Top Banner
Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2011, Article ID 901329, 28 pages doi:10.1155/2011/901329 Research Article Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line Ming-Hui Yang, 1 Raghu R. Krishnamoorthy, 2 Shiang-Bin Jong, 3 Pei-Yu Chu, 4 Yuan-Han Yang, 5 Wen-Cheng Chen, 6 Sharon Chia-Ju Chen, 3 Adnan Dibas, 2 Thomas Yorio, 2 Tze-Wen Chung, 1 and Yu-Chang Tyan 3, 7, 8, 9 1 Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan 2 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, USA 3 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan 4 Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 5 Department of Neurology, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80708, Taiwan 6 Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan 7 National Sun Yat-Sen University and Kaohsiung Medical University Joint Research Center, Kaohsiung 80708, Taiwan 8 Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 9 Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan Correspondence should be addressed to Tze-Wen Chung, [email protected] and Yu-Chang Tyan, [email protected] Received 5 April 2011; Revised 10 June 2011; Accepted 13 June 2011 Academic Editor: Daniel T. Monaghan Copyright © 2011 Ming-Hui Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells, which have dierentiated a rat retinal ganglion cell line, RGC-5. Undierentiated RGC-5 cells have been shown to express several marker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), or glutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor, many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secreted proteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPE cell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell dierentiation. We hypothesized that a dierentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a dierentiated phenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells. These proteins may replace harsh chemicals, which are currently used to induce cell dierentiation. 1. Introduction Primary open angle glaucoma (POAG), a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the gradual and progressive loss of retinal ganglion cells (RGCs), optic nerve degeneration, and excava- tion of the optic disks [14]. The hypothesis has been that larger RGCs were selectively lost in the early stage of glau- coma [5]. Although the mechanisms of optic nerve damage in glaucoma have not been completely determined, it appears that the optic nerve head is a major site of damage [6]. RGCs can generate action potentials that travel along the optic fibers [7]. In general, RGCs are a mixture of more than 20 cell subtypes. They have energy-dependent axonal
28

Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Apr 24, 2023

Download

Documents

Sam Chien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Hindawi Publishing CorporationJournal of Biomedicine and BiotechnologyVolume 2011, Article ID 901329, 28 pagesdoi:10.1155/2011/901329

Research Article

Protein Profiling of Human Nonpigmented Ciliary EpitheliumCell Secretome: The Differentiation Factors Characterization forRetinal Ganglion Cell line

Ming-Hui Yang,1 Raghu R. Krishnamoorthy,2 Shiang-Bin Jong,3 Pei-Yu Chu,4

Yuan-Han Yang,5 Wen-Cheng Chen,6 Sharon Chia-Ju Chen,3 Adnan Dibas,2

Thomas Yorio,2 Tze-Wen Chung,1 and Yu-Chang Tyan3, 7, 8, 9

1 Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, 123 University Road,Section 3, Douliou, Yunlin 64002, Taiwan

2 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, USA3 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, 100 Shi-Chuan 1st Road,Kaohsiung 80708, Taiwan

4 Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan5 Department of Neurology, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80708, Taiwan6 Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan7 National Sun Yat-Sen University and Kaohsiung Medical University Joint Research Center, Kaohsiung 80708, Taiwan8 Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan9 Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

Correspondence should be addressed to Tze-Wen Chung, [email protected] and Yu-Chang Tyan, [email protected]

Received 5 April 2011; Revised 10 June 2011; Accepted 13 June 2011

Academic Editor: Daniel T. Monaghan

Copyright © 2011 Ming-Hui Yang et al. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells,which have differentiated a rat retinal ganglion cell line, RGC-5. Undifferentiated RGC-5 cells have been shown to express severalmarker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), orglutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor,many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secretedproteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPEcell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell differentiation.We hypothesized that a differentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a differentiatedphenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells.These proteins may replace harsh chemicals, which are currently used to induce cell differentiation.

1. Introduction

Primary open angle glaucoma (POAG), a leading cause ofirreversible blindness worldwide, is an optic neuropathycharacterized by the gradual and progressive loss of retinalganglion cells (RGCs), optic nerve degeneration, and excava-tion of the optic disks [1–4]. The hypothesis has been that

larger RGCs were selectively lost in the early stage of glau-coma [5]. Although the mechanisms of optic nerve damagein glaucoma have not been completely determined, it appearsthat the optic nerve head is a major site of damage [6].

RGCs can generate action potentials that travel along theoptic fibers [7]. In general, RGCs are a mixture of morethan 20 cell subtypes. They have energy-dependent axonal

Page 2: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

2 Journal of Biomedicine and Biotechnology

transport functions—orthograde and retrograde transports[8]. These terminal projection areas are in the lateral genic-ulate body. RGCs can be subdivided by their morphologyand physiology, but they are usually discussed withoutclassifications.

The in vitro study of the physiology and pathophysiologyof RGCs has been limited to primary cultures. Previous stud-ies have characterized a transformed rat retinal ganglion cell-line (RGC-5), which expresses many neuronal cell markers,including Thy-1, a cell surface glycoprotein found predom-inantly in the retinal ganglion cells [6, 9, 10], and Brn-3C, a POU domain transcription factor expressed exclusivelyin the retinal ganglion cells [11]. RGC-5 cells also expressreceptors of N-methyl-D aspartate (NMDA), GABA-B, andneurotrophin [6]. However, unlike primary RGCs, thesecells were not sensitive to glutamate excitotoxicity in theirundifferentiated state. RGC-5 cells pretreated with succinylconcanavalin-A (sCon A) were sensitive to 500 μM glutamate[12]. Lacking glutamate sensitivity causes the difficulties ofusing the RGC-5 cells in experiments involving glutamate.

Ocular ciliary epithelium cells have been shown to beinvolved in the synthesis and secretion of various proteinsfound in aqueous humor [13]. Several proteins, includingneuropeptides and their processing enzymes, synthesizedand secreted by a human nonpigmented ciliary epithelial(HNPE) cell-line, have been evaluated [14], and it issuggested that these secreted proteins can act in an autocrineor paracrine manner to affect ciliary epithelial functions andother target ocular cells, such as the trabecular meshwork[13]. Because of the neuroendocrine properties of theciliary epithelium cells, the ability to confer differentiatedneuroendocrine phenotypes and the physical locations ofthese ciliary epithelium cells and RGCs [15], we hypothesizedthat factors secreted by these HNPE cells may induce theRGC-5 cells to differentiate, and possibly induce glutamateand NMDA sensitivities.

Proteomic analysis, including identification and charac-terization, is a powerful tool for determination of biologicalroles and functions of individual proteins. In the presentreport, we have utilized a system involving HNPE and RGC-5 cells, and this system may result in the morphologicaland functional differentiation of RGC-5 cells. Although theorigin of RGC-5 has been still in question, the expression ofneuronal markers was validated [16]. Proteomic approacheshave been applied to establish a map of expressed proteinsfor the characteristics of HNPE cells.

2. Materials and Methods

2.1. Cell Culture. The human non-pigmented ciliary epithe-lium cells (HNPE) were SV-40 transformed and werea gift from Dr. Miguel Coca-Prados (Yale University).HNPE were maintained at 37◦C and 5% CO2 in Dul-becco’s modified Eagle’s medium (DMEM, Gibco, GrandIsland, NY, USA) supplemented with 10% fetal bovineserum (FBS, Hyclone Laboratories, Logan, UT), 1% peni-cillin/streptomycin (Gibco, Grand Island, NY, USA) and44 mM NaHCO3. After three days, the cells were washed

with phosphate buffered saline (PBS) and the medium wasreplaced by serum-free (SF) DMEM for 12 h.

The HNPE cell conditioned SF-medium was filtered by0.22 μm filter and diluted 25 times with autoclaved Milli-Qgrade water (Millipore Co., Inc.). For each 5 kD cutoffcentrifugal tube (Amicon Ultra-15, Millipore Co., Inc.), a15 mL diluted sample was loaded. Following centrifugationat 5000×g for 20 min, the sample in the filter unit wascollected. The protein concentration of the HNPE cellconditioned SF-medium was measured by the Bio-RadBradford total protein assay kit (Bio-Rad Laboratories, Inc.).

RGC-5 cells, a secondary cell culture, were transformedrat retinal ganglion cells developed and obtained from Dr.Agarwal (University of North Texas Health Science Center).RGC-5 cells were maintained in low glucose DMEM in T-150 culture flasks supplemented with 44 mM NaHCO3, 10%FBS, and 1% penicillin/streptomycin (Gibco). DifferentiatedRGC-5 cells were obtained by using 50% HNPE cell condi-tioned SF-medium and 50% fresh DMEM (containing 10%FBS). HNPE conditioned medium, which consisted of lowglucose DMEM, was incubated with human non-pigmentedciliary epithelial cells (HNPE).

2.2. Immunocytochemistry. RGCs were grown on glass cov-erslips for 1-2 days prior to experimentation. Coverslipswere rinsed with PBS three times and then were fixed in4% paraformaldehyde for 30 min. These cells were washedwith PBS before being permeabilized in 0.1% Triton X-100for 15 min, washed with PBS, and blocked with 5% bovineserum albumin for 60 min. After rinsing with PBS, thecells were incubated with a mixture of Thy-1 (monoclonalantibodies, Chemicon, Temecula, CA, 1 : 200) and Brn-3C (polyclonal antibodies, Convance Inc, Princeton, NJ,1 : 1000) for 1.5 h at room temperature and subsequentlyincubated with a combination of secondary antibodies. AfterPBS rinses, these cells were incubated for 10 min in the darkwith 300 nM DAPI to stain nuclear regions. Cover-slideswere mounted on glass slides in antifade medium (FluorSave;Calbiochem, La Jolla, CA) and allowed to dry for 20 min inthe dark. Cells were visualized and images were taken using aZeiss LSM-410 Confocal Scanning Laser Microscope System.Controls were performed by omitting primary antibodies.

2.3. 1D SDS-PAGE. HNPE cell-secreted proteins were sep-arated under denaturing conditions in a 4–12% polyacry-lamide gel. The HNPE cell conditioned SF-medium wasresuspended in the sample buffer (Invitrogen NuPAGE SDSsample buffer), heated at 80◦C for 10 min and then storedon ice. Each well was loaded with 5 μg of sample solution.The SDS-PAGE gel was run in a Bio-Rad protean II xi cell(Richmond CA, USA) at 200 V for 1 h. After completion ofelectrophoresis, the protein bands in the gel were visualizedby silver staining and image acquired using an image scanner(Amersham Biosciences, Uppsala, Sweden), which is oper-ated by the software LabScan 5.00 (Amersham Biosciences).

