

Řešení: F1 = 160 N, F2 = 40 N, F = ?

2 2

1 2

2 2160 40

25600 1600

27200

164,9 N

F F F

F

F

F

F

Velikost výslednice těchto sil je 164,9 N.

19. Narýsujte úsečku CD, jejíž délka je 10 cm.

Řešení: Sestrojíme pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu B, odvěsna AB

bude mít délku 3 j. d. (jednotkové délky, např. 3 cm), odvěsna BC bude mít délku 1 j. d.

Page 14: PYTHAGOROVA VĚTA - zsholysov.cz

- 14 -

(jednotkovou délku, např. 1 cm), délka přepony AC je potom 10 cm.

2 23 1 10AC .

20. Krabice tvaru krychle má obsah 384 cm2. Určete délku její:

a) hrany

b) stěnové úhlopříčky

c) tělesové úhlopříčky

Řešení:

a) 2384 cmS , ?a 2

2

6

6

6

384

6

64

8 cm

S a

Sa

Sa

a

a

a

Délka hrany krychle je 8 cm.

Page 15: PYTHAGOROVA VĚTA - zsholysov.cz

- 15 -

b) 2384 cmS , 8 cma , ?tu 2 2 2

2 2

2

2

2

2

2 8

128

11,3 cm

t

t

t

t

t

t

u a a

u a

u a

u

u

u

Délka stěnové úhlopříčky krychle je 11 3 cm.

c) 2384 cmS , 8 cma , 11,3 cmtu , ?u

2 2 2

2 2

2 211,3 8

191,69

13,8 cm

t

t

u u a

u u a

u

u

u

Délka tělesové úhlopříčky krychle je 13,8 cm.

21. Vejde se hůl o délce 70 cm do kufru o délce 60 cm, šířce 40 cm a výšce 20 cm?

Řešení: a = 60 cm, b = 40 cm, c = 20 cm, u = ? (stěnová úhlopříčka dolní podstavy)

2 2 2

2 2

2 260 40

5200

72,1 cm

u a b

u a b

u

u

u

Hůl o délce 70 cm se vejde do kufru, protože délka úhlopříčky dolní podstavy je 72,1 cm.

Page 16: PYTHAGOROVA VĚTA - zsholysov.cz

- 16 -

22. Vodorovná vzdálenost dvou míst je podle plánu 300 m, výškový rozdíl činí 22 m. Jaká je

skutečná vzdálenost těchto míst?

Řešení:

V pravoúhlém trojúhelníku platí Pythagorova věta: 2 2 2300 20

90000 400

90400

300,7 m

x

x

x

x

Skutečná vzdálenost míst je 300,7 m.

23. Kosočtverec má úhlopříčky délky u1 = 12 cm, u2 = 16 cm. Vypočítejte:

a) délku strany kosočtverce

b) jeho obsah

Řešení:

a) u1 = 12 cm, u2 = 16 cm, a = ?

Pro výpočet délky strany kosočtverce využijeme vlastnosti úhlopříček kosočtverce,

které jsou k sobě kolmé a navzájem se půlí.

V pravoúhlém trojúhelníku ASB platí Pythagorova věta:

Page 17: PYTHAGOROVA VĚTA - zsholysov.cz

- 17 -

2 2

2 1 2

2 2

1 2

2 2

2 2

2 2

12 16

2 2

100

10 cm

u ua

u ua

a

a

a

Délka strany kosočtverce je 10 cm.

b) u1 = 12 cm, u2 = 16 cm, S = ?

Úhlopříčky rozdělí kosočtverec na 4 shodné pravoúhlé trojúhelníky. Délky jejich od-

věsen jsou 1

2

u a 2

2

u. Obsah jednoho pravoúhlého trojúhelníku je

1 2 1 2

1 22 2 4

2 2 8

u u u uu u

S

. Obsah 4 shodných pravoúhlých trojúhelníků je

1 2 1 248 2

u u u uS

. Obsah čtyřúhelníku lze pomocí úhlopříček vypočítat užitím

vzorce 21 2 12 1696 cm

2 2

u uS

. Obsah kosočtverce je 96 cm

2.

24. Vypočítejte obsah pravidelného šestiúhelníku s délkou strany a = 6 cm.

Řešení: a = 6 cm, S = ?

Obsah pravidelného šestiúhelníku vypočítáme jako obsah šesti shodných rovnostranných

trojúhelníků, které nám vzniknou při sestrojení úhlopříček tohoto šestiúhelníku. Délka

strany tohoto rovnostranného trojúhelníku je 6 cm.

Page 18: PYTHAGOROVA VĚTA - zsholysov.cz

- 18 -

Nejdříve musíme vypočítat výšku rovnostranného trojúhelníku va. Tu vypočítáme pomocí

Pythagorovy věty z pravoúhlého trojúhelníku BOS, který vznikl sestrojením výšky

v rovnostranném trojúhelníku ABS. 2

2

22

2 2

2

2

6 3

27

5,2 cm

a

a

a

a

a

av BS

av BS

v

v

v

26 3 3 6 5,2 93,6 cm2

aa

a vS av

Obsah šestiúhelníku je 93,6 cm2.

Page 19: PYTHAGOROVA VĚTA - zsholysov.cz

- 19 -

Užití Pythagorovy věty v planimetrii a stereometrii

1. Vypočítejte délku úhlopříčky obdélníku ABCD o stranách a = 70 cm, b = 40 cm.

Řešení:

Úhlopříčka obdélníka je přeponou v pravoúhlém trojúhelníku s odvěsnami a a b .

2 2 2

2 270 40

6500

80,6 cm.

Úhlopříčka má délku přibližně 80,6 cm.

u a b

u

u

u

2. Vypočítejte délku úhlopříčky čtverce o straně:

a) a = 5 cm

b) a = 1 m.

Řešení:

a) Úhlopříčka čtverce je přeponou v pravoúhlém trojúhelní-

ku s odvěsnami a a a .

2 2 2

2 25 5

50

7,1 cm.

Úhlopříčka má délku přibližně 7,1 cm.

u a a

u

u

u

b) 2 21 1

2

1,4 m.

Úhlopříčka má délku přibližně 1,4 m.

u

u

u

Page 20: PYTHAGOROVA VĚTA - zsholysov.cz

- 20 -

3. Vypočítej výšku rovnostranného trojúhelníku o straně a = 10 dm.

Řešení:

2

2 2

2 2 2

Hledaná výška je odvěsnou v pravoúhlém trojúhelníku, jehož druhá odvěsna má délku 2

a přepona délku .

2

10 5

75

8,7 dm.

Výška měří přibližně 8,7 dm.

a

a

av a

v

v

v

4. Vypočítej obsah rovnostranného trojúhelníku o straně a = 10,4 cm.

Řešení:

Nejdřív vypočteme výšku rovnostranného trojúhelníku pomocí Pythagorovy věty. 2

2 2

2 2 2

2

10,4 5,2

81,12

9 cm.

av a

v

v

v

2

2

.

2

10,4 . 9

2

46,8 cm .

Obsah trojúhelníku je 46,8 cm .

a vS

S

S

5. Mostní kruhový oblouk má rozpětí 24 m a výšku 8 m. Vypočítejte poloměr kružnice, jejíž

částí je kruhový oblouk ?

22 2

2 2

24 12

8 8

?

8 12

16 64 144

16 208

13

Poloměr kružnice, jejíž částí je mostní oblouk, je 13 metrů.

AB m XB m

XY m SX r

r SB SY

r r

r r r

r

r

Page 21: PYTHAGOROVA VĚTA - zsholysov.cz

- 21 -

6. Král smrků v pralese Boubín (před svým pádem v prosinci 1970) rostl šikmo. Vychýlení

vrcholu od svislé osy činilo 11 m, dosahoval výšky 45,9 m. Jaká byla délka jeho kmene ?

Řešení:

2 2 2

2

2

délka kmene je přeponou pravoúhlého trojúhelníku

11 45,9

121 2106,81

2227,81

2227,81

47,2 m

Délka kmene byla přibližně 47,2 m.

x

x

x

x

x

7. Jaké rozměry má obrazovka televizoru o úhlopříčce 60 cm a šířce 45 cm ?

Řešení:

2 2

výška obrazovky je odvěsnou pravoúhlého trojúhelníku

60 45

40 cm

Rozměry obrazovky jsou 45 cm x 40 cm.

x

x

8. Novákovi si koupili televizor s plochou obrazovkou o úhlopříčce 55 cm. Určete délku

a šířku obrazovky, víte-li, že jsou v poměru 4 : 3 ?

Řešení:

2 22

2

délka a šířka obrazovky mají obecně délky 4 a 3 a jsou

odvěsnami pravoúhlého trojúhelníku s přeponou délky 55 cm

55 4 3

3 025 25

3 025

25

121

11

Rozměry obrazovky budou 4.11 44 cm, 3.11 33

x x

x x

x

x

x

x

a b

cm.

Page 22: PYTHAGOROVA VĚTA - zsholysov.cz

- 22 -

9. Obdélníkový obrázek má strany v poměru 4 : 3, jeho úhlopříčka má délku 20 cm. Určete

jeho rozměry.

Řešení:

2 22

2

strany obrázku mají obecně délky 4 a 3 a jsou

odvěsnami pravoúhlého trojúhelníku s přeponou

délky 20 cm

20 4 3

400 25

400

25

16

4

Délky stran obdélníka budou 4.4 16 cm, 3.4 12 cm.

x x

x x

x

x

x

x

a b

10. Kosočtverec má úhlopříčky 24 cm a 10 cm. Urči délku jeho strany.

Řešení:

2 2 2

Úhlopříčky v kosočtverci jsou na sebe kolmé a navzájem se půlí. Z pravoúhlého trojúhelníku

s odvěsnami 12 cm a 5 cm pak určíme délku jeho přepony, která je stranou daného kosočtverce.

12 5

144 25

c

c

169

13

Strana kosočtverce má délku 13 cm.

c

c

Page 23: PYTHAGOROVA VĚTA - zsholysov.cz

- 23 -

11. Obvod kosočtverce je 60 cm. Vypočti délku jeho úhlopříček, jsou-li v poměru 3 : 4.

Řešení:

Délka strany kosočtverce je 60: 4 15 a cm .

