Top Banner
Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710 [email protected]
61

Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Dec 30, 2015

Download

Documents

acton-barlow

Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710 [email protected]. Astronomical Polarimetry. Outline. Why polarization? What is polarization? Measurement principles. Instrumental limitations. Why polarization?. Astronomy: study of starlight. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Pushing the limits of

Astronomical Polarimetry

Frans Snik

Sterrekundig Instituut Utrecht

BBL 710

[email protected]

Page 2: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Outline

• Why polarization?

• What is polarization?

• Measurement principles.

• Instrumental limitations.

Astronomical Polarimetry

Page 3: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Astronomy: study of starlight

Why polarization?

Three measurable quantities:

• Intensity

Page 4: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Astronomy: study of starlight

Why polarization?

λ

Three measurable quantities:

• Intensity

• Wavelength:

Page 5: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Astronomy: study of starlight

Why polarization?

αλ

Three measurable quantities:

• Intensity

• Wavelength:

• Polarization:

Page 6: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Astronomy: study of starlight

Why polarization?

αλ

Three measurable quantities:

• Intensity

• Wavelength:

• Polarization:

… as a function of [x,y] and/or t

Page 7: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarization creation

• Polarization is created (and/or modified) wherever perfect spherical symmetry is broken:– Reflection/scattering– Magnetic/electric fields– Anisotropic materials

➔ Polarimetry provides information on the

symmetry-breaking process/event.

Why polarization?

Page 8: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Example - Military

Page 9: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Example - Military

Page 10: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Example - Astronomy

Scattering polarization:

Page 11: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Example - Astronomy

Page 12: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Polarimetric projects at SIU

• Circumstellar disks and exoplanets– WHT/ExPo, VLT/SPHERE, E-ELT/EPICS, SPICES

• Solar magnetic fields– S5T, SOLIS-VSM, Hinode SOT, EST

• Stellar magnetic fields– HARPSpol, VLT/X-shooter-pol

• Atmospheric aerosols– SPEX

• Detection of life– TreePol

Page 13: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Polarimetric projects at SIU

EST

Page 14: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why polarization?

Polarimetric projects at SIU

E-ELT

Page 15: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Examples: degree of polarization

• LCD screen 100%

• 45o reflection off glass ~90%

• clear blue sky ~75%

• 45o reflection off mirror ~5%

• solar/stellar magnetic fields ~1%

• exoplanet in stellar halo ~10-5-10-6

• cosmic microwave background ~10-6-10-7

Why polarization?

Page 16: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Why NOT polarization?

• Technically challenging.

• Conflicting with imaging optics (like AO).

• Adds a lot of instrument complexity.

• Data difficult to interpret.

Why polarization?

Page 17: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Electromagnetic wave

• Polarization of an EM wave is a natural consequence of Maxwell’s equations

• “General” light:– Not monochromatic– Superposition of polarization of many photons

• Unpolarized light:– No preferred orientation of polarization

What is polarization?

Page 18: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Electromagnetic wave

• 100% linearly polarized light:

• Partially linearly polarized light:– Combination of unpolarized & 100% polarized

What is polarization?

α

Page 19: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Electromagnetic wave

What is polarization?

Page 20: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Electromagnetic wave

• Circularly polarized light:– ¼ λ phase shift between orthogonal linear

polarization directions

• General case: elliptical

What is polarization?

Page 21: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Electromagnetic wave

What is polarization?

Page 22: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Jones & Stokes formalisms

• Jones formalism– amplitude and phase of EM waves (radio regime)– 100% polarized– coherent sum (interference)

• Stokes formalism– differential photon fluxes (optical regime)– partial polarization– incoherent sum (no interference)

What is polarization?

Page 23: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Stokes vector

Q/I, U/I, V/I = normalized/fractional polarization

√(Q2+U2+V2)/I = polarization degree

V

U

Q

I

S

Q= U= V= -

--

I= = =

+++

: ½(I+Q): ½(I-Q): ½(I+U): ½(I-U): ½(I+V): ½(I-V)

What is polarization?

Page 24: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Measurement principles

• Polarimetry in the optical regime is the measurement of (part of) the Stokes vector.

• Essentially differential photometry.

• Susceptible to all kinds of differential effects!

