Top Banner
788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor 449-728 38-2 (2003 4 7 , 2003 9 7 ) Electrochemical Characteristics of Composite Electrodes with Polypyrrole for Supercapacitor with PVdF-HFP/PVP Ho-Sung Oh, Kyong-Min Kim and An-Soo Kang Department of Chemical Engineering, Myongji University, Yongin 449-728, Korea San 38-2, Nam-dong, Yongin, Kyonggi 449-728, Korea (Received 7 April 2003; accepted 7 September 2003) 5-8 wt% (BP-20 YP-17) Poly (vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP)/polyvinylpyrrolidone(PVP) n-methyl-2-pyrrolidinone(NMP) !"#. $%& · ( ), *+,, AC-ESR, -./, CV impedance ) 0 1234 ) 5+!"#. 5 wt% 6 +!" 7 89, :; 1<4 = >? 1234 ) @A !1 %!B CDE,F 8 wt% FG6 !A HF 4I!"#. )J, BP-20 K CDE, F 7 wt% L 7 *+, 34.77 F/g, AC-ESR 0.65 , -./ 8.16 Wh/kg MN/ 1,830 W/kg O6 P2 K QR# >?!" Ragone plot PS T 7 1MU 4V W T ? XY#. Abstract - Composite electrodes were fabricated based on activated carbons such as YP-17 and BP-20, and conducting poly- mer of polypyrrole (pPy) prepared by chemical polymerization in our laboratory. Mixed binders of Poly (vinylidene-fluoride- co- hexafluoropropylene) (PVdF-HFP) and polyvinylpyrrolidone (PVP) in n-methyl- 2-pyrrolidinone (NMP) were added to the activated carbons. Electrochemical characteristics of unit cells such as charge-discharge, specific capacitance, ESR, specific energy, cyclic voltammetry (CV) and impedance were measured. It was noted that a pPy content within 8 wt. % greatly increased the electrochemical characteristics, mechanical strength and flexibility with the fixed 5 wt. % of mixed binder. Espe- cially, the BP-20 electrode with 7 wt% of pPy exhibited better electrochemical characteristics than commercialized products, with 34.77 F/g of specific capacitance, 0.65 of AC-ESR, 8.16 Wh/kg of specific energy, and specific power of 1,830 W/kg. Power outputs were compatible with electric vehicle applications, in due consideration of Ragone relations. Key words: Polypyrrole, Supercapacitor, Activated Carbon, Polyvinylpyrrolidone, Poly (Vinylidene-Fluoride-Co-Hexafluoropropylene) 1. Supercapacitor · 2 !". #$ % &’( back- up )* +,- ./’(0 +1 23 0456 $ 756". 890 23 .:;< = >? @AB 66 2 1< CD 6@# % EF7 GHI EFJ K CD LM NOB PQR S/TQ 23 ./’(B 04 56U = supercapacitor NO0 + VW XYH Z"[1-3]. [\] ^ S_ ‘a *W bcd ef<TQ Og BhU ij S_ bc 04 k‘‘aQl 04( 0456) m;0n U "o k‘ b c NOH p q rs". tud 04U k‘ % v’ B/0n 04 · ( $756) m;0n w" CD X". 04 k‘ xyz3 {|·}^ ~v0 u B/(faradaic process) 0 , supercapacitor C < < ·TQ g )0 .u B/(non-faradaic process) 0 04 k‘]". n 6 · w" 2T, · ~ -’ JD ~W< To whom correspondence should be addressed. E-mail: [email protected]
7

PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

Mar 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794

PVdF-HFP/PVP Supercapacitor

449-728 38-2

(2003 4 7 , 2003 9 7 )

Electrochemical Characteristics of Composite Electrodes with Polypyrrole for Supercapacitor with PVdF-HFP/PVP

Ho-Sung Oh, Kyong-Min Kim and An-Soo Kang†

Department of Chemical Engineering, Myongji University, Yongin 449-728, KoreaSan 38-2, Nam-dong, Yongin, Kyonggi 449-728, Korea(Received 7 April 2003; accepted 7 September 2003)

5-8 wt% (BP-20 YP-17) Poly (vinylidenefluoride-co-hexafluoropropylene)

(PVdF-HFP)/polyvinylpyrrolidone(PVP) n-methyl-2-pyrrolidinone(NMP) !"#.