Úhlopříčky v kosočtverci jsou na sebe kolmé a vzájemně se půlí. Z Pythagorovy věty pro

pravoúhlý trojúhelník s odvěsnami3 4

a 2 2

x x, přeponou délky 15 cm určíme neznámou x.

2 2

2

2 2

2

2

3 415

2 2

9 16225

4 4

25225

4

900 25

900

25

6

x x

x x

x

x

x

x

Úhlopříčky kosočtverce mají délky 1 2u = 3 6 =18 cm, u = 4 6 =24 cm.

Page 24: PYTHAGOROVA VĚTA - zsholysov.cz

- 24 -

12. Nádoba tvaru hranolu s podstavou tvaru kosočtverce má jednu úhlopříčku podstavy 20 cm

a hranu podstavy 26 cm. Hrana podstavy je k výšce hranolu v poměru 2 : 3. Vypočtěte,

kolik litrů vody se vejde do nádoby ?

Řešení:

Úhlopříčky v kosočtverci jsou na sebe kolmé a navzájem se půlí. Z Pythagorovy věty pro

pravoúhlý trojúhelník s odvěsnami 1 2u u a =10 cm

2 2, přeponou délky 26 cm určíme dél-

ku úhlopříčky u1.

2 2

21 2

2 21

1

u u26

2 2

u26 10

2

u 48 cm

Pomocí délek úhlopříček vypočteme obsah podstavy hranolu:

1 2p

p

2

p

u .uS

2

20.48S

2

S 480 cm

Z poměru určíme výšku hranolu:

26 : v = 2 : 3

v = 39 cm

Určíme objem nádoby:

p

3

V = S . v

V = 480 . 39

V = 18 720 cm 18,72 l

Do nádoby se vejde 18,72 litrů vody

Page 25: PYTHAGOROVA VĚTA - zsholysov.cz

- 25 -

13. Stožár je uchycen pomocí 4 stejných lan. Vypočtěte, v jaké výšce je lano uchyceno, je-li

délka lana 7 m a vzdálenost kolíku lana od paty stožáru je 4 m ?

Řešení:

2 2 2

Ukotvení lana tvoří pravoúhlý trojúhelník KPV podle nákresu

9 5

81 25

56

7,48 m

Lano je ukotveno přibližně ve výšce 7,5 m.

x

x

x

x

14. Vypočtěte délku žebříku opřeného o zeď domu ve vzdálenosti 3,5 m a ve výšce 7 m od

země.

Řešení:

2 2 2

Délka žebříku je přeponou pravoúhlého trojúhelníku s odvěsnami délek 3,5 a 7.

3,5 7

12,25 49

61,25

7,8

Žebřík měří přibližně 7,8 metru.

c

c

c

c m

15. Rozhodněte, zda dosáhne žebřík dlouhý 3 metry na zeď vysokou 2,8 m, musí-li být kvůli

stabilitě jeho spodní konec 70 cm od zdi ?

Řešení:

2 2 2

Pro délku žebříku musí platit 3 , kde je přeponou pravoúhlého

trojúhelníku z nákresu

2,8 0,7

7,84 0,49

8,33

2,89 m

Žebřík bude opřen o hranu zdi a bude nad zeď přečnívat.

x x

x

x

x

x

Page 26: PYTHAGOROVA VĚTA - zsholysov.cz

- 26 -

16. Průměr kmene stromu je 30 cm. Lze z něj vyříznout trám s příčným řezem ve tvaru čtver-

ce o straně 20 cm ?

Řešení:

2 2 2

2

Hrana čtvercového trámu je odvěsnou rovnoramenného pravoúhlého

trojúhelníku s přeponou délky 30 cm podle nákresu

30

2 900

450

21,2 cm

Můžeme vyříznout čtvercový trám s hranou až 21 cm.

a a

a

a

a

17. Cheopsova pyramida v Egyptě má čtvercovou podstavu o hraně asi 227 m a výšku při-

bližně 140 m. Vypočítejte:

a) délku úhlopříčky její podstavy

b) délku boční hrany pyramidy

Řešení:

a)

2 2 2

Úhlopříčka podstavy pyramidy je přeponou rovnoramenného pravoúhlého

trojúhelníku se stranou délky 227 m.

227 227

51 529 51 529

103 058

321 m

Úhlopříčka podstavy pyramidy měří 321 m.

u

u

u

u

b)

2 2 2

Hrana pyramidy je přeponou pravoúhlého trojúhelníku s odvěsnami 140 m (výška

pyramidy) a 160,5 m (polovina úhlopříčky v podstavě pyramidy)

140 160,5

19 600 25 760,25

45 360,25

213 m

Hrana pyrami

h

h

h

h

dy má délku přibližně 213 m.

Page 27: PYTHAGOROVA VĚTA - zsholysov.cz

- 27 -

18. Podstavou pravidelného trojbokého hranolu je rovnostranný trojúhelník se stranou délky

6 cm. Vypočítejte povrch a objem tohoto hranolu, jestliže jeho výška je 16 cm.

Řešení:

p

2 2 2

p

p

p

p

p

2

p

pomocné výpočty:

- výška podstavy hranolu v je odvěsnou pravoúhlého trojúhelníku

podle nákresu

v 6 3

v 27

v 5,2 cm

- obsah podstavy hranolu (obsah trojúhelníku)

a.v 6 . 5, 2S

2 2

S 15,6 cm

Povrch hra

p pl

2

p

3

nolu: S = 2.S S (plášť hranolu tvoří 3 obdélníky se

stranami 6 cm a 16 cm)

S = 2 . 15,6 + 3 . 6 . 16

S = 319,2 cm

Objem hranolu: V = S . v, kde v = 16 cm (výška hranolu)

V = 15,6 . 16

V = 249,6 cm

Povr

2 3ch hranolu je 319,2 cm a objem hranolu je 249,6 cm .

Page 28: PYTHAGOROVA VĚTA - zsholysov.cz

- 28 -

19. V rovnoramenném lichoběžníku ABCD se základnami AB a CD, je a = 80 mm,

b = 52 mm, c = 40 mm. Určete výšku lichoběžníka a vypočtěte jeho obsah.

Řešení:

2 2 2

2 2 2

2 2 2

2

V rovnoramenném lichoběžníku platí:

: 2

80 40 : 2 20

V pravoúhlém trojúhelníku AD´D podle Pythagorovy věty platí:

52 20

2304

48 Výška lichoběžníka je 48 mm.

Výpočet obsahu li

x a c

x

d x v

v d x

v

v

v

2 2

choběžníka:

2

80 4048

2

2 880 mm Obsah lichoběžníka je 2 880 mm .

a cS v

S

S

20. Vypočítejte, jak daleko jsou od sebe hroty ručiček hodin v 15:00 ? (Hrot hodinové ručič-

ky je od středu ciferníku vzdálen 8 cm a hrot minutové ručičky 11 cm.)

Řešení:

2 2 2

2 2 2

2

podle Pythagorovy věty platí:

11 8

185

13,6 cm

Vzdálenost hrotů ručiček je přibližně 13,6 cm.

x m h

x

x

x

Page 29: PYTHAGOROVA VĚTA - zsholysov.cz

- 29 -

21. V kružnici ; 8,4cmk S je tětiva AB vzdálena od středu S 1,2 cm. Vypočítej velikost té-

to tětivy.

Řešení:

2 2 2

podle Pythagorovy věty pro SS´B ( BS = 8,4, BS´ = , SS´ = 1,2) platí:

8,4 1,2

70,56 1,44

69,12

8,3 cm

AB 2. 16,6 cm

Velikost tětivy AB je přibližně 16,6 cm.

x

x

x

x

x

x

22. Je dána kružnice ; 12,6 cmk S a její dvě navzájem rovnoběžné tětivy AB a

CD, 19,2 cm, CD 8,4 cmAB . Vypočítej vzdálenost tětiv.

Řešení:

1.Řešení:

2.Řešení:

1

1 1 1

2 2 2

1

1

1

1

2

2 2 2

2 2 2

2

podle Pythagorovy věty pro CS S

( CS =12,6, CS = CD :2, SS = ) platí:

12,6 4,2

158,76 17,64

141,12

11,9 cm

podle Pythagorovy věty pro AS S

( AS =12,6, AS = AB :2, SS = ) platí:

12,6 9,6

x

x

x

x

x

x

x

2

2

2

1 2 1 2

1 2 1 2

158,76 92,16

66,6

8, 2 cm

1.řešení: S 20,1 cm

2.řešení: S 3,7 cm

x

x

x

S x x

S x x

Page 30: PYTHAGOROVA VĚTA - zsholysov.cz

- 30 -

23. Vypočítejte výměru čtvercového pozemku v hektarech, má-li chodník spojující napříč po-

zemkem jeho protější rohy délku 200 metrů ?

Řešení:

2 2 2

2

2 2

podle Pythagorovy věty pro trojúhelník z náčrtku platí:

200

40 000 2 / :2

20 000

141,4 m

. 141,4 19 994 m . (Ale pozor při výpočtu

druhé odmocniny jsme délku strany pozemku

zaokrouhlov

x x

x

x

x

S x x

2

2

ali !)

Je vhodné pro výpočet použít délku strany ve tvaru odmocniny:

. 20 000 20 000 m 2 ha

Skutečná výměra pozemku je 2 ha.

S x x

Page 31: PYTHAGOROVA VĚTA - zsholysov.cz

- 31 -

24. Jaký musí být nejmenší průměr kruhu, aby se z něj dala uříznout pravidelná šestiúhelní-

ková podložka, která má vzdálenost rovnoběžných stran 10 cm ?

Řešení:

2

2 2

2 22

2

Pravidelný šestiúhelník lze rozdělit na 6 shodných rovnostranných

trojúhelníků (viz. náčrtek)

podle Pythagorovy věty pro trojúhelník z náčrtku platí:

52

25 / -4 4

325 /

4

rr

r rr

r

2

4

3

100

3

100

3

5,8 cm 11,6 cm

Průměr kruhu musí být přibližně 11,6 cm.

r

r

r d

Page 32: PYTHAGOROVA VĚTA - zsholysov.cz

- 32 -

25. Vypočítejte obsah pravidelného šestiúhelníku vepsaného do kružnice, která má průměr

11,6 cm.