2.4. Silver Staining. The gels were fixed in an aqueoussolution having 40% ethanol and 10% acetic acid overnight,

Page 3: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 3

and then incubated in a buffer solution containing 30%ethanol, 6.8% w/v sodium acetate, and 0.312% w/v sodiumthiosulfate for 30 min. After rinsing three times for 5 mineach, the gels were stained in a 0.25% w/v silver nitratesolution containing 0.02% formaldehyde for 30 min. Thedevelopment was performed for 10 min in a solution con-sisting of 2.5% sodium carbonate and 0.01% formaldehyde.An acetic acid solution (5% v/v) was used to stop thedevelopment, and the stained gels were then rinsed threetimes for 5 min each.

2.5. Protein Identification by Nano-HPLC-ESI-MS/MS. Theprotein bands were excised manually and digested usingsequence grade trypsin (V511A, Promega, USA). The proteinsamples were reduced, alkylated, and then digested withtrypsin using standard protocols [17, 18].

Reverse phase nano-high performance liquid chromatog-raphy electrospray ionization tandem mass spectrometry(RP-nano-HPLC-ESI-MS/MS) was used to identify theselected protein bands separated on the SDS-PAGE. Thepeptides obtained from the tryptic in-gel digestion were ana-lyzed using a nano-HPLC system (LC Packings, Netherlands)coupled to an ion trap mass spectrometer (LCQ Deca XPPlus, ThermoFinnigan, San Jose, CA, USA) equipped with anelectrospray ionization source. A linear acetonitrile gradientfrom 100% buffer A (5% acetonitrile/0.1% formic acid) to60% buffer B (80% acetonitrile/0.1% formic acid) was usedat a flow rate of approximately 200 nL/min for 70 min. Theseparation was performed on a C18 microcapillary column(Zorbax 300SB-C18, 3.5 μm, 75 μm I.D. ×150 mm, Agilent,Germany). Peptides eluted from the microcapillary columnwere electrosprayed into the nano-HPLC-ESI-MS/MS withthe application of a distal 1.3 kV with heated capillary atthe temperature of 200◦C. Each cycle of one full scanmass spectrum (m/z 450–2000) was followed by three data-dependent tandem mass spectra with the collision energy wasset at 35%.

2.6. Database Search. For protein identification, Mascotsoftware (Version 2.2.1, Matrix Science, London, UK) wasused to search the human protein sequence database (Swiss-Prot, Release 52.0 of 22-Feb-08). For proteolytic cleavages,only tryptic cleavage was allowed, and the number ofmaximal internal (missed) cleavage sites was set to 2. Variablemodifications of cysteine with carboxyamidomethylation,methionine with oxidation, and asparagine/glutamine withdeamidation were allowed. The mass tolerances of the pre-cursor peptide ion and fragment ion were set to 1 Da. Positiveprotein identifications were defined if the Mowse scores ofgreater than 50 were considered significant (P < 0.05).Proteins were initially annotated by similar searches usingUniProtKB/Swiss-Prot databases (Last modified September22, 2009) [19–21].

3. Results and Discussion

Cell secretome (cell-conditional medium) studies can makemajor contributions in understand biomarker discovery

and cell pathophysiological mechanisms. It is composed ofproteins that are found in the extracellular growth medium.The cell secretome consists of proteins that are secreted, shedfrom the cell surface and intracellular proteins released intothe supernatant due to cell lysis, apoptosis, and necrosis [22,23]. The secretome which consists of proteins or peptidessecreted from cells into the extracellular medium representsthe major class of molecules involved in the intercellularcommunication in multicellular organisms. It constitutesan important class of proteins that control and regulatea multitude of biological and physiological processes andindicates a clinically relevant source for biomarker andtherapeutic target discoveries [24].

Thus, secreted proteins constitute an important categoryof active molecules that play crucial roles in a number ofphysiological and pathological processes and may reflect abroad variety of pathological conditions and thus representa rich source of biomarkers. Proteomic characterization ofproteins for identification of specific biomarkers provides apowerful tool to gain deep insights into disease mechanismsin which proteins play major roles. In this study, we haveused gel electrophoresis associated with mass spectrometryfor identification of the proteome and secretome of HNPEcell conditioned SF-medium samples.

3.1. RGC-5 Cell Differentiation. The differentiation systemconsisted of RGC-5 cells on coverslips inside 6-well plates,which were exposed to the conditioned medium from HNPEcells. RGC-5 cells proliferated rapidly with a doubling timeof less than a day. Decreasing the percentage of serum in themedium may slow down proliferation. The control RGC-5cells were heterogeneous in shape. Morphological changesof RGC-5 cells were induced by HNPE cell conditionedSF-medium (Figure 1) and caused the shrinkage of thecell body with elongated neurite outgrowth (Figure 1(b)),which allows comparison with undifferentiated RGC-5 cells(Figure 1(a)). The overall morphology of RGC-5 cells afterthe treatment was similar to those seen in primary cultures ofrat retinal ganglion cells [25]. Moreover, the morphology ofRGC-5 cells differentiated by our method was similar to theones induced by a broad-spectrum protein kinase inhibitorstaurosporine [26]. Nevertheless, Frassetto and coworkersdid not conclude this to be the possible differentiationmechanism. This secretome map is a preliminary study tounveil the mechanism since the differentiation is probablythe consequence of the action of several proteins and/orenzymes. It was also noted that the differentiation treatmentled to decreased culture density compared with the controlcells. This finding is consistent with the study from Woodet al. [27]. For subsequent studies, the conditioned mediumfrom confluent flasks containing HNPE cells was used andfound to be equally effective in promoting differentiation ofRGC-5 cells.

Thy-1 expression in undifferentiated RGC-5 cells wasused as a marker to identify retinal ganglion cells [28].After treatment with HNPE cell conditioned SF-medium,RGC-5 cells have an enhanced Thy-1 expression, comparedto the undifferentiated cells (Figure 2). In the retina, the

Page 4: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

4 Journal of Biomedicine and Biotechnology

(a) (b)

Figure 1: Morphological changes in RGC-5 cells after treatment with HNPE conditioned SF-medium (40x) (a) before, and (b) after.The RGC-5 cells treated with HNPE conditioned SF-medium induced morphological changes, including longer axons and more neuriteoutgrowth (Figure 1(b)), compared to RGC-5 cells without treatment (Figure 1(a)).

DIC

RG

C-5

alon

e

Thy-1

(a)

DIC Brn-3b

(b)

RG

C-5

wit

hH

NP

E

(c) (d)

Figure 2: Immunocytochemical analysis of Thy-1 and Brn-3b expression in RGC-5 cells differentiated by treatment with HNPE cellconditioned SF-medium. Staining with antibodies to the cell surface glycoprotein, Thy-1, have been commonly used as a marker to identifyretinal ganglion cells. After cultivation with HNPE conditioned medium, RGC-5 cells have an enhanced Thy-1 expression, compared tothe undifferentiated cells. RGC-5 cells without cultivation with HNPE conditioned medium express Brn-3b in a different pattern comparedwith treated RGC-5 cells. Specifically, Brn-3b has a nuclear localization in RGC-5 cells without cultivation with HNPE conditioned medium;however, upon treatment, RGC-5 cells express Brn-3b in a more punctate cytosolic manner.

class IV POU domain transcription factor, Brn-3b, wasexpressed almost exclusively in subpopulations of ganglioncells and used to identify RGCs [29]. Brn-3b was regardedas a marker for differentiation of RGCs, since Brn-3 factorswere not necessary for the initial specification of sensoryneurons, but were essential for their normal differentiationand survival [30]. Specifically, Brn-3b was localized in thenuclear in RGC-5 cells; however, upon treatment with HNPE

cell conditioned SF-medium, RGC-5 cells express Brn-3b ina more punctate cytosolic manner (Figure 2).

3.2. Proteome Analysis. The SDS-PAGE followed by sil-ver staining resolved the protein bands from HNPE cellconditioned SF-medium. Figure 3 shows the silver-stained1D SDS-PAGE of secreted proteins from HNPE cells. Fivemicrograms of secreted protein was loaded on a gel for

Page 5: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 5

1-41-51-61-7

1-8

1-9

1-101-111-12

1-13

1-14

1-15

1-161-17

1-181-191-20

1-211-22

1-231-24

1-251-26

1-271-28

1-291-30

1-31

1-11-21-3250

150

100

75

50

37

20

15

10

25

Figure 3: 1D SDS-PAGE image of HNPE conditioned SF-medium(5 μg/well, silver stained, left-hand side: molecular weight marker,kDa). The gel bands on the middle lane with serial numbers wereanalyzed by nano-HPLC-ESI-MS/MS. In the 30 bands, 132 proteinswere identified. The gel bands on the right-hand side were the celllysised proteins.

visualization, and more than 30 protein bands were detectedin the HNPE conditioned SF-medium using the imageanalysis software. To identify the proteins, the position ofthe 1D SDS-PAGE lane was excised from the gel, washedto remove the stain, and subjected to tryptic digestion.The resulting peptides were characterized by nano-HPLC-MS/MS for protein identification. When a protein was iden-tified by three or more unique peptides possessing MASCOTscores, no visual assessment of spectra was conducted andthe protein was considered present in the sample.

In this study, all MS/MS spectra were manually con-firmed (even if the above criteria were passed) by thevisual assessment for their overall quality. In addition, the

criteria for manual validation reported by Jaffe et al., whichrequires a readily observable series of at least four y-ions,was used [31]. Thus, the criteria should be enough for thevalidation of the identified proteins. By using this strategy,132 unique proteins with at least three unique peptidesequences matched were identified, and a summary of theprotein identifications achieved is listed in Table 1.

In this study, 47 proteins (35.6%) were known to bepresent in cytoplasm. Twenty-two proteins (16.7%) wereknown to be secreted into the extracellular space. Twenty-fiveproteins (18.9%) were known to be nuclear proteins. Elevenproteins (8.3%) were known to be membrane proteins.Ten proteins (7.6%) were known to be cytosol proteins.A few mitochondrial, endoplasmic reticulum, intracellular,cytoskeleton, and golgi apparatus proteins were also identi-fied. A considerable portion of the identified proteins (6%,8 proteins) has not been reported for their synthesizedlocations. Some proteins were described as found in differentsubcellular locations, which explains the total sum beingsubstantially larger than 100%.