$%& ' ·( ), *+,, AC-ESR, -./, CV impedance ) 0 1234 ) 5+!"#.

5 wt%6 +!" 7 89, :; 1<4 = >? 1234 ) @A !1

%!B CDE,F 8 wt% FG6 !A HF 4I!"#. )J, BP-20 K CDE,

F 7 wt%L 7 *+, 34.77 F/g, AC-ESR 0.65Ω, -./ 8.16 Wh/kg MN/ 1,830 W/kgO6 P2

K QR# >?!" Ragone plot PS T 7 1MU 4V W T ? XY#.

Abstract − Composite electrodes were fabricated based on activated carbons such as YP-17 and BP-20, and conducting poly-

mer of polypyrrole (pPy) prepared by chemical polymerization in our laboratory. Mixed binders of Poly (vinylidene-fluoride-

co- hexafluoropropylene) (PVdF-HFP) and polyvinylpyrrolidone (PVP) in n-methyl- 2-pyrrolidinone (NMP) were added to the

activated carbons. Electrochemical characteristics of unit cells such as charge-discharge, specific capacitance, ESR, specificenergy, cyclic voltammetry (CV) and impedance were measured. It was noted that a pPy content within 8 wt. % greatly

increased the electrochemical characteristics, mechanical strength and flexibility with the fixed 5 wt. % of mixed binder. Espe-

cially, the BP-20 electrode with 7 wt% of pPy exhibited better electrochemical characteristics than commercialized products,with 34.77 F/g of specific capacitance, 0.65Ω of AC-ESR, 8.16 Wh/kg of specific energy, and specific power of 1,830 W/kg.

Power outputs were compatible with electric vehicle applications, in due consideration of Ragone relations.

Key words: Polypyrrole, Supercapacitor, Activated Carbon, Polyvinylpyrrolidone, Poly (Vinylidene-Fluoride-Co-Hexafluoropropylene)

1.

Supercapacitor · 2

!". #$ % &'( back-

up' )* +,- ./'(0 +1 23 0456 $

756". 890 23 .:;< = >? @AB 66

2 1< CD 6@# % EF7 GHI EFJ

K CD LM NOB PQR S/TQ 23 ./'(B 04

56U = supercapacitor NO0 + VW XY H Z"[1-3].

[\] ^ S_ `a *W bcd ef<TQ Og

BhU ij S_ bc 04 k``aQl

04(0456) m;0n U "o k` b

c NO H p q rs". tud 04U k` % v'

B/0n 04 ·($756) m;0n w"

CD X". 04 k` xyz3

|·^ ~v0 u B/(faradaic process)0 ,

supercapacitor C < < ·TQ

g )0 .u B/(non-faradaic process)0

04 k`]". n 6 ·

w" 2T, · ~ -' JD ~W<†To whom correspondence should be addressed.E-mail: [email protected]

788

Page 2: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

Supercapacitor 789

s.

)

"[1]. t -' 6, r&<TQ -' )

wD * T |< O ¡ `¢

p"[4, 5].

>£Qn >? ¤ d¥?¦0 pseudocapacitanceU d§¨

6 @#U © ¤ coatingªTQn /'( K |«<

¬r­ VW >O® XY H Z". Laforge K[6]3 |«)F

0 thiophene1 @#, 6N(J % PVdF K EFJU grid

0 press 260 F/g 04U = U Ji¯". Fan K

[7]3 carbon nanotube(CNT)0 |«)F0 °±² coating

CNT a ³ N´ !" w¯T, Jurewicz K[8]6

µ D'¶1 0n multiwalled carbon nanotube0 pPyU |

«/ )F coatingªTQn 163 F/g ·3 EBU ¸H¨!".

¹3 @#-º π#U .»L|¼ $6U ½¾ ª

TQl jV @#U p, n¿TQ 6À] 6TQ ¼

uB/0 /'( Á ¹TQ gÂ]"[4].