Řešení:

1 1

Obsah pravidelného šestiúhelníka lze rozdělit na 6 shodných

rovnostranných trojúhelníků (viz. náčrtek), kde pro ABS platí:

BS : 2 5,8 cm, BS BS : 2 2,9 cm, SS je výškou ABS.

Podle Pythagorovy věty pro

d

2 2 2 2

2

2

trojúhelník z náčrtku platí:

5,8 2,9 / -2,9

33,64 8,41

25,23

5 cm

Obsah pravidelného šestiúhelníka vypočteme:

AB .S 6.S , kde S

2

5,8 5S 6

2

S 87 cm

Obsah pravidelného šestiúhelníka je

v

v

v

v

v

2 87 cm .

26. Papírový drak je upoután na provaze o délce 50 metrů a vznáší se nad místem vzdáleném

12 m. Vypočítejte, v jaké výšce se drak vznáší ?

Řešení:

2 2 2

2

Výška, ve které se drak vznáší je odvěsnou pravoúhlého

trojúhelníku z nákresu. Podle Pyth.věty platí:

12 50

2500 144

2356

48,5 m

Drak se vznáší ve výšce 48,5 m.

v

v

v

v

Page 33: PYTHAGOROVA VĚTA - zsholysov.cz

- 33 -

27. Vypočítejte obsah pravoúhlého trojúhelníka, jestliže jeho kratší odvěsna měří 7 cm

a poloměr kružnice opsané tomuto trojúhelníku je 5 cm.

Řešení:

2 2 2

2

Z nákresu je zřejmé, že střed kružnice opsané

pravoúhlému trojúhelníku leží ve středu jeho přepony,

a proto přepona má délku 10 cm.

Podle Pyth.věty platí:

7 10

100 49

51

7,14 cm

7 7,14S

2

S 2

c

b

b

b

b

2

2

4,99 cm

Obsah daného trojúhelníka je přobližně 25 cm .

Pythagorova věta cvičení I

1. Vypočítejte k následujícím dvojicím čísel a, b takové číslo c, že platí 2 2 2c a b :

a) 6, 8

b) 12, 16

c) 16, 30

d) 14, 48

Řešení:

2 2 2

2 2 2

2 2 2

2 2 2

a) 6 8 36 64 100 = 10

b) 12 16 144 256 400 = 20

c) 16 30 256 900 1156 = 34

d) 14 48 196 2304 2500 = 50

c c

c c

c c

c c

Page 34: PYTHAGOROVA VĚTA - zsholysov.cz

- 34 -

2. Sestrojte k uvedeným trojicím čísel a, b, c trojúhelníky o stranách délky a, b, c a změřte

v každém z nich úhel proti straně c. (délky stran jsou dány v milimetrech)

Řešení::

Podle věty sss sestrojíme trojúhelníky. Trojúhelníky a), b) jsou pravoúhlé, ale c) není pra-

voúhlý.

a)

b)

c)

3. Rozhodněte, zda je trojúhelník pravoúhlý, mají-li jeho strany délky v milimetrech:

a) 4, 2, 3

b) 4, 3, 5

c) 4, 5, 6

d) 4, 11, 12

e) 5, 12, 13

f) 6, 13, 14

g) 4, 6, 8

h) 5, 7, 9

i) 6, 8, 10

Řešení:

2 2 2 2

2 2 2 2 2

a) + = 2 3 =13

4 16 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

b) + = 3 4 =25

5 25 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

c) + = 4 5 =41

6 36 trojúhelník není pravoúhlý +

a b

c a b c

Page 35: PYTHAGOROVA VĚTA - zsholysov.cz

- 35 -

2 2 2 2

2 2 2 2 2

d) + = 4 11 =137

12 144 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

e) + = 5 12 =169

13 169 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

f) + = 6 13 =205

14 196 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

g) + = 4 6 =52

8 64 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

h) + = 5 7 =74

9 81 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

i) + = 6 8 =100

10 100 trojúhelník je pravoúhlý +

a b

c a b c

4. Rozhodněte, je-li trojúhelník pravoúhlý, jestliže jeho strany mají délky:

a) 80 mm, 100 mm , 160 mm

b) 80 cm, 150 cm, 170 cm

c) 50 m, 40 m, 30 m

d) 50 cm, 40 cm, 60 cm

Řešení

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2

a) + = 80 100 =16400

160 25600 trojúhelník není pravoúhlý +

b) + = 80 150 =28900

170 28900 trojúhelník je pravoúhlý +

c) + = 30 40 =2500

50 2500 troj

a b

c a b c

a b

c a b c

a b

c

2 2 2

2 2 2 2

2 2 2 2 2

úhelník je pravoúhlý +

d) + = 50 40 =4100

60 3600 trojúhelník není pravoúhlý +

a b c

a b

c a b c

Page 36: PYTHAGOROVA VĚTA - zsholysov.cz

- 36 -

5. Rozhodněte, zda jsou trojúhelníky se stranami těchto délek pravoúhlé:

a) 4,8 cm; 9 cm; 10,4 cm

b) 3,5 cm; 84 mm; 9,1 cm

c) 1,3 dm; 12 cm; 50 mm

d) 2,4 m; 10 dm; 260 cm

e) 0,1 m; 8 cm; 60 mm

f) 1 m; 23 dm; 240 cm

Řešení:

2 2 2 2

2 2 2 2 2

a) + = 4,8 9 =104,04

10,4 108,16 trojúhelník není pravoúhlý +

a b

c a b c

POZOR: Délky stran musíme nejprve převést na stejné jednotky !

2 2 2 2

2 2 2 2 2

b) 3,5 cm; 8,4 cm; 9,1 cm

+ = 3,5 8,4 = 82,81

9,1 82,81 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

c) 13 cm; 12 cm; 5 cm

+ = 12 5 = 169

13 169 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

d) 24 dm; 10 dm; 26 dm

+ = 24 10 = 676

26 676 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

e) 10 cm; 8 cm; 6 cm

+ = 8 6 = 100

10 100 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

f) 10 dm; 23 dm; 24 dm

+ = 10 23 = 629

24 576 trojúhelník není pravoúhlý +

a b

c a b c

6. Zjisti, zda ∆PQR: p = 13 cm, q = 14 cm, r = 19 cm je pravoúhlý.

Řešení:

2 2 2 2

2 2

+ = 13 14 =365

19 361 Trojúhelník není pravoúhlý.

p q

r PQR

Page 37: PYTHAGOROVA VĚTA - zsholysov.cz

- 37 -

7. Zjisti, zda ∆MNO: m = 12 cm, n = 16 cm, o = 20 cm je pravoúhlý.

Řešení:

2 2 2 2

2 2

+ = 12 16 =400

20 400 Trojúhelník je pravoúhlý.

m n

o MNO

8. Vypočítejte délku přepony pravoúhlého trojúhelníku, jsou-li dány jeho odvěsny:

a) 9 cm a 56 mm

b) 18 cm a 0,8 m

Řešení:

2 2 2

2 2 2

2

a) + =

= 9 5,6

112,36

112,36

10,6 cm. Délka přepony je 10,6 cm.

a b c

c

c

c

c

2 2 2

2 2 2

2

b) + =

= 18 80

6724

6724

82 cm. Délka přepony je 82 cm.

a b c

c

c

c

c

9. Vypočítejte délku druhé odvěsny v pravoúhlém trojúhelníku, znáte-li délku přepony a dél-

ku jedné odvěsny:

a) 26 cm a 10 cm

b) 18,5 mm a 14,8 mm

Řešení:

2 2 2 2 2 2

2 2 2

2

a) + = =

= 26 10

576

576

24 cm. Délka druhé odvěsny je 24 cm.

a b c b c a

b

b

b

b

Page 38: PYTHAGOROVA VĚTA - zsholysov.cz

- 38 -

2 2 2 2 2 2

2 2 2

2

b) + = =

= 18,5 14,8

123,21

123,21

11,1 mm. Délka druhé odvěsny je 11,1 mm.

a b c b c a

b

b

b

b

10. Vypočítejte délku přepony pravoúhlého trojúhelníku ABC, jsou-li dány jeho odvěsny:

a) 11 cm; 6,2 cm

b) 2,25 m; 1,2 m

b c

a b

Řešení:

2 2 2

2 2 2

2

a) + = POZOR: strana je přeponou v trojúhelníku !

= 11 6,2

159,44

159,44

12,6 cm. Délka přepony je přibližně 12,6 cm.

b c a a

a

a

a

a

2 2 2

2 2 2

2

b) + =

=2,25 1,2

6,5025

6,5025

2,55 m. Délka přepony je 2,55 m.

a b c

c

c

c

c

11. Vypočítejte délku odvěsny v pravoúhlém trojúhelníku s přeponou c:

a) 165 cm; 122 cm

b) 16,4 m; 24,5 m

c a

b c

Řešení:

2 2 2 2 2 2

2 2 2

2

a) + = =

= 165 122

12341

12341

111,1 cm. Délka druhé odvěsny je přibližně 111,1 cm.

a b c b c a

b

b

b

b

Page 39: PYTHAGOROVA VĚTA - zsholysov.cz

- 39 -

2 2 2 2 2 2

2 2 2

2

b) + = =

= 24,5 16,4

331,29

331,29

18,2 m. Délka druhé odvěsny je přibližně18,2 m.

a b c a c b

a

a

a

a

12. Je dán pravoúhlý trojúhelník ABC s pravým úhlem u vrcholu C. Vypočítejte délku chybě-

jící strany, je-li:

a) 3 cm; 4,5 cm

b) 2,25 cm; 7,5 cm

c) 0,8 cm; 2,5 cm

d) 34,5 cm; 50,5 cm

a b

a c

a b

b c

Řešení:

2 2 2

2 2 2

2

a) + =

= 3 4,5

29,25

29,25

5,4 cm. Délka přepony je přibližně 5,4 cm.