The basics

Page 25: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Measurement principles

• General case: S(x, y, )

• But detectors are only two-dimensional…

Multidimensional data

Page 26: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Measurement principles

• General case: S(x, y, )

• Combining Imaging polarimetry

Multidimensional data

Separate images of the Stokes vector elements

Page 27: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Measurement principles

• General case: S(x, y, )

• Combining x, y: Spectropolarimetry

Multidimensional data

Separate spectra of the Stokes vector elements

Page 28: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

General polarimeter set-up

1. …

2. modulator = retarder

3. …

4. analyzer = (fixed) polarizer

5. …

6. detector (demodulator)

Measurement principles

Page 29: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarizers

• wire grid

Measurement principles

Page 30: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarizers

• wire grid

Measurement principles

Page 31: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarizers

• stretched polymer (dichroism)

Measurement principles

Page 32: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarizers

• cube beam-splitter

Measurement principles

Page 33: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarizers

• birefringent crystal

no & ne

Savart plate

Measurement principles

Page 34: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders

– introduction of phase difference

half wave plate quarter wave plate

Measurement principles

Page 35: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders

– introduction of phase difference

half wave plate quarter wave plate

Measurement principles

Page 36: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders

• Crystal wave plates

Chromatic and temperature sensitive for birefringent crystal plates.€

δ =2πd no − ne( )

λ

Measurement principles

Page 37: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders – Liquid crystals

Liquid Crystal Variable Retarders (LCVRs)

fast

slow

fast

slow

V

<δ δmax

V=0δ δ=

max

~20 ms

fast

slow

slow

fast

V<0 V>0

Ferroelectric Liquid Crystals (FLCs)

~100 s

Measurement principles

Page 38: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders – Fresnel rhomb

• Phase difference through total internal reflections

Measurement principles

Page 39: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Retarders – PEMs

• Piezo-Elastic Modulators– Birefringence induced in normal glass by

stress.– Resonance frequency: fast variation of

retardance (~10 kHz).

Measurement principles

Page 40: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Mueller matrices

innnout SMMMMS

121 ...

1000

02cos2sin0

02sin2cos0

0001

rotM

0000

0000

0011

0011

2

1polM

δδδδ

cossin00

sincos00

0010

0001

retM

Measurement principles

Page 41: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Modulation

1.Spatial

• Measuring different polarization states at different locations

2.Temporal

• Measuring different polarization states at different times

3.Spectral

Measurement principles

Page 42: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Spatial modulation

+ Strictly simultaneous measurements.

- Different (parts of) detectors.

- Differential alignment / aberrations.

- Limited detector gain calibration.

- 2 to 6 beams.

Measurement principles

Page 43: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

+ All measurements with same detector.

- Image motion / seeing / variability issues.

- Requires active component.

- Fast modulation and demodulation desirable but often not possible.

Measurement principles

Page 44: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

• Rotating waveplate + polarizer analyzer + demodulating detector.

Intensity measurements are linear combinations of I with Q, U and V

Measurement principles

Page 45: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

I+Q

0 0

• 2 LCVRs + polarizer

Measurement principles

Page 46: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

0 1/2

I-Q

Measurement principles

Temporal modulation

Page 47: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

0 1/4

I+V

Measurement principles

Page 48: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

0 3/4

I-V

Measurement principles

Page 49: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

1/4 1/4

I+U

Measurement principles

Page 50: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

1/4 3/4

I-U

• Also complicated 4-fold modulation scheme.

Measurement principles

Page 51: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

• Temporal modulation faster than seeing (~ 1 kHz)

special demodulating camera

ZIMPOL10-5 polarimetric

sensitivity

Measurement principles

Page 52: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Temporal modulation

Measurement principles

S5T

Page 53: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Beam-exchange method

Best of both worlds: combining spatial and (fast) temporal modulation

Measurement principles

Page 54: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Beam-exchange method

Best of both worlds: combining spatial and (fast) temporal modulation

• All differential effects drop out to first order.

• Achievable sensitivity: ~10-6

– Hough et al. (2006)– Semel et al. (1993)

Measurement principles

Page 55: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Beam-exchange method

Measurement principles

Foster prism(modified Glan-Thompson)

HWP QWProtating waveplates

cylindrical lens(compensates for crystal astigmatism)

CaF2 channeling prism(compensates for focal shift) existing slider

fiber 1 fiber 2

return beam is not blocked

rotated by one actuator on a belt

56 m

m

HARPSpol

Page 56: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Beam-exchange method

Measurement principles

HARPSpol

Page 57: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Instrumental polarization

• Every reflection polarizes...

• Every piece of glass is birefringent...

... to some degree.

So one has to be very careful that the measured polarization is not due to the instrument itself!

Instrumental limitations

Page 58: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Polarization cross-talk

983.0180.000

180.0983.000

00000.1028.0

00028.0000.1

mirM

• 45 Al mirror (very common in telescopes!)

• Also effect due to growing Al2O3 layer.

Instrumental limitations

Page 59: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Other issues

• photon noise (fundamental: )• read (electronics) noise• seeing• guiding errors• scattered light• instrumental polarization• (polarized) fringes & ghosts• differential aberrations• chromatism• temperature dependence• stress birefringence• polarization optics misalignment

σ 2 ∝ I

Instrumental limitations

Page 60: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Mitigation strategies

• Deep understanding of the measurement issues: different observational goals require different polarimeter designs.

• Polarimetric modulation as far upstream as possible.

• Careful instrument design.– rotationally symmetric– 90 compensations

• Calibration!

Instrumental limitations

Page 61: Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710

Questions?

Astronomical Polarimetry