à VW Ä3 VW#B Å " .:;< =

>? ¦L0 r'|] 6 N(J &Æ0 ÇÈ Ji °±²

©¯T @A rs > £0 |«< % <

CD PVdF-HFP PVP ÉFEFJU '¯". Ê J

i Ë ¶(PC+Et4NBF4) ªÌ¼ ÍÎ Ji¯".

PVdF-HFP0 PVPEFJU ÉF -'ªTQl >?B °±²

Ïо @¼ .:;< 2 Ê V % Ñ6U ·

¾ 23 0456U supercapacitorU Ji ¹ Ã

VW Ò<". ® 66 CD 6 @#U ©J

Q -' >?0 /'(B 6 @#0 h@<

|·^~vTQ '( F<TQ d§d Ê

Ji supercapacitor |«< 0 Óa ¬ Ô

# ¯".

2.

2-1.

°±² Ji ÕÖD 1 L0 ±² 0.5 MB ×|Ø 0.5 M Â

 ' 0 oCQ Ë |JQ ×| J2Ø D'¶ ±² D

'¶0 nn® © Ù '¶ ÉF Ë 6f $ £¦@

Q 1< Ú~¨0n ~v­ Ë doping £Qn Et4NBF4U

10f $ p-doping Û". Ú~ ÜI Ë @¶Ý&0n

filter cakeB '¶TQ @ Ë filter cake Ó~v £B Þe

Jß '¶ à áà â ãä åæçB ÕÖDQ u è

æé "ê XSëiQ 12f ëi @A rs °±²

Ji¯"[9].

Ji] °±², ì#D í£Q Ji] rî' >?(YP-17, Kuraray

Chem.; .:;< 1,566 m2/g, æSh± 0.76 mL/g, æS 10.86 ï) % ð

ñDQ Ji] rî' >?(BP-20, Kuraray Chem.; 1929 m2/g, 0.86mL/g,

13.3 Å) Ê LMQ -'¯". @A rs >?B °±²

Ð/ sheetr ¿sQ Ji Ïо @ ÉFE

FJU -'¯". ã Ê3 @ Ñ6 ò3 Ê kó d

§ ì ôQ õL Ê Ji0 EFJQ ³ -' p PVdF-HFP

(KynarFlex® 2801, ELF Atochem) @JQ PVP(120 K, ISP Tech.)

U -'¯". ö# @÷ ÞÏÐ @A rs °±²B >?

ball millQ 12f $ @ø Ë 200µm meshQ @_ ÏÐ

@A ù.¯".

@Q n-methyl-2-pyrrolidinone(NMP, Lancaster, _, England)U

-'¯ £(. 7:3 PVdF-HFP/PVP ÉFEFJU 5 wt%Q '

ù.] >?0 °±² u á¾ .Q ÉF 1<

Ú~U ' 450-500 rpm 6Q Ú~¯"[10]. ¢6 800-

1,000 cP ºu rs ÉF Auto Film Applicator(CNI Qwú

b, û)U ' 0.5-0.6 mm ÙüQ casting Ë 70oC0n 5-6

f $ ëi¯". ëi] Ê 120oC0n 258 psi 7B 0.2-

0.3 mm ÙüQ Hot press(Carver 2089, USA)Q Ji Ë 2.5ý4.0 cm

½Q LÍ -'¯". Ê Ji Ë BET(Quantachrome, Autosorb-

1)U ' .:;<, ÓææS(micropore, HK method) % )f-ß

&æS(meso-macropore, BJH method) m/¯, :; +Ô

SEM(XL-30, Philips) '¯".

2-2.

þ 6 CD propylene carbonate(PC, Junsei,

_, Japan) ' J4_ ÿ× ) 66 CD |

«<TQ / õL ` ³ v' p tetraethylammonium-

tetrafluoroborate(Et4NBF4, Fluka, _)U £Q -' 1.0

N 6 ¶ Ji¯"[4, 11]. Ji] ¶ 66

25 oC0n 13 mS/cm!T .)3 1.195!". 1 ¶

-' supercapacitor -' (working voltage) 2.3 VôQ

@ 1.23 V D@ ¶ ¨0 50 ppm Q molecular

sieve(sodium alumino silicate, Sigma)U ' J Ë Karl-

Fischer moisture titrator(MKS-210)Q m/ ¶ ¨ D@ ª

( ¯".