a b c

c

c

c

c

2 2 2 2 2 2

2 2 2

2

b) + = =

= 7,5 2,25

51,1875

51,1875

7,2 cm. Délka druhé odvěsny je přibližně 7,2 cm.

a b c b c a

b

b

b

b

2 2 2

2 2 2

2

c) + =

= 0,8 2,5

6,89

6,89

2,6 cm. Délka přepony je přibližně 2,6 cm.

a b c

c

c

c

c

2 2 2 2 2 2

2 2 2

2

d) + = =

= 50,5 34,5

1360

1360

36,9 m. Délka druhé odvěsny je přibližně 36,9 m.

a b c a c b

a

a

a

a

Page 40: PYTHAGOROVA VĚTA - zsholysov.cz

- 40 -

13. Sestrojte pravý úhel, máte-li k použití provázek, který je rozdělen uzlíky na 30 stejných

dílů

Řešení:

Pravoúhlý trojúhelník se stranami 5, 12, 13 dílů

Pythagorova věta – cvičení II

1. Ověřte, zda může mít obdélník:

a) délky stran 8 cm, 15 cm a délku úhlopříčky 17 cm;

b) délky stran 36 mm, 38 mm a délku úhlopříčky 40 mm;

c) délky stran 8 dm, 6 dm a délku úhlopříčky 1 m;

d) délky stran 1,1 cm, 2,4 cm a délku úhlopříčky 2,7 cm

e) délky stran 2,4 dm, 3,4 dm a délku úhlopříčky 4,4 dm

f) délky stran 0,15 dm, 20 mm a délku úhlopříčky 2,5 cm

Řešení:

Sousední strany obdélníka a a b tvoří spolu s úhlopříčkou u pravoúhlý trojúhelník, a proto

musejí splňovat Pythagorovu větu: a2

+ b2 = u

2.

2 2 2 2

2 2 2 2 2

a) + = 8 15 = 64 + 225 = 289

17 289 + jedná se o obdélník

a b

u a b u

2 2 2 2

2 2 2 2 2

b) + = 36 38 = 1296 + 1444 = 2740

40 1600 + není splněna podmínka pro obdélník

a b

u a b u

2 2 2 2

2 2 2 2 2

c) nejprve všechny délky převedeme na decimetry

+ = 8 6 = 64 + 36 = 100

10 100 + jedná se o obdélník

a b

u a b u

2 2 2 2

2 2 2 2 2

d) + = 1,1 2,4 = 1,21 + 5,76 = 6,97

2,7 7,29 + není splněna podmínka pro obdélník

a b

u a b u

2 2 2 2

2 2 2 2 2

e) + = 2,4 3,4 = 5,76 +11,56 =17,32

4,4 19,36 + není splněna podmínka pro obdélník

a b

u a b u

2 2 2 2

2 2 2 2 2

f) nejprve všechny délky převedeme na centimetry

+ = 1,5 2 =2,25 + 4 = 6,25

2,5 6,25 + jedná se o obdélník

a b

u a b u

Page 41: PYTHAGOROVA VĚTA - zsholysov.cz

- 41 -

2. Rozhodněte podle Pythagorovy věty, který z trojúhelníků zadaných délkami stran je pravo-

úhlý:

a) 3 ; 4 ; 5

b) 2 ; 4 ; 6

c) 3 ; 2 ; 5

d) 3 4 5

; ; 7 7 7

e) 7 7 7

; ; 3 4 5

f) 15 20 25

; ; 7 7 7

g) 2x; 4x; 6x

h) 3x; 4x; 5x

i) 4x; 5x; 6x

j) 1 ; 1 ; 2

k) 2 ; 2 ; 3

l) 2 ; 2 ; 8

m) 0,6; 0,8; 1

n) 3 4

; ; 15 5

o) 0,5; 1,2; 1,3

Řešení:

2 22 2

22 2 2 2

a) + = 3 4 = 3 + 4 = 7

5 5 trojúhelník není pravoúhlý +

a b

c a b c

2 22 2

22 2 2 2

b) + = 2 4 = 2 + 4 = 6

6 6 trojúhelník je pravoúhlý +

a b

c a b c

22 2 2

22 2 2 2

c) + = 3 2 = 3 + 4 = 7

5 5 trojúhelník není pravoúhlý +

a b

c a b c

2 2

2 2

2

2 2 2 2

3 4 9 16 25d) + = = + =

7 7 49 49 49

5 25 trojúhelník je pravoúhlý +

7 49

a b

c a b c

Page 42: PYTHAGOROVA VĚTA - zsholysov.cz

- 42 -

2 2

2 2

2

2 2 2 2

e) Pozor, přeponou je první z čísel.

49. 25+167 7 49 49 49.41 2009 9 + = = + = 5

4 5 16 25 400 400 400 400

7 49 4 5 trojúhelník není pravoúhlý +

3 9 9

c

a b

c a b c

2 2

2 2

2

2 2 2 2

15 20 225 400 625f) + = = + =

7 7 49 49 49

25 625 trojúhelník je pravoúhlý +

7 49

a b

c a b c

2 22 2 2 2 2

22 2 2 2 2

g) + = 2 4 = 4 + 16 = 20

6 36 trojúhelník není pravoúhlý +

a b x x x x x

c x x a b c

2 22 2 2 2 2

22 2 2 2 2

h) + = 3 4 = 9 + 16 = 25

5 25 trojúhelník je pravoúhlý +

a b x x x x x

c x x a b c

2 22 2 2 2 2

22 2 2 2 2

i) + = 4 5 = 16 + 25 = 41

6 36 trojúhelník není pravoúhlý +

a b x x x x x

c x x a b c

2 2 2 2

22 2 2 2

j) + = 1 1 = 2

2 2 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

22 2 2 2

k) + = 2 2 = 4 + 4 = 8

3 3 trojúhelník není pravoúhlý +

a b

c a b c

2 2 2 2

22 2 2 2

l) + = 2 2 = 4 + 4 = 8

8 8 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

m) + = 0,6 0,8 = 0,36 + 0,64 = 1

1 1 trojúhelník je pravoúhlý +

a b

c a b c

2 2

2 2

2 2 2 2 2

3 4 9 16 25n) + = = + = 1

5 5 25 25 25

1 1 trojúhelník je pravoúhlý +

a b

c a b c

2 2 2 2

2 2 2 2 2

o) + = 0,5 1,2 = 0,25 + 1,44 = 1,69

1,3 1,69 trojúhelník je pravoúhlý +

a b

c a b c

Page 43: PYTHAGOROVA VĚTA - zsholysov.cz

- 43 -

3. Jak dlouhá je úhlopříčka obdélníku, který má délky stran:

a) 8 cm; 1,5 dm

b) 1,5 cm; 36 mm

c) 33 mm; 0,56 dm

d) 215 mm; 32 cm

e) 96 cm; 11 dm

f) 1,8 m; 27 dm

Řešení:

Sousední strany obdélníka a a b tvoří spolu s úhlopříčkou u pravoúhlý trojúhelník, a proto

musejí splňovat Pythagorovu větu: a2

+ b2 = u

2. Nejdřív převedeme obě délky na stejné

jednotky a pak vypočteme délku přepony pravoúhlého trojúhelníka.

2 2 2

2 2

a) 8 cm, 15 cm

+

+

64 225

289

17 cm

a b

u a b

u a b

u

u

u

2 2 2

2 2

b) 15 mm, 36 mm

+

+

225 1296

1521

39 mm

a b

u a b

u a b

u

u

u

2 2 2

2 2

c) 3,3 cm, 5,6 cm

+

+

10,89 31,36

42,25

6,5 cm

a b

u a b

u a b

u

u

u

Page 44: PYTHAGOROVA VĚTA - zsholysov.cz

- 44 -

2 2 2

2 2

d) 21,5 cm, 32 cm

+

+

462,25 1024

1486,25

38,55 cm

a b

u a b

u a b

u

u

u

2 2 2

2 2

e) 96 cm, 110 cm

+

+

9216 12100

21316

146 cm

a b

u a b

u a b

u

u

u

2 2 2

2 2

f) 18 dm, 27 dm

+

+

324 729

1053

32,45 cm

a b

u a b

u a b

u

u

u

4. Vypočítejte délku druhé strany obdélníka, je-li dána jeho strana a délka úhlopříčky:

a) 1,7 dm; 15 cm

b) 34 cm; 3 dm

c) 15 cm; 2,5 dm

d) 0,56 m; 6,5 dm

e) 11 cm; 146 mm

f) 15 mm; 39 mm

Řešení:

Sousední strany obdélníka a a b tvoří spolu s úhlopříčkou u pravoúhlý trojúhelník, a proto

musejí splňovat Pythagorovu větu: a2

+ b2 = u

2. Nejdřív převedeme obě délky na stejné

jednotky a pak vypočteme délku odvěsny pravoúhlého trojúhelníka.

Page 45: PYTHAGOROVA VĚTA - zsholysov.cz

- 45 -

2 2 2

2 2

a) 15 cm, 17 cm

+

289 225

64

8 cm

a u

u a b

b u a

b

b

b

2 2 2

2 2

b) 30 cm, 34 cm

+

1156 900

256

16 cm

a u

u a b

b u a

b

b

b

2 2 2

2 2

c) 15 cm, 25 cm

+

625 225

400

20 cm

a u

u a b

b u a

b

b

b

2 2 2

2 2

d) 5,6 dm, 6,5 dm

+

42,25 31,36

10,89

3,3 dm

a u

u a b

b u a

b

b

b

2 2 2

2 2

e) 110 mm, 146 mm

+

21316 12100

9216

96 mm

a u

u a b

b u a

b

b

b

Page 46: PYTHAGOROVA VĚTA - zsholysov.cz

- 46 -

2 2 2

2 2

f) 15 mm, 39 mm

+

1521 225

1296

36 mm

a u

u a b

b u a

b

b

b

5. Vypočítejte délku úhlopříčky čtverce, je-li délka strany:

a) 4 cm

b) 3,6 dm

c) 400 mm

d) 70 cm

e) x cm

f) 2x cm

Řešení:

Strany čtverce spolu s úhlopříčkou u tvoří pravoúhlý trojúhelník, a proto musejí splňovat

Pythagorovu větu: a2 + a2 = u2. Po úpravě výrazu dostaneme: 2 2 22 , 2u a u a

2

a) 4 cm

2.4

32

5,7 cm

a

u

u

u

2

b) 3,6 dm

2 . 3,6

25,92

5,1 dm

a

u

u

u

2

c) 400 mm = 4 dm Převedeme na vhodnější jednotku!