Some identified proteins in the distribution of cellularlocation were not secreted proteins, but they were stillpresent in the secreted medium. To clarify the puzzle, a cellviability test was applied. The survival rate of HNPE cellswas determined by the dimethylthiazol-diphenyltetrazoliumbromide (MTT) assay, which was about 97%. Thus, thoseidentified proteins were not corresponding to releasedproteins from dead cells. Also, according the protein profilesin Figure 3, the protein patterns obtained from secretedmedium and cell lysate were very different. As a result, theseproteins identified in this study can be considered as secretedproteins, which may have been synthesized inside the cellsand transferred out.

Based on the functional categories in the Swiss-Protand TrEMBL protein database, the identified proteins wereclassified into several groups. The Swiss-Prot identifierscould be employed for linkages of proteins to defined vocab-ulary of terms describing the cellular components, biologicalprocesses, and molecular functions of known gene ontology(GO). Gene Ontology Consortium provides annotationsof each protein and its structure, which allowed us toorganize selected proteins into biologically relevant groups.These groupings can be utilized as the basis for identifyingbiological information showing correlated protein changes[20, 32]. Such protein functions were listed in Table 2.

In this study, some of the proteins secreted by HNPEcells, which were confirmed by the Western blotting method,may be candidate factors responsible for promoting differ-entiation of RGC-5 cells including thrombospondin-1, 2,3 precursor (1-2, 1-3, 1-13), galectin-3-binding protein (1-5∼1-7), neurogenic locus notch homolog protein 3 (Notch-3, 1-11), follistatin-related protein 1 precursor (1-11), sPARCprecursor (1-14), peroxiredoxin-1 (1-21, 1-22), cofilin 1 (1-24, 1-27), profilin 1 (1-27, 1-28), galectin-1 (1-28), andmyotrophin (1-30). Cell differentiation is directed by avariety of intra- and extracellular events including signalsgenerated by extracellular matrix (ECM) components, whichmediate adhesive cell-to-cell interactions and trigger a cas-cade of post-receptor intracellular signaling pathways. The

Page 6: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

6 Journal of Biomedicine and Biotechnology

Ta

ble

1:P

rote

ins

iden

tifi

edin

HN

PE

con

diti

oned

SF-m

ediu

mby

prot

eom

ican

alys

es.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

1-1

P02

751

Fibr

onec

tin

prec

urs

or26

2442

1728

Secr

eted

25%

Col

lage

n/h

epar

inbi

ndi

ng

cell

adh

esio

n/m

igra

tion

1-2

Q08

378

Gol

gin

subf

amily

Am

embe

r3

1672

5237

Cyt

opla

sm4%

Tran

spor

ter

acti

vity

Intr

a-G

olgi

vesi

cle-

med

iate

dtr

ansp

ort

P02

751

Fibr

onec

tin

prec

urs

or26

2442

810

Secr

eted

11%

Col

lage

n/h

epar

inbi

ndi

ng

Cel

ladh

esio

n/m

igra

tion

P02

452

Col

lage

-1(I

)ch

ain

prec

urs

or13

8799

163

Secr

eted

3%P

rote

inbi

ndi

ng

Skel

etal

/epi

derm

isde

velo

pmen

t

P11

047

Lam

inin

γ-1

chai

npr

ecu

rsor

1774

9274

Secr

eted

2%E

xtra

cellu

lar

mat

rix

stru

ctu

ral

con

stit

uen

tC

ella

dhes

ion

/mig

rati

on

P07

996

Th

rom

bosp

ondi

n-1

prec

urs

or12

9330

50Se

cret

ed1%

Sign

altr

ansd

uce

rac

tivi

tyM

ult

icel

lula

ror

gan

ism

alde

velo

pmen

tO

9523

9C

hro

mos

ome-

asso

ciat

edki

nes

inK

IF4A

1397

9446

Nu

cleu

s2%

Pro

tein

bin

din

gA

nte

rogr

ade

axon

carg

otr

ansp

ort

Q5V

TR

2U

biqu

itin

-pro

tein

ligas

eB

RE

1A11

3592

39N

ucl

eus

1%Tr

ansc

ript

ion

coac

tiva

tor

acti

vity

,u

biqu

itin

-pro

tein

ligas

eac

tivi

tyan

dbi

ndi

ng,

zin

cio

nbi

ndi

ng

Reg

ula

tion

ofge

ne-

spec

ific

tran

scri

ptio

n,p

rote

inpo

lyu

biqu

itin

atio

n,n

egat

ive

regu

lati

onof

cell

mig

rati

on

1-3

Q8T

F76

Seri

ne/

thre

onin

e-pr

otei

nki

nas

eH

aspi

n88

405

36N

ucl

eus

6%A

TP

bin

din

g/pr

otei

nki

nas

eac

tivi

tyP

rote

inam

ino

acid

phos

phor

ylat

ion

P07

996

Th

rom

bosp

ondi

n-1

prec

urs

or12

9330

427

Secr

eted

11%

Sign

altr

ansd

uce

rac

tivi

tyM

ult

icel

lula

ror

gan

ism

alde

velo

pmen

tP

0245

2C

olla

genα

-1(I

)ch

ain

prec

urs

or13

8799

231

Secr

eted

8%P

rote

inbi

ndi

ng

Epi

derm

is/

skel

etal

deve

lopm

ent

P01

024

Com

plem

ent

C3

prec

urs

or18

7046

145

Secr

eted

2%R

ecep

tor

bin

din

gC

ompl

emen

tac

tiva

tion

P02

751

Fibr

onec

tin

prec

urs

or26

2442

86Se

cret

ed3%

Col

lage

n/h

epar

inbi

ndi

ng

Cel

ladh

esio

n/m

igra

tion

Q14

980

Nu

clea

rm

itot

icap

para

tus

prot

ein

123

8130

50N

ucl

eus

4%P

rote

inbi

ndi

ng/

stru

ctu

ralm

olec

ule

acti

vity

Mit

otic

anap

has

e

P35

442

Th

rom

bosp

ondi

n-2

prec

urs

or12

9872

48Se

cret

ed1%

Hep

arin

bin

din

gP

0781

4B

ifu

nct

ion

alam

inoa

cyl-

tRN

Asy

nth

etas

e16

2923

39C

ytop

lasm

1%P

rote

inbi

ndi

ng

Pro

tein

com

plex

asse

mbl

y

P81

274

G-p

rote

insi

gnal

ing

mod

ula

tor

275

798

56C

ytop

lasm

5%Id

enti

calp

rote

inbi

ndi

ng

G-p

rote

inco

upl

edre

cept

orpr

otei

nsi

gnal

ing

path

way

O14

686

Mye

loid

/lym

phoi

dor

mix

ed-l

inea

gele

uke

mia

prot

ein

256

3831

48N

ucl

eus

1%P

rote

in/D

NA

bin

din

gR

egu

lati

onof

tran

scri

ptio

n,

DN

A-d

epen

den

t

Q9U

Q26

Reg

ula

tin

gsy

nap

tic

mem

bran

eex

ocyt

osis

prot

ein

216

0303

43C

ellm

embr

ane

2%Z

inc

ion

bin

din

g,R

abG

TPa

sebi

ndi

ng

Intr

acel

lula

rpr

otei

ntr

ansp

ort

Q9U

M54

Myo

sin

-614

8620

35G

olgi

appa

ratu

s4%

AD

P/c

alm

odu

linbi

ndi

ng

DN

Ada

mag

ere

spon

se,i

ntr

acel

lula

rpr

otei

ntr

ansp

ort

O15

020

Spec

trin

βch

ain

,bra

in2

2711

2738

Cyt

opla

sm,

cyto

skel

eton

2%A

ctin

bin

din

gV

esic

le-m

edia

ted

tran

spor

t

1-4

O00

339

Mat

rilin

-2pr

ecu

rsor

1067

6810

9Se

cret

ed3%

Cal

ciu

mio

nbi

ndi

ng

1-5

Q08

380

Gal

ecti

n-3

-bin

din

gpr

otei

npr

ecu

rsor

6528

940

4Se

cret

ed23

%P

rote

inbi

ndi

ng/

scav

enge

rre

cept

orac

tivi

tyC

ellu

lar

defe

nse

resp

onse

/sig

nal

tran

sdu

ctio

n

O94

985

Cal

syn

ten

in-1

prec

urs

or10

9724

55

En

dopl

asm

icre

ticu

lum

mem

bran

e,n

ucl

eus,

Gol

gim

embr

ane

1%C

alci

um

ion

bin

din

g,pr

otei

nbi

ndi

ng

Hom

oph

ilic

cell

adh

esio

n

Page 7: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 7

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

P13

569

Cys

tic

fibr

osis

tran

smem

bran

eco

ndu

ctan

cere

gula

tor

1680

6637

Mem

bran

e1%

AT

P-bi

ndi

ng

and

phos

phor

ylat

ion

-dep

ende

nt

chlo

ride

chan

nel

acti

vity

Res

pira

tory

gase

ous

exch

ange

,tr

ansp

ort

P12

814

α-a

ctin

in-1

1029

9316

8C

ytop

lasm

7%In

tegr

inbi

ndi

ng

Reg

ula

tion

ofap

opto

sis

1-6

O43

707

α-a

ctin

in-4

1047

8854

4N

ucl

eus

11%

Inte

grin

bin

din

gR

egu

lati

onof

apop

tosi

sP

1281

-act

inin

-110

2993

521

Cyt

opla

sm14

%In

tegr

inbi

ndi

ng

Reg

ula

tion

ofap

opto

sis

Q08

380

Gal

ecti

n-3

-bin

din

gpr

otei

npr

ecu

rsor

6528

946

7Se

cret

ed18

%P

rote

inbi

ndi

ng/

scav

enge

rre

cept

orac

tivi

tyC

ellu

lar

defe

nse

resp

onse

/sig

nal

tran

sdu

ctio

nP

3560

-act

inin

-210

3788

165

Cyt

opla

sm6%

Inte

grin

bin

din

gR

egu

lati

onof

apop

tosi

sP

3493

2H

eat

shoc

k70

kDa

prot

ein

494

240

82C

ytop

lasm

4%A

TP

bin

din

gR

espo

nse

tou

nfo

lded

prot

ein

P35

711

Tran

scri

ptio

nfa

ctor

SOX

-583

973

40N

ucl

eus

8%Tr

ansc

ript

ion

fact

orac

tivi

tyTr

ansc

ript

ion

from

RN

Apo

lym

eras

eII

prom

oter

1-7

Q08

380

Gal

ecti

n-3

-bin

din

gpr

otei

npr

ecu

rsor

6528

927

7Se

cret

ed15

%P

rote

inbi

ndi

ng/

scav

enge

rre

cept

orac

tivi

tyce

llula

rde

fen

sere

spon

se/s

ign

altr

ansd

uct

ion

O43

707

α-a

ctin

in-4

1047

8816

3N

ucl

eus

10%

Inte

grin

bin

din

gR

egu

lati

onof

apop

tosi

sP

0823

8H

eat

shoc

kpr

otei

nH

SP90

-β83

081

159

Cyt

opla

sm5%

Nit

ric-

oxid

esy

nth

ase

regu

lato

rac

tivi

tyR

espo

nse

tou

nfo

lded

prot

ein

P29

400

Col

lage

-5(I

V)