2-3.

Ji Ê aluminium foil(2AL10-5/1 HX, Ùü 60-90µm, USA)

0 carbon paste(Everyohm 101S, Nippon Graphite, Japan)U '

È Ë 110oC0n 2f $ ëi Ë 0.5 cmHg j&7TQ

110oC0n 5f r ëi Ê ¨h D@ Jß

¯". D@ Jß] Ê :;0 Ê LM< 0 ¶

0.4-0.6 ml ö Ë , Nb < 0 acryl plate

Q &H 4 U ' ¼ ÍÎ J¯".

3 B ½ Ê, êÊ Ê rf È0

Í -'". n L£3 ¶B

|«< <TQ /ì jV ì ". ¤

¶ @® D p "S£ WiU ì ". Ã ¡0n

PPB PE DQ Ji] ÓæS(microporous) rs membrane

(Celgard® 3501) -'¯". Ùü 22.9-27.9µm, æS½

(WýL) 0.05ý0.19µm, ;< kó3 7.7 mΩ ·cm2!". N

b3 háU -'¯".

2-4.

ÍÎ Ji Ë impedance analyzer(Solatron 1260A, Solatron In

Lim., 10µHz-32 MHz, frequency resolution 0.015 ppm, accuracy 0.1%

U ' ±b kó m/¯". Battery Test System(BTCCS,

Arbin, USA) ' / 2.3 V, 10@f Ë /Ö 10 mA

Q 1.0 Vä ;n f m/ /'( 1¯

Galvanostat/Potentiostat(EG&G, 273A)U ' cyclic voltammogram

(CV) m/¯".

2-5. FT-IR

F] °±² '0 + /wU ¸ Ji] MU

KBr @AB H 1% 6 ÉFQ H 15-20 psi 7

KBr pelletTQ Ë <´ @@ (FT-IR, model 2000,

Perkin Elmer Co.)U ' 4,000-500 cm−1 mid-IR 0n

Fourier Transform Infrared(FT-IR) b! " m/¯".

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003

Page 3: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

790

s

3.

3-1. FT-IR

°±² F % 6 Q -'] BF4− aU

n <´ @@ U -' @ EBU Fig. 10 d§¨!

". °±² -º0 # 1,536 cm−10n C=C stretching

vibration band, 1,450-1,310 cm−10n C-N, C-C vibration band, 1,210-

1,090 cm−10n C-H in plane band 960 cm−10n C-H out of

plane % # 1,030, 765 cm−10n BF4− counter ion ±½Qh

°±² F !ê ¯".

3-2.

3-2-1. ./'(

PVdF-HFP PVP 7:3 á¾.Q ÉFEFJU Ê LM

$ ᾪ( 5 wt%Q /¯[10] >?0 °±² ᾪ

( 5, 6, 7 % 8 wt%Q © Ê Ji, ÍÎ J Ë Battery

Test System ' / 2.3 V, 10@f Ë /Ö 10 mA

Q 1.0 Vä f m/¯". ¤ /'( 1 Ë Ê

á¾Q d%H ./'( W¯".

°±² ª(.0 o YP-17B BP-20 Ê · Â

 Fig. 2 Fig. 30 d§¨!". °±² ª( 7 wt%Ð ã YP-17

B BP-20 Ê0n f ÂÂ 1,546 % 1,821&Q BP-20

Ê CD /'( ' 2¾ d§(". u EB

ÉFEFJU -'¯ ã @J B Ú EF7 CD

PVP >?B °±² )* @¼ .:;< 2, Ê

V % Ñ6U ·¾ ¯T ©] °±²0 3

^< @÷U d§¨H >?B °±² -0n synergy B[8]

U ' ÕÛ ã+0 ¨hkó ò /'( Õ] ¹TQ

gÂ".

·3 °±² ª( 7 wt% C YP-17B BP-20

Ê0 © ,3 Íe ÊB © Ê ·

Fig. 40 d§¨H .Ú EB BP-20 Ê YP-17 Ê0 .