2.4

32

5,7 dm

a

u

u

u

2

d) 70 cm = 7 dm Převedeme na vhodnější jednotku!

2.7

98

9,9 dm

a

u

u

u

Page 47: PYTHAGOROVA VĚTA - zsholysov.cz

- 47 -

2

e) cm

2 .

2 cm

a x

u x

u x

2

2

2

f) 2 cm

2 . 2

2 . 4

8

8 cm = 2 2 cm Po částečném odmocnění

a x

u x

u x

u x

u x x

6. Vypočítejte velikost výšky v rovnostranném trojúhelníku se stranou délky:

a) 4 cm;

b) 60 mm;

c) 0,08 m;

d) 10 cm;

e) 1,2 dm;

f) 20 cm

Řešení:

Výška rovnostranného trojúhelníku je odvěsnou pravoúhlého

trojúhelníku podle nákresu 2

2 2

2

2

2

2

a

a

av a

av a

2 2

a) 4 cm

4 2

12

3, 46 cm

a

a

a

a

v

v

v

2 2

b) 60 mm = 6 cm

6 3

27

5, 2 cm

a

a

a

a

v

v

v

Page 48: PYTHAGOROVA VĚTA - zsholysov.cz

- 48 -

2 2

c) 0,08 m = 8 cm

8 4

48

6,93 cm

a

a

a

a

v

v

v

2 2

d) 10 cm

10 5

75

8,66 cm

a

a

a

a

v

v

v

2 2

e) 1,2 dm = 12 cm

12 6

108

10,39 cm

a

a

a

a

v

v

v

2 2

f) 20 cm

20 10

300

17,32 cm

a

a

a

a

v

v

v

7. Vypočítejte délku strany rovnostranného trojúhelníku, má-li jeho výška délku:

a) 4 cm;

b) 60 mm;

c) 0,08 m;

d) 10 cm;

e) 1,2 dm;

f) 20 cm

Page 49: PYTHAGOROVA VĚTA - zsholysov.cz

- 49 -

Řešení:

Výška rovnostranného trojúhelníku je odvěsnou pravoúhlého

trojúhelníku podle nákresu. Stranu a určíme pomocí Pythago-

rovy věty pro tento trojúhelník. 2 2

2 2 /2 4

a

a av a

22 2

22

2 2

2

4

3 4 /

4 3

4 /

3

4

3

a

a

a

a

av a

av

a v

a v

Po dosazení:

a) va = 4 cm

2 24 44 4,6 cm

3 3aa v

b) va = 60 mm = 6 cm

2 24 46 6,9 cm

3 3aa v

c) va = 0,08 m = 8 cm

2 24 48 9,2 cm

3 3aa v

d) va = 10 cm

2 24 410 11,5 cm

3 3aa v

e) va = 1,2 dm = 12 cm

2 24 412 13,9 cm

3 3aa v

va = 20 cm

2 24 420 23,1 cm

3 3aa v

Page 50: PYTHAGOROVA VĚTA - zsholysov.cz

- 50 -

8. Vypočítejte poloměr kružnice opsané obdélníku o rozměrech:

a) 6 cm a 3 cm

b) 45 dm a 3 m

c) 6 cm a 11 mm

d) 1,3 dm a 37 cm

e) 2x cm a 3x cm

Řešení:

Hledaný poloměr kružnice je polovinou úhlopříčky obdélníka,

kterou vypočítáme pomocí Pythagorovy věty podle obrázku. 2 2 2

2 2

u a b

u a b

Potom poloměr kružnice r = u : 2

2 2

a) 3 cm, 6 cm

3 6 45

45 : 2 3,4 cm

a b

u

r

2 2

b) 3 m = 30 dm, 45 dm (Rozměry obdélníka převedeme na stejné jednotky.)

30 45 2925

2925 : 2 27 dm

a b

u

r

2 2

c) 11 mm, 6 cm = 60 mm (Rozměry obdélníka převedeme na stejné jednotky.)

11 60 3721

3721 : 2 = 30,5 mm

a b

u

r

2 2

d) 1,3 dm = 13 cm, 37 cm (Rozměry obdélníka převedeme na stejné jednotky.)

13 37 1538

1538 : 2 39,2 cm

a b

u

r

2 2 2 2 2

e) 2 cm, 3 cm

2 3 4 9 13 . 13

( . 13 ): 2 1,8 cm

a x b x

u x x x x x x

r x x

Page 51: PYTHAGOROVA VĚTA - zsholysov.cz

- 51 -

9. Vypočítejte poloměr kružnice opsané čtverci se stranou délky:

a) 10 cm

b) 0,04 m

c) 3,6 dm

d) 70 mm

e) x cm

f) 2x cm

Řešení:

Hledaný poloměr kružnice je polovinou úhlopříčky čtverce,

kterou vypočítáme pomocí Pythagorovy věty podle obrázku. 2 2 2

22

u a a

u a

Potom poloměr kružnice r = u : 2

2

a) 10 cm

2.10 200

200 : 2 7,07 cm

a

u

r

2

b) 0,04 m = 4 cm

2.4 32

32 : 2 2,83 cm

a

u

r

2

c) 3,6 dm = 36 cm

2.36 2592

2592 : 2 25,46 cm

a

u

r

2

d) 70 mm = 7 cm

2.7 98

98 : 2 4,95 cm

a

u

r

2

e) cm

2. . 2

2 ( . 2) : 2 = 0,71 cm

2

a x

u x x

r x x x

2 2

f) 2 cm

2. 2 2.4 2 . 2

(2 . 2) : 2 = . 2 1,41 cm

a x

u x x x

r x x x

Page 52: PYTHAGOROVA VĚTA - zsholysov.cz

- 52 -

10. Rovnostranného ∆ABC je vepsaný do kružnice o průměru 12 cm. Vypočtěte:

a) délku jeho strany

b) obsah tohoto trojúhelníku

Řešení:

Výška va = AP je v rovnostranném trojúhelníku rov-

něž i těžnicí, a proto platí: 2

3AS AP .

Je-li AS = 6 cm, pak AP = 9 cm = va

Délku strany a lze určit pomocí Pythagorovy věty z pravoúhlého ∆APB:

2 22 2 /

2 4a

a av a

22 2

22

2 2

2

4

3 4 /

4 3

4 /

3

4

3

a

a

a

a

av a

av

a v

a v

Po dosazení: 24

9 108 10,4 cm3

a

Obsah ∆ABC vypočteme: 2

aa vS

Po dosazení: 210,4 946,8 cm

2S

Page 53: PYTHAGOROVA VĚTA - zsholysov.cz

- 53 -

Pythagorova věta cvičení III

1. Z kmene stromu je vytesán trám obdélníkového průřezu o rozměrech 50 mm a 120 mm. Ja-

ký nejmenší průměr musel mít kmen?

Řešení:

a = 50 mm = 5 cm, b = 120 mm = 12 cm, d = ?

Nejmenší průměr kmenu je délkou úhlo-

příčky obdélníku:

d b

a

Nejmenší průměr kmenu je 13 cm.

2. Z kmenů borovic byly vyřezány trámy, které měly na příčném řezu tvar čtverce se stranou

dlouhou 17 cm. Jaké nejmenší průměry musely mít kmeny borovic?

Řešení:

a = 17 cm, d = ?

Nejmenší průměr kmenu je délkou úh-

lopříčky čtverce:

a

a

d

Kmeny borovic musely mít nejmenší průměr 24 cm.

Page 54: PYTHAGOROVA VĚTA - zsholysov.cz

- 54 -

3. Čtverci o straně 5 cm je opsána a vepsána kružnice. Urči poloměry obou kružnic.

Řešení:

a = 5 cm, r1 = poloměr kružnice vepsané ,r2 = x poloměr kružnice opsané

Poloměr kružnice opsané je roven polovi-

ně délky strany čtverce: r1 = 2,5 cm. Po-

loměr kružnice vepsané je roven polovině

délky úhlopříčky čtverce:

a

S

.

x

2,5 cm

2,5 cm

Poloměr kružnice opsané je 3,54 cm a poloměr kružnice vepsané je 2,5 cm.

4. Automobil jel z bodu A 20 km severním a potom 30 km východním směrem. Zastavil se

v bodě B. Jaká je přímá vzdálenost bodů A a B?

Řešení:

Vzdálenost bodů AB je 36,06 km.

Page 55: PYTHAGOROVA VĚTA - zsholysov.cz

- 55 -

5. Vypočítejte obsah rovnostranného trojúhelníku s délkou strany 6 cm.

Řešení:

2

6 cm

cm

a

S x

Obsah rovnostranného trojúhelníku: 2

aa vS

Výpočet výšky rovnostranného trojúhelníka:

A Ba/2

C

a

S

va

Obsah rovnostranného trojúhelníku je 15,6 cm2.

6. Vypočítejte obsah rovnoramenného trojúhelníku s délkou základny 6 cm a délkou ramene 8

cm.

Řešení:

Obsah trojúhelníku: 2

zz vS

Výpočet výšky rovnoramenného trojúhelníka:

2

2

2z

zv r

Obsah rovnoramenného trojúhelníku je 22,2 cm2.

Page 56: PYTHAGOROVA VĚTA - zsholysov.cz

- 56 -

7. Určete délku tělesové úhlopříčky krychle o hraně 10 cm.

Řešení:

a = 10 cm

u1 = ? ( stěnová úhlopříčka)

u = ? ( tělesová úhlopříčka)

u12 = a

2 + a

2

u12 = 2a

2

u1 =

u1 =

u1 =

u11 = 14,14 cm

u2

= u12 + a

2

u =

u =

u =

u = 17,32 cm

Délka tělesové úhlopříčky krychle je 17,32 cm.