chai

npr

ecu

rsor

1609

4347

Secr

eted

4%B

indi

ng,

extr

acel

lula

rm

atri

xst

ruct

ura

lcon

stit

uen

tQ

1374

0C

D16

6an

tige

npr

ecu

rsor

6509

140

Mem

bran

e4%

Rec

epto

rbi

ndi

ng

Cel

ladh

esio

n/s

ign

altr

ansd

uct

ion

P07

900

Hea

tsh

ock

prot

ein

HSP

90-α

8447

622

5C

ytop

lasm

5%A

TP

bin

din

g/n

itri

c-ox

ide

syn

thas

ere

gula

tor

acti

vity

Res

pon

seto

un

fold

edpr

otei

n/s

ign

altr

ansd

uct

ion

P12

814

α-a

ctin

in-1

1029

9319

4C

ytop

lasm

6%In

tegr

inbi

ndi

ng

Reg

ula

tion

ofap

opto

sis

P35

609

α-a

ctin

in-2

1037

8874

Cyt

opla

sm3%

Inte

grin

bin

din

gR

egu

lati

onof

apop

tosi

s

O00

469

Pro

colla

gen

-lys

ine,

2-ox

oglu

tara

te5-

diox

ygen

ase

2pr

ecu

rsor

8463

248

Rou

ghen

dopl

asm

icre

ticu

lum

mem

bran

e

4%P

rote

inbi

ndi

ng

Pro

tein

mod

ifica

tion

proc

ess/

resp

onse

tohy

pox

ia

P34

932

Hea

tsh

ock

70kD

apr

otei

n4

9424

044

Cyt

opla

sm3%

AT

Pbi

ndi

ng

Res

pon

seto

un

fold

edpr

otei

nQ

1304

5P

rote

infl

igh

tles

s-1

hom

olog

1446

5943

Nu

cleu

s3%

Act

inbi

ndi

ng

Mu

scle

con

trac

tion

1-8

P02

768

Seru

mal

bum

inpr

ecu

rsor

6932

187

Secr

eted

3%P

rote

inbi

ndi

ng/

pyri

doxa

lph

osph

ate

bin

din

gN

egat

ive

regu

lati

onof

apop

tosi

s/t

ran

spor

tQ

8TE

U7

Rap

guan

ine

nu

cleo

tide

exch

ange

fact

or6

1792

9444

Cyt

opla

sm3%

GT

P-de

pen

den

tpr

otei

nbi

ndi

ng

Ras

prot

ein

sign

altr

ansd

uct

ion

1-9

O95

248

SET

-bin

din

gfa

ctor

120

8125

41N

ucl

eus

1%P

rote

inty

rosi

ne/

seri

ne/

thre

onin

eph

osph

atas

eac

tivi

tyP

rote

inam

ino

acid

deph

osph

oryl

atio

n

Q9U

PQ

9Tr

inu

cleo

tide

repe

at-c

onta

inin

g6B

prot

ein

1827

0336

Cyt

opla

smic

mR

NA

proc

essi

ng

body

2%R

NA

bin

din

g,n

ucl

eoti

debi

ndi

ng

Gen

esi

len

cin

gby

RN

A,r

egu

lati

onof

tran

slat

ion

P29

401

Tran

sket

olas

e67

835

134

Cyt

osol

7%P

rote

inbi

ndi

ng

Tran

sket

olas

eac

tivi

ty

P02

768

Seru

mal

bum

inpr

ecu

rsor

6932

182

Secr

eted

5%P

rote

inbi

ndi

ng/

pyri

doxa

lph

osph

ate

bin

din

gN

egat

ive

regu

lati

onof

apop

tosi

s/tr

ansp

ort

Page 8: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

8 Journal of Biomedicine and Biotechnology

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

O60

333

Kin

esin

-lik

epr

otei

nK

IF1B

2043

0558

Cyt

opla

smic

vesi

cle

1%A

TPa

seac

tivi

ty/m

icro

tubu

lem

otor

acti

vity

Neu

rom

usc

ula

rsy

nap

tic

tran

smis

sion

/ner

ve-n

erve

syn

apti

ctr

ansm

issi

on

O75

095

Mu

ltip

leep

ider

mal

grow

thfa

ctor

-lik

edo

mai

ns

6pr

ecu

rsor

1285

2446

6%C

alci

um

ion

bin

din

g

1-10

P06

744

Glu

cose

-6-p

hos

phat

eis

omer

ase

6297

633

4C

ytop

lasm

8%H

um

oral

imm

un

ere

spon

se/c

arbo

hydr

ate

met

abol

icpr

oces

s

P27

797

Cal

reti

culin

prec

urs

or48

112

67

En

dopl

asm

icre

ticu

lum

lum

en,

Cyt

opla

sm,

Secr

eted

5%D

NA

/pro

tein

bin

din

gR

egu

lati

onof

apop

tosi

s/tr

ansc

ript

ion

,D

NA

-dep

ende

nt,

prot

ein

expo

rtfr

omn

ucl

eus

P09

493

Trop

omyo

sin

chai

n32

689

44C

ytop

lasm

8%St

ruct

ura

lcon

stit

uen

tof

mu

scle

Cel

lmot

ility

,reg

ula

tion

ofh

eart

/mu

scle

con

trac

tion

1-11

Q06

495

Sodi

um

-dep

ende

nt

phos

phat

etr

ansp

ort

prot

ein

2A68

893

49M

embr

ane

1%So

diu

m-d

epen

den

tph

osph

ate

tran

smem

bran

etr

ansp

orte

rac

tivi

tyB

ody

flu

idse

cret

ion

,ph

osph

ate

tran

spor

t

P37

268

Squ

alen

esy

nth

etas

e48

084

40E

ndo

plas

mic

reti

culu

mm

embr

ane

5%Fa

rnes

yl-d

iph

osph

ate

farn

esyl

tran

sfer

ase

acti

vity

Ster

oid

bios

ynth

etic

proc

ess

Q12

799

T-c

ompl

expr

otei

n10

Ah

omol

og45

440

39C

ytos

ol7%

O75

095

Mu

ltip

leep

ider

mal

grow

thfa

ctor

-lik

edo

mai

ns

6pr

ecu

rsor

1285

2446

1%C

alci

um

ion

bin

din

g

Q9U

M47

Neu

roge

nic

locu

sn

otch

hom

olog

prot

ein

3pr

ecu

rsor

2434

9637

Cel

lmem

bran

e5%

Pro

tein

bin

din

g

P39

191

Alu

subf

amily

SB2

sequ

ence

con

tam

inat

ion

war

nin

gen

try

6526

359

5%

Q12

841

Folli

stat

in-r

elat

edpr

otei

n1

prec

urs

or34

963

52Se

cret

ed2%

Hep

arin

bin

din

gB

MP

sign

alin

gpa

thw

ay

Q14

980

Nu

clea

rm

itot

icap

para

tus

prot

ein

123

8130

41N

ucl

eus

2%P

rote

inbi

ndi

ng/

stru

ctu

ralm

olec

ule

acti

vity

Mit

otic

anap

has

e/n

ucl

ear

orga

niz

atio

nan

dbi

ogen

esis

1-12

P14

136

Glia

lfibr

illar

yac

idic

prot

ein

,ast

rocy

te49

850

80C

ytop

lasm

7%St

ruct

ura

lcon

stit

uen

tof

cyto

skel

eton

P78

527

DN

A-d

epen

den

tpr

otei

nki

nas

eca

taly

tic

subu

nit

4687

8839

Nu

cleu

s1%

DN

A-d

epen

den

tpr

otei

nki

nas

eac

tivi

tyPe

ptid

yl-s

erin

eph

osph

oryl

atio

n

Q9U

PQ

9Tr

inu

cleo

tide

repe

at-c

onta

inin

g6B

prot

ein

1827

0349

4%

P06

744

Glu

cose

-6-p

hos

phat

eis

omer

ase

6297

640

1C

ytop

lasm

16%

Hu

mor

alim

mu

ne

resp

onse

/car

bohy

drat

em

etab

olic

proc

ess

P14

618

Pyr

uvat

eki

nas

eis

ozym

esM

1/M

257

769

145

Cyt

osol

7%P

yruv

ate

kin

ase

acti

vity

Gly

coly

sis

P00

390

Glu

tath

ion

ere

duct

ase,

mit

och

ondr

ial

prec

urs

or56

221

69M

itoc

hon

drio

n2%

Glu

tath

ion

e-di

sulfi

dere

duct

ase

acti

vity

/ele

ctro

nca

rrie

rac

tivi

ty

Page 9: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 9T

abl

e1:

Con

tin

ued

.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

P09

622

Dih

ydro

lipoy

ldeh

ydro

gen

ase,

mit

och

ondr

ialp

recu

rsor

5411

647

Mit

och

ondr

ion

mat

rix

4%D

ihyd

rolip

oyld

ehyd

roge

nas

eac

tivi

ty

P30

154

Seri

ne/

thre

onin

e-pr

otei

nph

osph

atas

e2A

65kD

are

gula

tory

subu

nit

isof

orm

6615

942

3%P

rote

inh

eter

odim

eriz

atio

nac

tivi

ty

O95

271

Tan

kyra

se-1

1419

2237

Cyt

opla

sm2%

NA

D+

AD

P-ri

bosy

ltra

nsf

eras

eac

tivi

tyPe

ptid

yl-s

erin

e/th

reon

ine

phos

phor

ylat

ion

1-13

P06

733

α-e

nol

ase

4700

869

7C

ytop

lasm

27%

Tran

scri

ptio

nfa

ctor

acti

vity

,ph

osph

opyr

uvat

ehy

drat

ase

acti

vity

Neg

ativ

ere

gula

tion

ofce

llgr

owth

Q15

113

Pro

colla

gen

C-e

ndo

pep

tida

seen

han

cer

1pr

ecu

rsor

4794

211

4Se

cret

ed10

%M

ult

icel

lula

ror

gan

ism

alde

velo

pmen

t

P13

929

β-e

nol

ase

4682

624

2C

ytop

lasm

10%

Ph

osph

opyr

uvat

ehy

drat

ase

acti

vity

P09

104

γ-en

olas

e47

108

135

Cyt

opla

sm4%

Ph

osph

opyr

uvat

ehy

drat

ase

acti

vity

Q7Z

3E2

Pro

tein

C10

orf1

1810

3623

422%

P11

117

Lyso

som

alac

idph

osph

atas

epr

ecu

rsor

4828

542

Lyso

som

e2%

Aci

dph

osph

atas

eac

tivi

ty

P02

686

Mye

linba

sic

prot

ein

3309

740

Mye

linm

embr

ane

7%A

xon

ensh

eath

men

t,im

mu

ne

resp

onse

,cen

tral

ner

vou

ssy

stem

deve

lopm

ent

P50

395

Rab

GD

Pdi

ssoc

iati

onin

hib

itor

β50

631

40C

ytop

lasm

2%R

abG

DP-

diss

ocia

tion

inh

ibit

orac

tivi

tySi

gnal

tran

sdu

ctio

n

Q13

371

Ph

osdu

cin

-lik

epr

otei

n34

260

40C

ytop

lasm

8%R

egu

lato

rof

G-p

rote

insi

gnal

ing

acti

vity

Sign

altr

ansd

uct

ion

P35

573

Gly

coge

nde

bran

chin

gen

zym

e17

4523

39C

ytos

ol1%

Am

ylo-α

-1,6

-glu

cosi

dase

acti

vity

Q6Z

U80

Pro

tein

C14

orf1

4573

526

384%

P49

746

Th

rom

bosp

ondi

n-3

prec

urs

or10

4135

36Se

cret

ed1%

Cal

ciu

mio

nbi

ndi

ng

Cel

l-m

atri

xad

hes

ion

Q7L

1I2

Syn

apti

cve

sicl

egl

ycop

rote

in2B

7739

335

Cyt

opla

smic

vesi

cle

3%

1-14

P09

486

SPA

RC

prec

urs

or34

610

36Se

cret

ed14

%C

alci

um

/cal

ciu

mio

nbi

ndi

ng

Oss

ifica

tion

,tra

nsm

embr

ane

rece

ptor

prot

ein

tyro

sin

eki

nas

esi

gnal

ing

path

way

1-15

P04

075

Fru

ctos

e-bi

sph

osph

ate

aldo

lase

A39

264

341

Cyt

oske

leto

n37

%Fr

uct

ose-

bisp

hos

phat

eal

dola

seac

tivi

tyFr

uct

ose

met

abol

icpr

oces

s,gl

ycol

ysis

P09

972

Fru

ctos

e-bi

sph

osph

ate

aldo

lase

C39

300

134

Cyt

oske

leto

n13

%Fr

uct

ose-

bisp

hos

phat

eal

dola

seac

tivi

tyFr

uct

ose

met

abol

icpr

oces

s

P00

505

Asp

arta

team

inot

ran

sfer

ase,

mit

och

ondr

ialp

recu

rsor

4744

545

Mit

och

ondr

ion

mat

rix

3%A

spar

tate

tran

sam

inas

eac

tivi

tyFa

tty

acid

tran

spor

t,re

spon

seto

eth

anol

1-16

P40

925

Mal

ate

dehy

drog

enas

e,cy

topl

asm

ic36

272

40C

ytop

lasm

11%

L-m

alat

ede

hydr

ogen

ase

acti

vity

,mal

icen

zym

eac

tivi

ty

O00

623

Pero

xiso

me

asse

mbl

ypr

otei

n12

4077

137

Pero

xiso

me

mem

bran

e5%

Zin

cio

n/p

rote

inC

-ter

min

us

bin

din

gP

rote

inim

port

into

per

oxis

ome

mat

rix

Q9N

VP

4P

rote

inC

20or

f12

6286

833

Intr

acel

lula

r2%

zin

cio

nbi

ndi

ng

P07

195

L-la

ctat

ede

hydr

ogen

ase

Bch

ain

3648

452

Cyt

opla

sm5%

L-la

ctat

ede

hydr

ogen

ase

acti

vity

P10

909

Clu

ster

inpr

ecu

rsor

5246

142

Secr

eted

5%P

rote

inbi

ndi

ng

Com

plem

ent

acti

vati

on,l

ipid

met

abol

icpr

oces

s

Page 10: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

10 Journal of Biomedicine and Biotechnology

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

1-17

P11

117

Lyso

som

alac

idph

osph

atas

epr

ecu

rsor

4828

544

Lyso

som

e2%

Aci

dph

osph

atas

eac

tivi

ty

P09

493

Trop

omyo

sin

chai

n32

689

59C

ytop

lasm

3%St

ruct

ura

lcon

stit

uen

tof

mu

scle

Cel

lmot

ility

,reg

ula

tion

ofh

eart

/mu

scle

con

trac

tion

1-18

P18

669

Ph

osph

ogly

cera

tem

uta

se1

2865

515

1C

ytos

ol16

%B

isph

osph

ogly

cera

te2-

phos

phat

ase

acti

vity

Gly

coly

sis

P63

104

14-3

-3pr

otei

nze

ta/d

elta

2772

811

0C

ytop

lasm

12%

Tran

scri

ptio

nfa

ctor

bin

din

gA

nti

apop

tosi

s,si

gnal

tran

sdu

ctio

n

O60

242

Bra

in-s

peci

fic

angi

ogen

esis

inh

ibit

or3

prec

urs

or17

1379

38C

ellm

embr

ane

1%

O00

459

Ph

osph

atid

ylin

osit

ol3-

kin

ase

regu

lato

rysu

bun

itβ

8157

434

Cyt

osol

2%P

rote

inbi

ndi

ng

Neg

ativ

ere

gula

tion

ofan

tiap

opto

sis

P46

940

Ras

GT

Pase

-act

ivat

ing-

like

prot

ein

IQG

AP

118

9134

34C

ellm

embr

ane

2%G

TPa

seac

tiva

tor/

inh

ibit

orac

tivi

ty,

calm

odu

linbi

ndi

ng

Sign

altr

ansd

uct

ion

1-19

P60

174

Trio

seph

osph

ate

isom

eras

e26

522

156

Cyt

osol

18%

Trio

se-p

hos

phat

eis

omer

ase

acti

vity

P26

232

α-2

cate

nin

1050

8534

Cyt

opla

sm1%

Stru

ctu

ralc

onst

itu

ent

ofcy

tosk

elet

onC

ella

dhes

ion

1-20

P60

174

Trio

seph

osph

ate

isom

eras

e26

522

373

Cyt

osol

37%

Trio

se-p

hos

phat

eis

omer

ase

acti

vity

Q06

495

Sodi

um

-dep

ende

nt

phos

phat

etr

ansp

ort

prot

ein

2A68

893

49M

embr

ane

1%So

diu

m-d

epen

den

tph

osph

ate

tran

smem

bran

etr

ansp

orte

rac

tivi

ty,

prot

ein

bin

din

g

Bod

yfl

uid

secr

etio

n,p

hos

phat

em

etab

olic

proc

ess

and

tran

spor

t

Q14

980

Nu

clea

rm

itot

icap

para

tus

prot

ein

123

8115

44N

ucl

eus

4%P

rote

inbi

ndi

ng,

stru

ctu

ralm

olec

ule

acti

vity

Mit

otic

anap

has

e,n

ucl

ear

orga

niz

atio

nan

dbi

ogen

esis

P78

527

DN

A-d

epen

den

tpr

otei

nki

nas

eca

taly

tic

subu

nit

4687

8836

Nu

cleu

s1%

DN

A-d

epen

den

tpr

otei

nki

nas

eac

tivi

ty/p

rote

inbi

ndi

ng

Pept

idyl

-ser

ine

phos

phor

ylat

ion

1-21

Q06

830

Pero

xire

doxi

n-1

2209

623

1C

ytop

lasm

,m

elan

osom

e19

%Pe

roxi

dase

acti

vity

/pro

tein

bin