¨hkó3 .-¯Td CD¯". ¤ ÂÂ .

/'( 1 EBU Fig. 50 d§¨!T, YP-17B BP-20

Ê ./'(3 ÂÂ 26.95 % 34.77 F/gTQ BP-20 Ê CD

¾ d§(".

Ê Ji °±² © >? SÊ0 ./ ö#

-U 3^<TQ @÷0TQl ¨hkó3 òå 04 k`

Sf3 Õ H Ê < ¬rÛ" -M]"[8].

u EB ðñD 11 >?B 6 N(J(VGCF)U ©

-'¯ ã 6 N(JU © ,2 ãw" ·3

< d§3 Endo K[12] EB Ða¯".

Fig. 1. FT-IR spectrum of chemically synthesized polypyrrole powder.

Fig. 2. Effect of added weight percents of polypyrrole on charge/dis-charge curves of YP-17 electrode with mixed binder.

Fig. 3. Effect of added weight percents of polypyrrole on charge/dis-charge curves of BP-20 electrode with mixed binder.

Fig. 4. Effect of addition and non-addition of 7 weight percent polypyr-role on charge/discharge curves of YP-17 and BP-20 electrodewith mixed binder.

41 6 2003 12

Page 4: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

Supercapacitor 791

n Ê Ji 6 @#U © ã >? ö# -

U <TQ VE 66U ¬r¼ hkó3 ¦ h

@<TQ °±²0 #$ u /'((pseudo capacitance)

>?0 ) '(B F<TQ Oõ4TQl 23 ·

B ./'( d§I" ¹ D p!".

3-2-2. 2005 ·

· CD BP-20 Ê °±² ᾪ( 7 wt%

Ð ã 2005 · Fig. 60 d§¨!". 2.3 Vä /Ö 30 mA,

/ 2.3 V0n 30& $ Ë /Ö 30 mAQ 0 Vä

;n 2005 V m/ EB & 35ä 2.44% /'(

¦ 7.07% DC-ESR(IR drop0 ¨hkó) ÕU w¯Td 3

5 rh /'(B DC-ESR 6| ½ ,ê 7 D p!

". ¹3 å½8TQ Ji ÍÎ 9® sealing

,2 ã+0 ¶ %¶0 ¨hkó ÕQ D pT

, 35 r0n · cycle0 k ã+0

/ 04 k``a Ê LMQn <' " ¹ 7 D

p!". t ÍÎ 8<:F.U ' stack Î Ji;

ã /'(B ¨hkó 6|3 ' ¦ ¹ Í HX".

3-2-3. KÇ<kó

PVdF-HFP PVPU ./'( 3.2.1jB =3 ië0n ÍÎ

J Ë °±² ©(0 o KÇ<kó(AC-ESR, 1 kHz)

Fig. 70 d§¨!". 0n Ç´3 YP-17B BP-20 Í[TQ

-' C >´3 °±² © CQ © AC-ESR

?@ òåAT BP-20 C 7 wt%0n 0.65ΩTQ ` ò3 B

d§¨!". EB · % ./'( EB6 Ða

¯". ./'( ` CD °±² ᾪ( 7 wt% C

© ,3 C ÊC ±bU Nyquist plot EBU Fig. 8

0 d§¨!". tD0n d§I E = >?/Ppy F$ C

°±² -' ,3 Cw" ÊB £ 1; 1

$6 , d @# 0 Warburg ±b

_® ¦ _ ./'( Õ AC-ESR

U ¦¼ CD d§¨!". t YP-17w" BP-20

Ê AC-ESRB CD¯T ÊB 1;0n ~v6

frD å Ö /rrs0 F 6Å _

" ¹ 7 D p!".

Warburg ±b >´ )f h@0n ÷|(charge saturation)

0 1´ d§I ¹ D p!T õr3 6

@#0n Og õrTQ 6 @# °±²0

u ~v(pseudo reaction) D p!"[8, 13].

3-2-4. 0456 $756

Fig. 5. Effect of added contents and non-addition of polypyrrole on spe-cific capacitance of electrodes with mixed binder.