8. V kvádru je délka tělesové úhlopříčky 60 cm a výška kvádru 20 cm. Určete délku úhlopříč-

ky podstavy.

Řešení:

u = 60 cm

v = 20 cm

x = ?

Úhlopříčka podstavy x je odvěsnou pra-

voúhlého trojúhelníku a platí:

Úhlopříčka podstavy má délku 56,57 cm.

Page 57: PYTHAGOROVA VĚTA - zsholysov.cz

- 57 -

9. V pravoúhlém trojúhelníku ABC je součet délky odvěsny a přepony 19,2 cm a délka druhé

odvěsny je 12,6 cm . Vypočítejte délky zbývajících stran.

Řešení:

b = 12,6 cm

a + c = 19,2 cm

a = ?

c = ?

Platí Pythagorova věta:

Zbývající strany mají délky 5,5 cm, 13,7 cm.a c

10. Vypočítejte obvod rovnoramenného lichoběžníku ABCD , je-li

Řešení:

o a b c d

12 3,6 8 3,6o

BA a

DC

b

c

d

X

v

Y

v

xx

Obvod lichoběžníku je 27,2 cm.

Page 58: PYTHAGOROVA VĚTA - zsholysov.cz

- 58 -

11. Vypočítejte obsah rovnoramenného lichoběžníku ABCD , je-li 12 cmAB 8 cmCD

3,6 cmBC

Řešení:

BA a

DC

b

c

d

X

v

Y

v

xx

Obsah lichoběžníku je 30 cm2.

Page 59: PYTHAGOROVA VĚTA - zsholysov.cz

- 59 -

12. Vypočítejte obsah štítu domu tvaru rovnoramenného trojúhelníku, je-li:

9,6 m, 5,6 m.AB AC

Řešení:

2

.vaS

Výška trojúhelníku rozdělí rovnoramenný troj-

úhelník na dva shodné pravoúhlé trojúhelníky.

Z pravoúhlého trojúhelníku BSC vyjádříme

výšku v pomocí Pythagorovy věty:

04,2336,312 v

8,32

2,88 m

v

v

2

.vaS

2

9,6.2,88

2

13,8 m

S

S

A B

C

S

v

Obsah štítu domu je asi 13,8 m2.

Page 60: PYTHAGOROVA VĚTA - zsholysov.cz

- 60 -

13. Vypočítejte obsah kosočtverce ABCD , je-li 9 cm, 5 cm.AC e AB a

Řešení:

e = 9 cm

a = 5 cm

S = ?

Využijeme vlastnosti úhlopříček kosočtverce,

které jsou k sobě kolmé a navzájem se půlí.

V pravoúhlém trojúhelníku ASB platí Pythago-

rova věta:

2 2

2

2 2

2

2 2

2

2

2

2 2

2 2

95

2 2

95

2 2

2,18 cm2

4,36 cm

e fa

f ea

f

f

f

f

2

2

9 4,3619,62 cm

2

e fS

S

ef

A B

CD

S

a

a

e/2f/2

Obsah kosočtverce je 19,62 cm2.

Page 61: PYTHAGOROVA VĚTA - zsholysov.cz

- 61 -

14. Do kružnice k o poloměru r = 6,5 cm je vepsán obdélník ABCD s kratší stranou b = 4 cm.

Určete délku delší strany a.

Řešení:

Velikost delší strany vypočítáme pomocí Py-

thagorovy věty z pravoúhlého trojúhelníka ABC

s přeponou velikosti 2r

2169 16a

b

B

C

A

D

a

S

k

Delší strana obdélníku má délku 12,37 cm.

15. Jak daleko jsou od sebe vzdáleny konce písmene L, jestliže vodorovná úsečka je dlouhá

8 mm a kolmá úsečka 1,5 cm?

Řešení:

Vzdálnost konců písmen je přepona pravoúhlého trojúhelníka, jhož odvěsny tvoří vodo-

rovná a kolmá úsečka, tvořící písmeno L

Platí Pythagorova věta:

Konce písmene L jsou od sebe vzdáleny 17 mm.

Page 62: PYTHAGOROVA VĚTA - zsholysov.cz

- 62 -

16. Hlavní stožár cirkusového stanu je upoután na samém vrcholu ocelovým lanem dlouhým

39 m, jež je připevněno k zemi ve vzdálenosti 15 m od paty stožáru. Jak vysoký je hlavní

stožár stanu?

Řešení:

Výška stožáru je odvěsnou pravoúhlého troj-

úhelníka

v

39 m

15 m

Hlavní stožár stanu je vysoký 36 m.

17. Jak dlouhou kládu potřebují dobyvatelé hradu, aby ji mohli opřít o vrchol hradeb? Hradby

jsou vysoké 8 m a jsou obehnány vodním příkopem širokým 6 m.

Řešení:

Délka klády je přeponou pravoúhlého trojúhel-

níka:

d =?

p = 6 m

v = 8 m

Dobyvatelé potřebují kládu dlouhou minimálně 10 m.

Page 63: PYTHAGOROVA VĚTA - zsholysov.cz

- 63 -

Goniometrické funkce ostrého úhlu

V pravoúhlém trojúhelníku ABC popisujeme jednotlivé strany vzhledem k danému úhlu ná-

sledujícím způsobem:

AB - přepona – nejdelší strana

BC- protilehlá odvěsna vzhledem k úhlu

AC – přilehlá odvěsna vzhledem k úhlu

Poznámka: názvy stran se mění podle toho, ke kterému z úhlů odvěsny vztahujeme.

AB - přepona – nejdelší strana

BC- přilehlá odvěsna vzhledem k úhlu

AC – protilehlá odvěsna vzhledem k úhlu

Pro výpočty v pravoúhlém trojúhelníku kromě Pythagorovy věty používáme mimo jiné

i goniometrické funkce ostrého úhlu v pravoúhlém trojúhelníku

sinus úhlu sina

c

protilehlá odvěsnasin

přepona

Poměr velikosti odvěsny proti-

lehlé k úhlu a přepony

kosinus úhlu cosb

c

přilehlá odvěsnacos

přepona

Poměr velikosti odvěsny přilehlé

k úhlu a přepony

tangens úhlu tga

b

protilehlá odvěsnatg

přilehlá odvěsna

Poměr velikosti odvěsny proti-

lehlé k úhlu a odvěsny přilehlé

k úhlu

Kotangens úhlu cotgb

a

přilehlá odvěsnacotg

protilehlá odvěsna

Poměr velikosti odvěsny přilehlé

k úhlu a odvěsny protilehlé

k úhlu

Protože se ale mění názvy úhlů i stran v pravoúhlém trojúhelníku, je nutné si pamatovat třetí

sloupec tabulky, nikoliv vzorce z druhého sloupce.

Page 64: PYTHAGOROVA VĚTA - zsholysov.cz

- 64 -

Hodnoty goniometrických funkcí ostrého úhlu hledáme na kalkulačce.

např:

sin 30 0,5

cos15 0,9659

tg20 0,3639

Jedná se o čísla reálná, proto je třeba při výpočtech zvolit vhodné zaokrouhlení těchto čísel.

Hledáme-li naopak úhel k hodnotě goniometrické funkce, používáme taktéž kalkulačku, mu-

síme však zvolit vhodný přepínač ( SHIFT, 2ndF…)

např:

sin 0,4987 = 29,914° = 29°54´

cos 0,8795 = 28,418° = 28; 25´

tg 1,4852 = 56,0472° = 56°2´

Funkce kotangens na kalkulačce není, protože lze zaměnit za převrácenou hodnotu funkce

tangens.

cvičení:

1. Vypočítej:

a) sin 35° f) tg 28°40´

b) sin 75°15´ g) sin 78°12´

c) cos 45° h) cos 62°44

d) cos 68°30´ i) tg 56°56´

e) tg 60° j) sin 12°58´

Řešení:

a) sin 35° = 0,5736 f) tg 28°40´ = 0,5467

b) sin 75°15´ = 0,9670 g) sin 78°12´ = 0,9789

c) cos 45° = 0,7071 h) cos 62°44´ = 0,4581

d) cos 68°30´ = 0,3665 i) tg 56°56´ = 1,5359

e) tg 60° = 1,73205 j) sin 12°58´ = 0,2244

Page 65: PYTHAGOROVA VĚTA - zsholysov.cz

- 65 -

2. Urči úhel , pro který platí:

a) sin = 0,4523 f) tg = 0,7833

b) sin = 0,9785 g) sin = 0,4471

c) cos = 0,4452 h) cos = 0,5

d) cos = 0,8457 i) tg = 2,3154

e) tg = 5,2341 j) sin = 0,999

Řešení:

a) sin = 0,4523 = 26°53´ f) tg = 0,7833 =38°4

b) sin = 0,9785 = 78°5° g) sin = 0,4471 =´26°33´

c) cos = 0,4452 = 63°33°´ h) cos = 0,5 = 60°

d) cos = 0,8457 =32°15´ i) tg = 2,3154 = 66°38´

e) tg = 5,2341 =79°11´ j) sin = 0,999 = 87°26´

3. Urči sin , cos , tg pro úhel

a) = 25°15´

b) = 35°15´

c) = 78°52´

d) = 9°11´

e) = 89°59´

Řešení

a) = 25°15´ sin = 0,4266

cos = 0,9045

tg = 0,4716

b) = 35°15´ sin = 0,5771

cos = 0,8166

tg = 0,7067

c) = 78°52´ sin = 0,9812

cos = 0,1931

tg = 5,0814

d) = 9°11´ sin = 0,1596

cos = 0,9872

tg = 0,1617

Page 66: PYTHAGOROVA VĚTA - zsholysov.cz

- 66 -

e) = 79°59´ sin = 0,9848

cos = 0,1739

tg = 5,6617

4. Je dáno: sin = 0,5443, cos = 0,8122. Vypočítej:

a) cos f) sin (2 - )

b) sin ( + ) g) tg ( + )

c) tg 2 h) tg

2

d) cos 2 i) sin

2

e) cos ( + ) j) cos

2

Řešení:

sin = 0,5443 = 32°58´

cos = 0,8122 = 35°41´

a) cos 32°58´ = 0,8390

b) sin (32°58´ + 35°41´) =sin 68°39´= 0,8961

c) tg 2 = tg 71°22´ = 4,2678

d) cos 2 = cos 65°56´ = 0,4078

e) cos ( + ) = cos 68°39´=0,3641

f) sin (2 - )

g) tg ( + )

h) tg2

= tg 16°29´= 0,2959

i) sin 2

= sin 17°50´= 0,3062

j) cos2

= cos 16°29´= 0,9590

Page 67: PYTHAGOROVA VĚTA - zsholysov.cz

- 67 -

Geometrické úlohy řešené pomocí goniometrických funkcí

1. Vypočítej délku přepony v pravoúhlém Δ ABC je-li dáno: a = 6 cm, = 30°.

Řešení:

A B

C

ab

c

sin

sin

6

sin 30

12 cm

a

c

ac

c

c

Přepona má délku 12 cm.