din

gC

ellp

rolif

erat

ion

,hyd

roge

np

erox

ide

cata

bolic

proc

ess,

skel

etal

deve

lopm

ent

P30

086

Ph

osph

atid

ylet

han

olam

ine-

bin

din

gpr

otei

n1

2091

312

2C

ytop

lasm

10%

Ph

osph

atid

ylet

han

olam

ine

bin

din

g/pr

otei

nbi

ndi

ng

P16

035

Met

allo

prot

ein

ase

inh

ibit

or2

prec

urs

or24

383

104

Secr

eted

13%

Met

allo

endo

pep

tida

sein

hib

itor

acti

vity

/pro

tein

bin

din

g

P04

179

Sup

erox

ide

dism

uta

se24

707

66M

itoc

hon

drio

nm

atri

x6%

Supe

roxi

dedi

smu

tase

acti

vity

Age

-dep

ende

nt

resp

onse

tore

acti

veox

ygen

spec

ies,

regu

lati

onof

tran

scri

ptio

nfr

omR

NA

poly

mer

ase

IIpr

omot

er,r

espo

nse

tosu

pero

xide

,su

per

oxid

em

etab

olic

proc

ess

P53

618

Coa

tom

ersu

bun

itβ

1070

7151

Cyt

opla

sm2%

Pro

tein

bin

din

g

CO

PI

coat

ing

ofG

olgi

vesi

cle,

intr

a-G

olgi

vesi

cle-

med

iate

dtr

ansp

ort,

retr

ogra

deve

sicl

e-m

edia

ted

tran

spor

t,G

olgi

toE

R

O43

395

U4/

U6

smal

lnu

clea

rri

bon

ucl

eopr

otei

nP

rp3

7748

145

Nu

cleu

ssp

eckl

e3%

Pro

tein

bin

din

g/R

NA

splic

ing

fact

orac

tivi

ty,t

ran

sest

erifi

cati

onm

ech

anis

mN

ucl

ear

mR

NA

splic

ing,

via

splic

eoso

me

Page 11: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 11

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

O15

240

Neu

rose

cret

ory

prot

ein

VG

Fpr

ecu

rsor

6724

744

Secr

eted

7%R

espo

nse

tocA

MP

Q06

495

Sodi

um

-dep

ende

nt

phos

phat

etr

ansp

ort

prot

ein

2A68

893

42M

embr

ane

1%P

rote

inbi

ndi

ng/

sodi

um

-dep

ende

nt

phos

phat

etr

ansm

embr

ane

tran

spor

ter

acti

vity

Bod

yfl

uid

secr

etio

n,p

hos

phat

em

etab

olic

proc

ess,

phos

phat

etr

ansp

ort

Q9Y

587

AP-

4co

mpl

exsu

bun

itsi

gma-

116

994

41G

olgi

appa

ratu

s9%

Tran

spor

ter

acti

vity

Q04

760

Lact

oylg

luta

thio

ne

lyas

e20

575

40C

ytop

lasm

4%La

ctoy

lglu

tath

ion

ely

ase

acti

vity

An

tiap

opto

sis,

carb

ohyd

rate

met

abol

icpr

oces

sP

1111

7Ly

soso

mal

acid

phos

phat

ase

prec

urs

or48

285

40Ly

soso

me

2%A

cid

phos

phat

ase

acti

vity

Q9P

0K1

AD

AM

22pr

ecu

rsor

1003

6839

Mem

bran

e5%

Inte

grin

bin

din

gC

entr

aln

ervo

us

syst

emde

velo

pmen

t,n

egat

ive

regu

lati

onof

cell

adh

esio

n

Q96

Q42

Als

in18

3550

38C

ytos

ol1%

Pro

tein

hom

odim

eriz

atio

nac

tivi

ty/p

rote

inse

rin

e/th

reon

ine

kin

ase

acti

vato

rac

tivi

ty/R

abG

TPa

sebi

ndi

ng/

Rac

guan

yl-n

ucl

eoti

deex

chan

gefa

ctor

acti

vity

Cel

ldea

th,e

ndo

som

eor

gan

izat

ion

,n

euro

npr

ojec

tion

mor

phog

enes

is,

posi

tive

regu

lati

onof

Rac

GT

Pase

acti

vity

,pos

itiv

ere

gula

tion

ofR

acpr

otei

nsi

gnal

tran

sdu

ctio

n,p

osit

ive

regu

lati

onof

prot

ein

kin

ase

acti

vity

,re

gula

tion

ofen

doso

me

size

1-22

Q06

830

Pero

xire

doxi

n-1

2209

611

0C

ytop

lasm

,M

elan

osom

e21

%Pe

roxi

dase

acti

vity

/pro

tein

bin

din

gC

ellp

rolif

erat

ion

,hyd

roge

np

erox

ide

cata

bolic

proc

ess,

skel

etal

deve

lopm

ent

Q8N

1I0

Ded

icat

orof

cyto

kin

esis

prot

ein

422

5005

41In

trac

ytop

lasm

icm

embr

ane

1%P

DZ

dom

ain

bin

din

g/R

acG

TPa

seac

tiva

tor

acti

vity

/Rac

GT

Pase

bin

din

gP

1111

7Ly

soso

mal

acid

phos

phat

ase

prec

urs

or48

285

39Ly

soso

me

2%A

cid

phos

phat

ase

acti

vity

1-23

O95

274

Ly6/

PLA

UR

dom

ain

-con

tain

ing

prot

ein

3pr

ecu

rsor

3594

838

Cel

lmem

bran

e8%

P00

441

Sup

erox

ide

dism

uta

se[C

u-Z

n]

1579

573

Cyt

opla

sm,

cyto

sol,

nu

cleu

s4%

Ch

aper

one/

phos

phat

ase

2B/c

opp

erio

n/z

inc

ion

bin

din

g,pr

otei

nh

omod

imer

izat

ion

acti

vity

,su

pero

xide

dism

uta

seac

tivi

ty/a

nti

oxid

ant

acti

vity

Cel

lagi

ng,

oxid

atio

nre

duct

ion

,re

gula

tion

ofor

gan

grow

th,p

osit

ive

regu

lati

onof

apop

tosi

s

O15

516

Cir

cadi

anlo

com

oter

outp

ut

cycl

espr

otei

nka

put

9524

455

Cyt

opla

sm,

nu

cleu

s1%

Tran

scri

ptio

nfa

ctor

acti

vity

Cir

cadi

anrh

yth

m,p

hot

oper

iodi

sm,

posi

tive

regu

lati

onof

tran

scri

ptio

nfr

omR

NA

pol

ymer

ase

IIpr

omot

er,

sign

altr

ansd

uct

ion

O00

160

Myo

sin

If12

4725

392%

Act

inbi

ndi

ng/

AT

Pbi

ndi

ng/

calm

odu

linbi

ndi

ng

Q13

075

Bac

ulo

vira

lIA

Pre

peat

-con

tain

ing

prot

ein

115

9479

39In

trac

ellu

lar

1%N

ucl

eosi

de-t

riph

osph

atas

eac

tivi

ty,

nu

cleo

tide

bin

din

g,zi

nc

ion

bin

din

gA

nti

apop

tosi

s,n

ervo

us

syst

emde

velo

pmen

t

1-24

Q6Z

UB

1P

rote

inC

9orf

7915

7037

35M

embr

ane

1%

Q9B

XM

0Pe

riax

in15

4906

35cy

topl

asm

,n

ucl

eus

1%P

rote

inbi

ndi

ng

Axo

nen

shea

thm

ent

Page 12: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

12 Journal of Biomedicine and Biotechnology

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

Q15

084

Pro

tein

disu

lfide

-iso

mer

ase

A6

prec

urs

or48

091

38E

ndo

plas

mic

reti

culu

mlu

men

,m

elan

osom

e2%

Pro

tein

bin

din

g/pr

otei

ndi

sulfi

deis

omer

ase

acti

vity

Pro

tein

fold

ing

Q13

136

Lipr

in-α

-113

5695

42C

ytop

lasm

2%P

rote

inbi

ndi

ng/

sign

altr

ansd

uce

rac

tivi

tyC

ell-

mat

rix

adh

esio

n,s

ign

altr

ansd

uct

ion

Q32

MQ

0P

rote

inZ

NF7

5077

312

44In

trac

ellu

lar

5%Z

inc

ion

bin

din

g

Q15

113

Pro

colla

gen

C-e

ndo

pep

tida

seen

han

cer

1pr

ecu

rsor

4794

248

Secr

eted

3%M

ult

icel

lula

ror

gan

ism

alde

velo

pmen

t

P15

531

Nu

cleo

side

diph

osph

ate

kin

ase

A17

138

67C

ytop

lasm

,n

ucl

eus

17%

Deo

xyri

bon

ucl

ease

acti

vity

,D

NA

/GT

P/m

agn

esiu

mio

nbi

ndi

ng,

nu

cleo

side

diph

osph

ate

kin

ase

acti

vity

Neg

ativ

ere

gula

tion

ofce

llpr

olif

erat

ion

,pos

itiv

ere

gula

tion

ofD

NA

bin

din

g,p

osit

ive

regu

lati

onof

epit

hel

ialc

ellp

rolif

erat

ion

,reg

ula

tion

ofap

opto

sis

P00

441

Sup

erox

ide

dism

uta

se[C

u-Z

n]