Fig. 6. Effect of charge/discharge curves of 200 cycles on specific capac-itance and DC-ESR of BP-20 electrode with 7 weight percent ofpolypyrrole and mixed binder.

Fig. 7. Effect of addition and non-addition of 7 weight percent polypyr-role on ESR of electrodes with mixed binder.

Fig. 8. Effect of addition and non-addition of 7 weight percent polypyr-role on Nyquist plot of electrodes with mixed binder.

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003

Page 5: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

792

°±² ª( 5, 6, 7 % 8 wt%Q Ê Ji Ë 0456

$756U Table 10 d§¨!". ./'( ` CD >

?0 © °±² ᾪ( 7 wt%Ð ã YP-17B BP-20Ê

0456 ÂÂ 6.33 % 8.16 Wh/kg! $756 ÂÂ 567

% 1,830 W/kgTQ ® BP-20 Ê CD¯".

u EB ðñD 11 >?B 6 N(JQ VGCFU

© Ê Ji¯ã ESR 0.8Ω, 0456 5.87 Wh/kg

d§3 Endo K[12] EBw" CD d§G". õLä

w] VW -H0n supercapacitor 0456 2-7 Wh/kg

à VW0n °±² ª( 7 wt%Ð ã 0456 8.16 Wh/kgTQ

0456w" 23 EBU ¸! 1,830 W/kg 23 $75

6 Conway[4] Ragone plotr0n &´r0 a ¹TQ wå

n r' #$06 @® <' D p" Í]".

3-2-5. SEM @

|«< ` CD BP-20 Ê °±² ª( 7 wt%

Ð ã ÍÐEFJ ÉFEFJ Ê :; 1,000: & SEM

Fig. 90 d§¨!". Ji] Ê :;Wi Ñ6 % ¶ ª

Ì +Ô EB ÂÂ Ê :;3 "S WiU D p

!T Ê Ñ6 CD ¶ @® ªÌâ D pê 7

D p!". tud PVdF-HFP ÍÐEFJU -' Ê(A)w" ÉF

EFJU -' Ê :;(B) :;Wi ' ÏÐ NSJ

B Ú EF7 CD PVP0 >?B °±² )* @

¼ .:;< 2, Ê V % Ñ6U ·¾ ¯T ©

] °±²0 3^< @÷U d§¨H >?B °

±² -0n synergy BU ' ÕÛ ã+0 |«<

CD¯"[8].

3-2-6. CV

Fig. 10 % 113 ÂÂ >? YP-17 % BP-200 °±² 7 wt% ©

C -6U 5, 10, 20 % 50 mV/sQ CV0n m/

Ö56U - 6Q d%H 0 & ./'( d§3 EB

". BP-20 Ê YP-17 Êw" CD ./'( d§¨

! -60 r+ ÉFEFJU -' °±² ª( 7

wt%U ©; ã '(- >´ ;< Õ CD ./

'( d§¨!". EB Ê .:;< ½ °±²0

66 Õ #$ u /'( >? .u

/'(B F<TQ Oõ H ./'( Õ¯ ã+,

ÊB 1; 1 $6 Õ¯ frD å

Ö /r rs0 F 6Å D pTôQ CV>´ (plateau)

h@ d§I" Yoon K[14] EB Ða¯ ß r# ¿s

Q /'( 2¾ d§(". tud Ü0n I¾ » ¹

3 J E = °±² |, ^~v0 u '(

Table 1. Effect of polypyrrole weight percents on energy density and power density of YP-17 and BP-20 electrodes with mixed binder

Polypyrrole[wt%]

YP-17 BP-20

Energy density [W·hr/kg] Power density [W/kg] Energy density [W·hr/kg] Power density [W/kg]

5 4.30 261 5.85 4206 5.05 313 6.53 6417 6.33 567 8.16 1,8308 5.63 396 7.49 764

Fig. 9. SEM micrograph of BP-20 electrodes with 7 weight percent poly-pyrrole with (a) PVdF-HFP binder, and (b) PVdF-HFP+PVP mixedbinder.

Fig. 10. Effect of scan rate on specific capacitance of YP-17 electrodewith 7 weight percent polypyrrole and mixed binder.