2. Vypočítej velikost strany b v pravoúhlém Δ ABC, je-li dáno: a = 6 cm, = 30°.

Řešení:

A B

C

ab

c

6

30

10,34 cm

atg

b

ab

tg

btg

b

Strana b má délku 10,34 cm.

Page 68: PYTHAGOROVA VĚTA - zsholysov.cz

- 68 -

3. Vypočítej délku strany a v pravoúhlém Δ ABC, je-li dáno: c = 6 cm, = 60°.

Řešení:

A B

C

ab

c

sin

sin

6 sin 60

5, 2 cm

a

c

a c

a

a

Strana a má délku 5,2 cm.

4. Vypočítej délku strany b v pravoúhlém Δ ABC, je-li dáno: c = 9 cm, = 62°30´.

Řešení:

A B

C

ab

c

cos

cos

9 cos62 30́

4,16 cm

b

c

b c

b

b

Strana b má délku 4,16 cm.

5. Vypočítej velikost úhlu v pravoúhlém Δ ABC, je-li dáno a = 8 cm, b = 5 cm.

Řešení:

A B

C

ab

c

58

5

8

tg

b

atg

Úhel má velikost 58°.

Page 69: PYTHAGOROVA VĚTA - zsholysov.cz

- 69 -

6. Vypočítej velikost úhlu v pravoúhlém Δ ABC, je-li dáno a = 6 cm, b = 12 cm.

Řešení:

A B

C

ab

c

A B

C

ab

c

´2663

6

12

tg

a

btg

Úhel má velikost 63°26´.

7. Vypočítej velikost úhlu v pravoúhlém Δ ABC, je-li dáno a = 8,4 cm, c = 11,2 cm.

Řešení:

A B

C

ab

c

´3548

2,11

4,8sin

sin

c

a

Úhel má velikost 48°35´.

8. Vypočítej velikost úhlu v pravoúhlém Δ ABC, je-li dáno: b = 0,72 dm, c = 16 cm.

Řešení:

A B

C

ab

c

0,72 dm 7,2 cm

cos

7,2cos

16

63 15́

b

b

c

Úhel má velikost 63°15´.

Page 70: PYTHAGOROVA VĚTA - zsholysov.cz

- 70 -

9. Vypočítej délku výšky k přeponě v pravoúhlém Δ ABC, je-li dáno: = 60°, b = 5 cm.

Řešení:

A B

C

ab

c

A B

C

ab

c

sin

sin

sin 60

4,33 cm

v

b

v b

v b

v

Výška k přeponě má délku 4,33 cm.

10. Vypočítej délku výšky k přeponě v pravoúhlém Δ ABC, je-li dáno: β = 60°, c = 15 cm.

Řešení:

A B

C

ab

c

A B

C

ab

c

cos

cos

15 cos30

13 cm

sin

sin

13 sin 30

6,5 cm

a

c

a c

a

a

v

a

v a

v

v

Výška k přeponě má délku 6,5 cm.

Page 71: PYTHAGOROVA VĚTA - zsholysov.cz

- 71 -

11. Vypočítej velikost základny v rovnoramenném Δ ABC, je.li dáno. v =12 cm, = 38°.

Řešení:

v

A S B

ab

C

c2

tg

2

tg2

2 tg

2 12 tg38

18,75 cm

v

c

cv

c v

c

c

Základna rovnoramenného Δ ABC má délku 18,75 cm.

12. Vypočítej velikost úhlu při základně rr Δ ABC, je-li dáno c = 6 cm, v = 8 cm.

Řešení:

v

A S B

ab

C

c2

tg

2

8tg

3

69 226́

v

c

Velikost je 69°26´.

Page 72: PYTHAGOROVA VĚTA - zsholysov.cz

- 72 -

13. Vypočítej velikost úhlu při hlavním vrcholu rr Δ ABC, je-li dáno: c = 6 cm, v = 8 cm.

Řešení:

v

A S B

ab

C

c2

2tg2

3tg

2 8

20 33́2

41 6´

c

v

Úhel má velikost 41°6´.

14. V rovnoramenném Δ ABC je dána výška k základně v = 10,2 cm a úhel při hlavním vrcho-

lu je = 40°. Vypočítej délku ramene tohoto trojúhelníka.

Řešení:

v

A S B

ab

C

c2

cos2

2

10, 2

cos 20

10,85 cm

v

b

vb

b

b

Délka ramene rovnoramenného Δ ABC je 10,85 cm.

Page 73: PYTHAGOROVA VĚTA - zsholysov.cz

- 73 -

15. V rovnoramenném Δ ABC je dána výška k základně v = 10,2 cm a úhel při hlavním vrcho-

lu je = 40°. Vypočítej délku základny tohoto trojúhelníka.

Řešení:

v

A S B

ab

C

c2

2tg2

tg2 2

2 10,2 tg20

7, 42 cm

c

v

cv

c

c

Základna v rovnoramenném Δ ABC má délku 7,42 cm.

16. Obdélník má strany a =10 cm, b = 6 cm. Vypočítej odchylku jeho úhlopříček.

Řešení:

A B

CD

S

a

2

b

2

e2

2tg2

2

3tg

2 5

30 28́2

61 56´

b

e

Odchylka úhlopříček je 61°56´.

Page 74: PYTHAGOROVA VĚTA - zsholysov.cz

- 74 -

17. Úhlopříčky obdélníku o délce 12 cm svírají úhel = 60°. Vypočítej obvod obdélníku.

Řešení:

A B

CD

S

a

2

b

2

e2

sin2 2 2

sin2

12 sin 30

6 cm

2cos2

2

cos2

12 cos30

10,4 cm

2 2 16,4 32,8 cm

b e

b e

b

b

a

e

a e

a

a

o a b

Obvod obdélníka je 32,8 cm.

18. Vypočítej obsah obdélníku je-li dáno b = 8 cm, úhel BSC = 80°, S je průsečík úhlopříček.

Řešení:

A B

CD

S

a

2

b

2

e2

2

2tg2

2

2

2tg

2

tg2

8

tg40

9,53 cm

9,53 8 76, 2 cm

b

a

ba

ba

a

a

S a b

Obsah obdélníku je 76,2 cm2.

Page 75: PYTHAGOROVA VĚTA - zsholysov.cz

- 75 -

19. V obdélníku KLMN známe úhel KML o velikosti 22°30´a straně LM o velikosti 4 cm. Je

jeho obsah větší než 7 cm2?

Řešení:

K L

MN

k

2

tg

tg

4 tg22 30́

1,66 cm

1,66 4 6,64 cm

k

l

k l

k

k

S k l

Obsah obdélníku je menší než 7 cm2.

20. Obdélník ABCD má obsah 64 cm2. Vypočítej délku jeho stran, svírají-li jeho úhlopříčky

úhel 45°.

Řešení:

A B

CD

S

a

2

b

2

e2

2

64

64

2tg2

2

tg2

64

tg22,5

64

tg22,5

12, 43 cm

645,14 cm

12, 43

S a b

a b

ba

b

a

b

a

a

a

a

a

b

Strany mají délky 12,43 cm a 5,14 cm.

Page 76: PYTHAGOROVA VĚTA - zsholysov.cz

- 76 -

21. V kosočtverci ABCD známe délky úhlopříček e = 10 cm, f = 8 cm. Vypočítej velikost

vnitřních úhlů.

Řešení:

A B

CD

S

e2 f

2

2tg2

2

4tg

2 5

36 40́2

73 20́

180 73 20́ 106 40́

f

e

Vnitřní úhly kosočtverce mají velikost 106°40´.

22. V kosočtverci ABCD známe úhlopříčku e16,7cm, a velikost úhlu DAB 68°. Vypočítej

délku druhé úhlopříčky.

Řešení:

A B

CD

S

e2 f

2

2tg2

2

tg2 2 2

tg2

16,7 tg34

11, 26 cm

f

e

f e

f e

f

f

Druhá úhlopříčka kosočtverce má délku 11,26 cm.

Page 77: PYTHAGOROVA VĚTA - zsholysov.cz

- 77 -

23. Vypočítej obvod kosočtverce s úhlopříčkou e = AC = 18 cm, je-li velikost úhlu ABC 120°.

Řešení:

A B

CD

S

e2 f

2

v2

2

180 90 302 2

2sin2

2

sin2 2 2

sin2

18 sin 30

9 cm

2sin2

2

sin2

9

sin 60

10,4 cm

10,4 9 93,6 cm

v

e

v e

v e

v

v

e

a

e

a

a

a

S a v

Obsah kosočtverce je 93,6 cm2.

Page 78: PYTHAGOROVA VĚTA - zsholysov.cz

- 78 -

24. Lanovka spojuje místo A, které je ve výšce 632 m nad mořem s místem B, jehož nadmoř-

ská výška je 1132 m. Jak dlouhá bude trasa lanové dráhy spojující obě místa, jestliže její

trasa svírá s vodorovnou rovinou úhel 25°.

Řešení:

A P

C

1132 632 500 m

sin

sin

500

sin 25

1183,15 m

SP

BP

AB

BPAB

AB

AB

Trasa lanové dráhy má délku 1183,15 m.

25. Jak vysoký je sloup nesoucí dráty elektrického vedení, jestliže jej ve vzdálenosti 50 m vi-

díme pod úhlem 6°50´.