1579

570

Cyt

opla

sm,

cyto

sol,

nu

cleu

s19

%

Ch

aper

one/

phos

phat

ase

2B/c

opp

erio

n/z

inc

ion

bin

din

g,pr

otei

nh

omod

imer

izat

ion

acti

vity

,su

pero

xide

dism

uta

seac

tivi

ty/a

nti

oxid

ant

acti

vity

Cel

lagi

ng,

oxid

atio

nre

duct

ion

,re

gula

tion

ofor

gan

grow

th,p

osit

ive

regu

lati

onof

apop

tosi

s

P23

528

Cofi

lin-1

1836

013

9N

ucl

eus

mat

rix,

cyto

plas

m17

%P

rote

inbi

ndi

ng

Act

incy

tosk

elet

onor

gan

izat

ion

and

biog

enes

is,a

nti

apop

tosi

s,R

ho

prot

ein

sign

altr

ansd

uct

ion

1-25

Q96

EZ

8M

icro

sph

eru

lepr

otei

n1

5177

135

Nu

cleu

s2%

Pro

tein

bin

din

gP

rote

inm

odifi

cati

onpr

oces

s

O95

271

Tan

kyra

se1

1419

2235

Cyt

opla

sm,G

olgi

appa

ratu

sm

embr

ane,

nu

cleu

s

1%N

AD

+A

DP-

ribo

sylt

ran

sfer

ase

acti

vity

Pept

idyl

-ser

ine

phos

phor

ylat

ion

,pe

ptid

yl-t

hre

onin

eph

osph

oryl

atio

n,

telo

mer

em

ain

ten

ance

via

telo

mer

ase

Q14

980

Nu

clea

rm

itot

icap

para

tus

prot

ein

123

8115

35N

ucl

eus

1%P

rote

inbi

ndi

ng,

stru

ctu

ralm

olec

ule

acti

vity

Mit

otic

anap

has

e,n

ucl

ear

orga

niz

atio

nan

dbi

ogen

esis

P17

612

cAM

P-de

pen

den

tpr

otei

nki

nas

e,α

-cat

alyt

icsu

bun

it40

433

37C

ytop

lasm

,n

ucl

eus

1%A

TP

bin

din

g,cA

MP-

depe

nde

nt

prot

ein

kin

ase

acti

vity

Hor

mon

e-m

edia

ted

sign

alin

g,pr

otei

nam

ino

acid

phos

phor

ylat

ion

,pro

tein

kin

ase

casc

ade

P11

117

Lyso

som

alac

idph

osph

atas

epr

ecu

rsor

4828

539

Lyso

som

e2%

acid

phos

phat

ase

acti

vity

P10

071

Zin

cfi

nge

rpr

otei

nG

LI3

1697

4339

Nu

cleu

s1%

Pro

tein

bin

din

g,tr

ansc

ript

ion

fact

orac

tivi

ty

An

atom

ical

stru

ctu

rem

orph

ogen

esis

,m

ult

icel

lula

ror

gan

ism

alde

velo

pmen

t,pr

otei

nim

port

into

nu

cleu

s,tr

ansl

ocat

ion

,sig

nal

tran

sdu

ctio

n

P78

527

DN

A-d

epen

den

tpr

otei

nki

nas

eca

taly

tic

subu

nit

4687

8840

Nu

cleu

s1%

DN

A-d

epen

den

tpr

otei

nki

nas

eac

tivi

tyPe

ptid

yl-s

erin

eph

osph

oryl

atio

n

Q06

495

Sodi

um

-dep

ende

nt

phos

phat

etr

ansp

ort

prot

ein

2A68

893

40M

embr

ane

1%P

rote

inbi

ndi

ng,

sodi

um

-dep

ende

nt

phos

phat

etr

ansm

embr

ane

tran

spor

ter

acti

vity

Bod

yfl

uid

secr

etio

n,p

hos

phat

em

etab

olic

proc

ess,

phos

phat

etr

ansp

ort

Page 13: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 13

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

P15

531

Nu

cleo

side

diph

osph

ate

kin

ase

A17

138

86C

ytop

lasm

,n

ucl

eus

17%

Deo

xyri

bon

ucl

ease

acti

vity

,D

NA

/GT

P/m

agn

esiu

mio

nbi

ndi

ng,

nu

cleo

side

diph

osph

ate

kin

ase

acti

vity

Neg

ativ

ere

gula

tion

ofce

llpr

olif

erat

ion

,pos

itiv

ere

gula

tion

ofD

NA

bin

din

g,p

osit

ive

regu

lati

onof

epit

hel

ialc

ellp

rolif

erat

ion

,reg

ula

tion

ofap

opto

sis

P62

937

Pept

idyl

-pro

lylc

is-t

ran

sis

omer

ase

A17

870

422

Cyt

opla

sm37

%U

nfo

lded

prot

ein

bin

din

g,vi

rion

bin

din

g

Init

iati

onof

vira

lin

fect

ion

,pro

tein

fold

ing,

prov

iru

sin

tegr

atio

n,

regu

lati

onof

vira

lgen

ome

repl

icat

ion

1-26

P62

937

Pept

idyl

-pro

lylc

is-t

ran

sis

omer

ase

A17

870

171

Cyt

opla

sm32

%U

nfo

lded

prot

ein

bin

din

g,vi

rion

bin

din

g

Init

iati

onof

vira

lin

fect

ion

,pro

tein

fold

ing,

prov

iru

sin

tegr

atio

n,

regu

lati

onof

vira

lgen

ome

repl

icat

ion

O95

352

Au

toph

agy-

rela

ted

prot

ein

777

909

34C

ytop

lasm

2%P

rote

inh

omod

imer

izat

ion

acti

vity

,u

biqu

itin

acti

vati

ng

enzy

me

acti

vity

Mem

bran

efu

sion

,pos

itiv

ere

gula

tion

ofpr

otei

nm

odifi

cati

onpr

oces

s,pr

otei

nam

ino

acid

lipid

atio

n

1-27

Q9U

PT

6C

-ju

n-a

min

o-te

rmin

alki

nas

e-in

tera

ctin

gpr

otei

n3

1469

6254

Cyt

opla

sm2%

kin

esin

/pro

tein

kin

ase

bin

din

g,M

AP-

kin

ase

scaff

old

acti

vity

Reg

ula

tion

ofJN

Kca

scad

e,ve

sicl

e-m

edia

ted

tran

spor

t

Q8I

WJ2

GR

IPan

dco

iled-

coil

dom

ain

-con

tain

ing

prot

ein

218

4545

38C

ytop

lasm

,Gol

giap

para

tus

mem

bran

e1%

Iden

tica

lpro

tein

bin

din

g

Q9N

X63

Coi

led-

coil-

hel

ix-c

oile

d-co

il-h

elix

dom

ain

-con

tain

ing

prot

ein

326

136

39M

itoc

hon

drio

n13

%P

rote

inbi

ndi

ng

P02

452

Col

lage

-1(I

)ch

ain

prec

urs

or13

8799

44Se

cret

ed3%

Pro

tein

bin

din

gE

pide

rmis

deve

lopm

ent,

skel

etal

deve

lopm

ent

P59

998

Act

in-r

elat

edpr

otei

n2/

3co

mpl

exsu

bun

it4

1952

345

Cyt

opla

sm2%

Pro

tein

bin

din

g,st

ruct

ura

lcon

stit

uen

tof

cyto

skel

eton

Act

inn

ucl

eati

on

P01

034

Cys

tati

nC

prec

urs

or15

789

56Se

cret

ed7%

Cys

tein

epr

otea

sein

hib

itor

acti

vity

,pr

otei

nh

omod

imer

izat

ion

acti

vity

P23

528

Cofi

lin-1

1836

017

8N

ucl

eus

mat

rix,

cyto

plas

m19

%P

rote

inbi

ndi

ng

Act

incy

tosk

elet

onor

gan

izat

ion

and

biog

enes

is,a

nti

apop

tosi

s,R

ho

prot

ein

sign

altr

ansd

uct

ion

P07

737

Pro

filin

-114

914

478

Cyt

opla

sm45

%A

ctin

bin

din

g,pr

olin

e-ri

chre

gion

bin

din

gA

ctin

cyto

skel

eton

orga

niz

atio

n

1-28

P09

382

Gal

ecti

n-1

1457

541

Cyt

opla

sm7%

Pro

tein

bin

din

g,si

gnal

tran

sdu

cer

acti

vity

Posi

tive

regu

lati

onof

I-κB

kin

ase,

NF-κB

casc

ade,

regu

lati

onof

apop

tosi

s

P10

599

Th

iore

doxi

n11

599

59C

ytop

lasm

13%

Pro

tein

bin

din

gC

ellm

otili

ty,c

ellp

rolif

erat

ion

,cel

l-ce

llsi

gnal

ing,

sign

altr

ansd

uct

ion

Page 14: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

14 Journal of Biomedicine and Biotechnology

Ta

ble

1:C

onti

nu

ed.

Seri

alN

o.Sw

issP

rot

No.

Pro

tein

nam

eM

WSc

ore

Subc

ellu

lar

loca

tion

Sequ

ence

cove

rage

Mol

ecu

lar

fun

ctio

nB

iolo

gica

lpro

cess

P04

080

Cys

tati

nB

1113

361

Cyt

opla

sm,

nu

cleu

s12

%E

ndo

pep

tida

sein

hib

itor

acti

vity

,pr

otei

nbi

ndi

ng

P07

737

Pro

filin

-114

914

320

Cyt

opla

sm42

%A

ctin

bin

din

g,pr

olin

e-ri

chre

gion

bin

din

gA

ctin

cyto

skel

eton

orga

niz

atio

n

1-29

Q9U

PQ

9Tr

inu

cleo

tide

repe

at-c

onta

inin

g6B

prot

ein

1827

0334

Cyt

opla

smic

mR

NA

proc

essi

ng

body

4%R

NA

bin

din

g,n

ucl

eoti

debi

ndi

ng

Gen

esi

len

cin

gby

RN

A,r

egu

lati

onof

tran

slat

ion

P78

527

DN

A-d

epen

den

tpr

otei

nki

nas

eca

taly

tic

subu

nit

4687

8835

Nu

cleu

s1%

DN

A-d

epen

den

tpr

otei

nki

nas

eac

tivi

ty,p

rote

inbi

ndi

ng

Pept

idyl

-ser

ine

phos

phor

ylat

ion

P81

605

Der

mci

din

prec

urs

or11

277

45Se

cret

ed12

%P

rote

inbi

ndi

ng

P10

599

Th

iore

doxi

n11

599

76C

ytop

lasm

19%

Pro

tein

bin

din

gC

ellm

otili

ty,c

ellp

rolif

erat

ion

,cel

l-ce

llsi

gnal

ing,

sign

altr

ansd

uct

ion

1-30

Q6N

UM

9A

ll-tr

ans-

reti

nol

13,1

4-re

duct

ase

prec

urs

or66

777

39E

ndo

plas

mic

reti

culu

mm

embr

ane

3%A

ll-tr

ans-

reti

nol

13,1

4-re

duct

ase

acti

vity

Oxi

dati

onre

duct

ion

,ret

inol

met

abol

icpr

oces

s

P14

174

Mac

roph

age

mig

rati

onin

hib

itor

yfa

ctor

1233

739

Cyt

opla

sm,

secr

eted

11%

Cyt

okin

eac

tivi

ty

Cel

lpro

lifer

atio

n,c

ells

urf

ace

rece

ptor

linke

dsi

gnal

tran

sdu

ctio

n,n

egat

ive

regu

lati

onof

apop

tosi

s,pr

osta

glan

din

bios

ynth

etic

proc

ess,

regu

lati

onof

mac

roph

age

acti

vati

on

Q6K

C79

Nip

ped

-B-l

ike

prot

ein

3158

5436

Nu

cleu

s1%

Pro

tein

C-t

erm

inu

sbi

ndi

ng

Mai

nte

nan

ceof

mit

otic

sist

erch

rom

atid

coh

esio

n

P82

279

Cru

mbs

hom

olog

1pr

ecu

rsor

1540

8136

Secr

eted

1%C

alci

um

ion

bin

din

gC

ell-

cell

sign

alin

g,es

tabl

ish

men

tan

d/or

mai

nte

nan

ceof

cell

pola

rity

,re

spon

seto

stim

ulu

s

Q9N

X63

Coi

led-

coil-

hel

ix-c

oile

d-co

il-h

elix

dom

ain

-con

tain

ing

prot

ein

326

136

39M

itoc

hon

drio

n13

%P

rote

inbi

ndi

ng

Q8N

0X7

Spar

tin

7278

841

2%C

elld

eath

P14

174

Mac

roph

age

mig

rati

onin

hib

itor

yfa

ctor

1233

760

Cyt

opla

sm,

secr

eted

5%C

ytok

ine

acti

vity

Cel

lpro

lifer

atio

n,c

ells

urf

ace

rece

ptor

linke

dsi

gnal

tran

sdu

ctio

n,n

egat

ive

regu

lati

onof

apop

tosi

s,pr

osta

glan

din

bios

ynth

etic

proc

ess,

regu

lati

onof

mac

roph

age

acti

vati

onP

5854

6M

yotr

oph

in12

756

71C

ytop

lasm

7%P

rote

inbi

ndi

ng

Cel

lgro

wth

,neu

ron

diff

eren

tiat

ion

1-31

Q8W

UT

4U

nch

arac

teri

zed

prot

ein

C20

orf7

5pr

ecu

rsor

7879

437

Mem

bran

e5%

Pro

tein

bin

din

g

O94

851

Pro

tein

MIC

AL-

212

6609

40C

ytop

lasm

1%M

onoo

xyge

nas

eac

tivi

ty,z

inc

ion

bin

din

gM

etab

olic

proc

ess

Q9Y

333

U6

snR

NA

-ass

ocia

ted

Sm-l

ike

prot

ein

LSm

210

828

69N

ucl

eus

20%

Pro

tein

/U6

snR

NA

bin

din

gN

ucl

ear

mR

NA

splic

ing

Th

ese

seri

aln

um

bers

are

desi

gnat

edas

inFi

gure

3.Sw

iss-

Pro

t/Tr

EM

BL

acce

ssio

nn

um

ber

was

give

nfr

omh

ttp:

//u

s.ex

pasy

.org

/.