41 6 2003 12

Page 6: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

Supercapacitor 793

ã+"[4].

CV>´0n plateau h@3 -6 5 mV/s0n BP-20 Ê

YP-17 Êw" ' OÅ] ¹ D p!". tud -6

£DK rounding (sloping) õr Õ CV>´ h

@ H '( d§¨ - r#¿ CV

H ¹TQ wå '( ß$ ½¾ k ¹TQ Í

D p!"[4, 14]. Fig. 10 % 110n 7 D pL -6 òDK

-'( >´ ·åA ã+0 1-6 YP-17B BP-20

Ê0n 5 mV/sQ d§(". ® 1-6 5 mV/s r0n

ÍÎ ¨hkó3 ' ¾ 04 k` w"

@ !"[4]. CV>´ plateau h@, 1-6U .Ú ã YP-17

Êw" BP-20 Ê0n $6 Õ frD

' å ./'( CD" ¹ 7 D p!". EB<TQ

Ë ¡3 5 mV/s -6Q ¯".

-6 5 mV/s C YP-17 % BP-20 Ê0n °±² ª(

6|0 o ./'( Fig. 12 % 130 d§¨!". °±² ª

( 7 wt% C ./'( ` ·2". EB 0456,

ESR % ±b ¬ MNÌ D p! ·0n m/ .

/'(B6 Ða¯". °±² © C © ,3

C ./'( Fig. 140 d§¨!". tD0n 7 D pL j

EB Ða¯ BP-200 7 wt% °±² © C Ê

` CD¯".

3-2-7. Ê .:;<

ÉFEFJU 5 wt%Q / °±² ª(0 o BP-20 Ê

æS @÷U Fig. 150 d§ !". Fig. 15(a) micropore mesopore

æSh±(HK method)U d§3 ¹ (b) mesopore macropore

æSh±(BJH method)U d§3 ¹". ©] °±² ª

( 7 wt%Ð ã BP-20 Ê BET m/O0 .:;<3 ÍÐ

EFJÐ ã 884 m2/g, ÉFEFJÐ ã 1,632 m2/g, HK m/O0

Ï æS ½ 15.8 Å0n 5P] ¿r d§¨!". eD >

? C0n .:;<(2,015 m2/g)w" °±²B ÉFEFJU

©ªTQl Ê .:;<3 r&<TQ ¦¯". Ê .:

;< QDK, frD DK ./'(B 0456 Õ

ª 7 D p!".

5.

Coconut shell1 YP-17 % ðñD1 BP-20 rî' >?0 #

$ Ji °±²B PVdF/PVP ÉFEFJU -' Ê Ji

Ë ÍÎ J · , ./'(, ESR, .:;<, 0

Fig. 11. Effect of scan rate on specific capacitance of BP-20 electrodewith 7 weight percent polypyrrole and mixed binder.

Fig. 12. Effect of polypyrrole weight percents on specific capacitance ofYP-17 electrode with mixed binder, 5 mV/s scan rate.

Fig. 13. Effect of polypyrrole weight percents on specific capacitance ofBP-20 electrode with mixed binder, 5 mV/s scan rate.

Fig. 14. Effect of addition and non-addition of 7 weight percent poly-pyrrole on specific capacitance of electrodes with mixed binder;scan rate=5 mV/s.

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003

Page 7: PVdF-HFP/PVP Supercapacitor - CHERIC · 2003-12-30 · 788 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 788-794 PVdF-HFP/PVP Supercapacitor † 449-728 38-2 (2003 4 7 , 2003

794

n

of

i-

de

z-

rs,”

oly-

he-

bes

ak,

,

ll

a-

h

g

r, D.,

es,

ci-

456, CV % ±b K |«< m/ "êB

=3 ER ¸!".

(1) °±² ©¯ C Ó© w" |«<

¯, ÍÐEFJw" ÉFEFJU -'; ã .:;< Õ

¯ YP-17w" BP-20 Ê |«< CD¯".

(2) ÉFEFJU 5 wt%Q / BP-20 % YP-17 >?0 °

±² @A ©; ã |«< CD Ê Ji D

p °±² ᾪ(3 8 wt% ¨ <S¯".