Řešení:

A P

V

50 m

6 50´

tg

tg

50 tg6 50´

6 m

AP

VP

AP

VP AP

VP

VP

Výška sloupu je 6 m.

Page 79: PYTHAGOROVA VĚTA - zsholysov.cz

- 79 -

25. Jestliže bychom k hradní zdi opřeli pod úhlem 35°žebřík dlouhý 11 m, bude ho na vrcholu

zdi půl metru přečnívat.

a) Jak vysoká je hradní zeď?

b)Pod jakým úhlem musíme tento žebřík umístit, aby se horní konec dotkl okraje zdi?

Řešení:

a) Jak vysoká je hradní zeď?

A B

P

Q

35

0,5 10,5 m

sin

sin

10,5 sin

6,02 m

AP AQ

BP

AP

BP AP

BP

BP

Hradní zeď má výšku 6,02 m.

b) Pod jakým úhlem musíme tento žebřík umístit, aby se horní konec dotkl okraje zdi?

A B

P

Q

sin

6,02sin

11

33 10´

BQ

AQ

Žebřík musíme opřít pod úhlem 33°10´.

Page 80: PYTHAGOROVA VĚTA - zsholysov.cz

- 80 -

26. Tečny vedené z bodu A ke kružnici k a o středu S svírají úhel 60°. Úsečka SA protíná

kružnici k v bodě B tak, že platí |AB| = 4 cm. Vypočítej poloměr kružnice k.

Řešení:

S B

T

Xk

A

sin2

sin2

4 sin 30

2 cm

4 2

4

4 2 4

4 cm

BX

BA

BX BA

BX

BX

BA BX

AS ST

r r

r r

r

Poloměr kružnice je 4 cm.

Page 81: PYTHAGOROVA VĚTA - zsholysov.cz

- 81 -

27. Kružnice opsaná pravoúhlému trojúhelníku má poloměr 13 cm. Jedna odvěsna měří

12 cm. Vypočtěte velikosti vnitřních úhlů tohoto trojúhelníku.

Řešení:

SA B

C

2 26 cm

12 cm

12cos

26

62 30́ 27 30́

AB r

AC

Vnitřní úhly mají velikosti 62°30´.

28. Určete obsah rovnoběžníku, jestliže strany o velikostech 8 cm a 10 cm svírají úhel 50°.

Řešení:

A B

CD

b

a

v

2

10 cm

8 cm

50

sin

sin

8 sin 50

6,128 cm

10 6,128 61,28 cma

a

b

v

AD

v AD

v

v

S a v

Obsah rovnoběžníku je 61,28 cm.

Page 82: PYTHAGOROVA VĚTA - zsholysov.cz

- 82 -

29. Těžnice a výška na stranu c rozdělí trojúhelník ABC na tři trojúhelníky, jejichž obsahy

označíme S1 , S2, S3. Vypočtěte tyto obsahy, je-li |SC| = t = 4,1 cm; = 80°, = 35°, =

102°.

Řešení:

A P S B

C

v t

S1 S2 S3

1

2

3

2

2

2

sin

sin 804,1

sin 80 4,1

4 cm

180

180 102 35

43

AP vS

PS vS

BS vS

v

t

v

v

v

1

1

1

2

1

:

tg

tg

tg43°

4, 29 cm

:

2

4, 29 4

2

8,58 cm

AP

v

AP

vAP

vAP

AP

S

AP vS

S

S

:

cos

cos

cos80 4,1

0,71 cm

PS

PS

t

PS t

PS

PS

2

2

2

2

2

:

2

0,71 4

2

1, 42 cm

S

PS vS

S

S

Protože bod S je středem

úsečky AB platí:

3

3

3

2

3

4, 29 0,71

5 cm

:

2

5 4

2

10 cm

SB AP PS

SB

SB

S

BS vS

S

S

Obsah S1 je 8,58 cm2, obsah S2 je 1,42 cm

2 a S3 je 10 cm. Protože |SB| = |AP| + |PS|

a výška v je společná pro trojúhelník ASC a trojúhelník SBC, musí platit, že obsahy troj-

Page 83: PYTHAGOROVA VĚTA - zsholysov.cz

- 83 -

úhelníků ASC a SBC jsou si rovny. Tohoto lze využít ke kontrole správnosti. Obsah troj-

úhelníka ASC je roven součtu obsahů trojúhelníků APC a PSC, tedy:

S1 + S2 = (8,58 + 1,42) =10 cm2. Obsah trojúhelníku SBC je rovněž 10 cm

2.

30. Vypočtěte délku tětivy příslušné středovému úhlu 65°30´, je-li poloměr kružnice 9 cm.

Řešení:

S

B

A

O

k

9 cm

65 30́

sin2

sin2

9 sin 32 45́

4,87 cm

2 2 4,87 9,74 cm

SB r

OA

SB

OA SB

OA

OA

AB OA

Délka tětivy je 9,7 cm.

31. V kružnici k (S, r = 6 cm) je tětiva dlouhá 4,9 cm. Vypočtěte velikost středového úhlu pří-

slušného k tětivě.

Řešení:

S

B

A

O

k

6 cm

4,94,9 cm

2

sin2

2,45sin

2 6

24 6́2

48 12́

SB r

AB OA

OA

SB

Středový úhel má velikost 48°12´.

Page 84: PYTHAGOROVA VĚTA - zsholysov.cz

- 84 -

32. Jaký je poloměr kružnice, jestliže středovému úhlu 75°30´ přísluší tětiva dlouhá 18,4 cm?

Řešení:

S

B

A

O

k

18,4 cm 9,2 cm

75 30́

sin2

sin2

9,2

sin 37 45́

15,03 cm

AB AO

AO

r

AOr

r

r

Poloměr kružnice je 15,08 cm.

33. Rotační kužel má průměr podstavného kruhu 20 cm a jeho strana svírá s rovinou podstavy

úhel 25°. Jaký je objem rotačního kužele? Výsledek zaokrouhlete na 1 desetinné místo.

Řešení:

A

S

B

V

2

2 3

20 cm 10 cm

25

tg

tg

10 tg25

4,66 cm

1

3

110 4,66 488 cm

3

AB AS

VS v

VS

AS

VS AS

VS

VS

V r v

V

Objem kužele je přibližně 488 cm3.

Page 85: PYTHAGOROVA VĚTA - zsholysov.cz

- 85 -

34. Objem rotačního kužele je 9,4 cm2, výška v = 10 cm. Jaký úhel svírá strana kužele

s rovinou podstavy?

Řešení:

A

S

B

V

2

2

2

1

3

3

3 9,42

10

0,95 cm

V r v

Vr

v

r

r

A r S

v

V

tg

10tg

0,95

84 35́

v

r

Strana kužele svírá s rovinou podstavy úhel 84°35´.

Page 86: PYTHAGOROVA VĚTA - zsholysov.cz

- 86 -

35. Hromada písku má tvar rotačního kužele o průměru 2 m. Jak velká je strana této hromady,

jestliže svírá s výškou úhel = 21°50´. Výsledky zaokrouhlete na 1 desetinné místo.

Řešení:

A

S

B

V

2 m 1 m

sin

sin

1

sin 21 50

2,7 m

AB AS

AS

AV

ASAV

AV

AV

Strana hromady má délku 2,7 m.

36. Vypočítej odchylku tělesové úhlopříčky krychle od roviny podstavy

Řešení:

u

e

A B

CD

E F

GH

2 2 2

tg2

1tg

2

35 16́

DH a

DB a a a

a

a

Odchylka tělesové úhlopříčky od roviny podstavy je 35°16´.

Page 87: PYTHAGOROVA VĚTA - zsholysov.cz

- 87 -

37. Je dán pravidelná čtyřboký hranol ABCDEFGH, ve kterém |AB| = 3 cm, velikost úhlu

BAC = 69°30´. Určete objem a povrch hranolu. Výsledky zaokrouhlete na jedno desetin-

né místo.

Řešení:

A B

CD

E F

GH

a

b

c

2

2

59

69 30́

3 cm

tg

tg

3 tg69 30́

8,02 cm

tg

tg

3 tg59

4,99 cm

3 8,02 4,99 120 cm

2

2 3 8,02 3 4,99 4,99 8,02 158 cm

BAC

BEF d

AB a

c

a

c a

c

c

b

a

b a

b

b

V abc

V

S ab ac bc

S

Objem hranolu je 120 cm3, povrch 158 cm

2.

Page 88: PYTHAGOROVA VĚTA - zsholysov.cz

- 88 -

38. Je dán pravidelný čtyřboký jehlan ABCDV se čtvercovou podstavou a = 4 cm. Určete jeho

povrch a objem, jestliže úhel V´KV má velikost 69°10´, kde K je střed strany BC a V´ je

střed čtverce ABCD. Výsledky zaokrouhlete na 1 desetinné místo.

Řešení:

A B

CD

V

a

k

2 3

69 10́

´ 22

tg

2

tg2

tg69 10́ 2

5,25 cm

1 116 5,25 28 cm

3 3

aV K

v

a

av

v

v

V a v

Objem jehlanu je 28 cm3.

39. Vypočítej odchylku tělesových úhlopříček krychle.

Řešení:

A B

CD

E F

GH

S

3aBHDF

Page 89: PYTHAGOROVA VĚTA - zsholysov.cz

- 89 -

B FOa2

S

3a

´3433´47162

32

1

2sin

322sin

3

2

2sin

a

a

a

a

Odchylka úhlopříček je 33°34´.

Page 90: PYTHAGOROVA VĚTA - zsholysov.cz

- 90 -

4. Pythagorova věta ................................................................................................................ 1

Pythagorova věta - úvod ......................................................................................................... 1

Užití Pythagorovy věty v planimetrii a stereometrii ............................................................ 19

Pythagorova věta cvičení I ................................................................................................... 33

Pythagorova věta – cvičení II ............................................................................................... 40

Pythagorova věta cvičení III ............................................................................................... 53

Goniometrické funkce ostrého úhlu ..................................................................................... 63

Geometrické úlohy řešené pomocí goniometrických funkcí ................................................ 67