(3) >? BP-200 °±² 7 wt% © Ê .:;< 1,632

m2/g, ./'( 34.77 F/g, AC-ESR 0.65Ω, 0456 8.16 Wh/kg

% $756 1,830 W/kgTQ r'|] w" CD¯

Ragone plot r0n ã #$0 <' D p" Í]".

(4) 7 wt% °±² ©¯ ã '(- >´(CV) plateau

h@, -6U .Ú ã YP-17w" BP-20 Ê0n $6

Õ frD ' å ./'( ' ¹ 7 D

p! õr3 |·^0 h@< u /'( >

?0 .u /'(B F<TQ d§d ¹ D

p!T, 1-6 5 mV/sQ Í !".

1. Kibi, Y., Sato, T., Kurata, M., Tabuchi, J. and Ochi, A., “Fabricatio

of High-Power Electric Double-Layer Capacitors,”J. Power Sources,

60, 219-224(1996).

2. Prasad, K. R. and Munichandriah, N., “Electrochemical Studies

Polyaniline in a Gel Polymer Electrolyte,”Electrochem. and Solid-

State Letts., 5(12), A271-A274(2002).

3. Osaka, T., Liu, X., Nojima, M. and Momma, T., “An Electrochem

cal Double Layer Capacitor using an Activated Carbon Electro

with Gel Electrolyte Binder,” J. Electrochem. Soc., 146(5), 1724-1729

(1999).

4. Conway, B. E., “Electrochemical Supercapacitors,” Kluwer Academic

and Plenum Pub., New York(1999).

5. Conway, B. E., Birss, A. and Wojtowicz, J., “The Role and Utili

tion of Pseudocapacitance for Energy Storage by Supercapacito

J. Power Sources, 66, 1-14(1997).

6. Laforgue, A., Simon, P., Sarrazin, C. and Fauvarque, J. F., “P

thiophene-based Supercapacitors,”J. Power Sources, 80, 142-148(1999).

7. Fan, J., Wan, M., Zhu, D., Chang, B., Pan, Z. and Xie, S., “Synt

sis, Characterizations, and Physical Properties of Carbon Nanotu

Coated by Conducting Polypyrrole,”J. Appl. Polymer Science, 74,

2605-2610(1999).

8. Jurewicz, K., Delpeux, S., Bertagna, V., Beguin, F. and Frackowi

E., “Supercapacitors from Nanotubes/polypyrrole Composites,” Chem.

Phys. Letts., 347, 36-40(2001).

9. Miller, J. S., “Extended Linear Chain Compounds,” Plenum Press,

New York and London(1983).

10. Kim, S. G., Rim, J. B., Kim, K. M., Lee, Y. W., Kim, M. S. and Kang

A. S., “Performance of Electric Double Layer Capacitor of Rice Hu

Activated Carbon Electrode,”HWAHAK KONGHAK, 39(4), 424-430

(2001).

11. Nishino, A. and Naoi, K., “Technologies & Materials for Superc

pacitor,” CMC, Tokyo(1998).

12. Endo, M., Takeda, T., Kim, Y. J., Koshiba, K. and Ishii, K., “Hig

Power Electric Double Layer Capacitor(EDLC’s); from Operatin

Principle to Pore Size Control in Advanced Carbons,”Carbon Sci., 1,

117-128(2000).

13. Panero, S., Prosperi, P., Passerini, S., Scrosati, B. and Perlmutte

“Characteristics of Electrochemically Synthesized Polymer Electrod

IV. Kinetics of the Process of Polypyrrole Oxidation,”J. Electro-

chem. Soc., 136(12), 3729-3734(1989).

14. Yoon, L. S., Hwan, H. T. and Oh, S. M. “Electric Double Layer Capa

tor Performance of a New Mesoporous Carbon,” J. Electrochem.

Soc., 147(7), 2507-2512(2000).

Fig. 15. Pore volume distribution vs. (a) micro- and meso-pore and (b)meso- and macro-pore at various polypyrrole contents of BP-20electrodes with 5 wt% mixed binder.

41 6 2003 12