Page 15: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 15

Ta

ble

2:T

he

fun

ctio

ns

of13

2pr

otei

ns

iden

tifi

edin

this

stu

dyw

ere

pres

ente

din

tofu

nct

ion

alca

tego

ries

base

don

thei

ran

not

atio

ns

inth

eG

Oda

taba

se.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

O00

160

Myo

sin

IfM

yosi

ns

are

acti

n-b

ased

mot

orm

olec

ule

sw

ith

AT

Pase

acti

vity

.Un

conv

enti

onal

myo

sin

sse

rve

inin

trac

ellu

lar

mov

emen

tsO

0033

9M

atri

lin-2

prec

urs

orIn

volv

edin

mat

rix

asse

mbl

y

O00

459

Ph

osph

atid

ylin

osit

ol3-

kin

ase

regu

lato

rysu

bun

itβ

Bin

dsto

acti

vate

d(p

hos

phor

ylat

ed)

prot

ein

-tyr

osin

eki

nas

es,t

hro

ugh

its

SH2

dom

ain

,an

dac

tsas

anad

apte

r,m

edia

tin

gth

eas

soci

atio

nof

the

p110

cata

lyti

cu

nit

toth

epl

asm

am

embr

ane.

O00

469

Pro

colla

gen

-lys

ine,

2-ox

oglu

tara

te5-

diox

ygen

ase

2pr

ecu

rsor

Form

shy

drox

ylys

ine

resi

dues

in-X

aa-L

ys-G

ly-

sequ

ence

sin

colla

gen

s.T

hes

ehy

drox

ylys

ines

serv

eas

site

sof

atta

chm

ent

for

carb

ohyd

rate

un

its

and

are

esse

nti

alfo

rth

est

abili

tyof

the

inte

rmol

ecu

lar

colla

gen

cros

s-lin

ksO

0062

3Pe

roxi

som

eas

sem

bly

prot

ein

12R

equ

ired

for

prot

ein

impo

rtin

top

erox

isom

es

O14

686

Mye

loid

/lym

phoi

dor

mix

ed-l

inea

gele

uke

mia

prot

ein

2

His

ton

em

ethy

ltra

nsf

eras

e.M

ethy

late

s“L

ys-4

”of

his

ton

eH

3.H

3“L

ys-4

”m

ethy

lati

onre

pres

ents

asp

ecifi

cta

gfo

rep

igen

etic

tran

scri

ptio

nal

acti

vati

on.P

lays

ace

ntr

alro

lein

β-g

lobi

nlo

cus

tran

scri

ptio

nre

gula

tion

bybe

ing

recr

uit

edby

NFE

2.A

cts

asa

coac

tiva

tor

for

estr

ogen

rece

ptor

bybe

ing

recr

uit

edby

ESR

1,th

ereb

yac

tiva

tin

gtr

ansc

ript

ion

O15

020

Spec

trin

βch

ain

,bra

in2

Pro

babl

ypl

ays

anim

port

ant

role

inn

euro

nal

mem

bran

esk

elet

on

O15

240

Neu

rose

cret

ory

prot

ein

VG

Fpr

ecu

rsor

May

bein

volv

edin

the

regu

lati

onof

cell-

cell

inte

ract

ion

sor

insy

nap

toge

nes

isdu

rin

gth

em

atu

rati

onof

the

ner

vou

ssy

stem

O15

516

Cir

cadi

anlo

com

otor

sou

tpu

tcy

cles

prot

ein

kapu

t

AR

NT

L/2

-CLO

CK

het

erod

imer

sac

tiva

teE

-box

elem

ent

(3′ -

CA

CG

TG

-5′ )

tran

scri

ptio

nof

an

um

ber

ofpr

otei

ns

ofth

eci

rcad

ian

cloc

k.A

ctiv

ates

tran

scri

ptio

nof

PE

R1

and

PE

R2.

Th

istr

ansc

ript

ion

isin

hib

ited

ina

feed

back

loop

byP

ER

and

CR

Ypr

otei

ns.

Has

intr

insi

ch

isto

ne

acet

yltr

ansf

eras

eac

tivi

tyan

dth

isen

zym

atic

fun

ctio

nco

ntr

ibu

tes

toch

rom

atin

-rem

odel

ing

even

tsim

plic

ated

inci

rcad

ian

con

trol

ofge

ne

expr

essi

on

O43

395

U4/

U6

smal

lnu

clea

rri

bon

ucl

eopr

otei

nP

rp3

Part

icip

ates

inpr

e-m

RN

Asp

licin

g.M

aypl

aya

role

inth

eas

sem

bly

ofth

eU

4/U

5/U

6tr

i-sn

RN

Pco

mpl

ex

O43

707

α-a

ctin

in-4

F-ac

tin

cros

s-lin

kin

gpr

otei

nw

hic

his

thou

ght

toan

chor

acti

nto

ava

riet

yof

intr

acel

lula

rst

ruct

ure

s.T

his

isa

bun

dlin

gpr

otei

nO

6024

2B

rain

-sp

ecifi

can

giog

enes

isin

hib

itor

3pr

ecu

rsor

Mig

ht

bein

volv

edin

angi

ogen

esis

inh

ibit

ion

and

supp

ress

ion

ofgl

iobl

asto

ma

O60

333

Kin

esin

-lik

epr

otei

nK

IF1B

Mot

orfo

ran

tero

grad

etr

ansp

ort

ofm

itoc

hon

dria

.Has

am

icro

tubu

lepl

us

end-

dire

cted

mot

ility

O75

095

Mu

ltip

leep

ider

mal

grow

thfa

ctor

-lik

edo

mai

ns

6pr

ecu

rsor

O94

851

Pro

tein

MIC

AL-

2

O94

985

Cal

syn

ten

in-1

prec

urs

or

Indu

ces

KLC

1as

soci

atio

nw

ith

vesi

cles

and

fun

ctio

ns

asa

carg

oin

axon

alan

tero

grad

etr

ansp

ort.

Com

plex

form

atio

nw

ith

AP

BA

2an

dA

PP,

stab

ilize

sA

PP

met

abol

ism

and

enh

ance

sA

PB

A2-

med

iate

dsu

ppre

ssio

nof

β-A

PP

40se

cret

ion

,du

eto

the

reta

rdat

ion

ofin

trac

ellu

lar

AP

Pm

atu

rati

on.I

nco

mpl

exw

ith

AP

BA

2an

dC

99,a

C-t

erm

inal

AP

Pfr

agm

ent,

abol

ish

esC

99in

tera

ctio

nw

ith

PSE

N1

and

thu

sA

PP

C99

clea

vage

byγ-

secr

etas

e,m

ost

prob

ably

thro

ugh

stab

iliza

tion

ofth

edi

rect

inte

ract

ion

betw

een

AP

BA

2an

dA

PP.

Th

ein

trac

ellu

lar

frag

men

tA

lcIC

Dsu

ppre

sses

AP

BB

1-de

pen

den

ttr

ansa

ctiv

atio

nst

imu

late

dby

AP

PC

-ter

min

alin

trac

ellu

lar

frag

men

t(A

ICD

),m

ost

prob

ably

byco

mpe

tin

gw

ith

AIC

Dfo

rA

PB

B1-

bin

din

g.M

aym

odu

late

calc

ium

-med

iate

dpo

stsy

nap

tic

sign

als

Page 16: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

16 Journal of Biomedicine and Biotechnology

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

O95

239

Ch

rom

osom

e-as

soci

ated

kin

esin

KIF

4A

Mot

orpr

otei

nth

attr

ansl

ocat

esP

RC

1to

the

plu

sen

dsof

inte

rdig

itat

ing

spin

dle

mic

rotu

bule

sdu

rin

gth

em

etap

has

eto

anap

has

etr

ansi

tion

,an

esse

nti

alst

epfo

rth

efo

rmat

ion

ofan

orga

niz

edce

ntr

alsp

indl

em

idzo

ne

and

mid

body

and

for

succ

essf

ulc

ytok

ines

is.M

aypl

aya

role

inm

itot

icch

rom

osom

alpo

siti

onin

gan

dbi

pola

rsp

indl

est

abili

zati

on

O95

248

SET

-bin

din

gfa

ctor

1

Pro

babl

eps

eudo

phos

phat

ase.

Lack

sse

vera

lam

ino

acid

sin

the

cata

lyti

cpo

cket

wh

ich

ren

ders

itca

taly

tica

llyin

acti

veas

aph

osph

atas

e.T

he

pock

etis

,how

ever

,su

ffici

entl

ypr

eser

ved

tobi

nd

phos

phor

ylat

edsu

bstr

ates

,an

dm

aybe

prot

ect

them

from

phos

phat

ases

.In

hib

its

myo

blas

tdi

ffer

enti

atio

nin

vitr

oan

din

duce

son

coge

nic

tran

sfor

mat

ion

infi

brob

last

s

O95

271

Tan

kyra

se1

Reg

ula

teve

sicl

etr

affick

ing

and

mod

ula

teth

esu

bcel

lula

rdi

stri

buti

onof

SLC

2A4/

GLU

T4-

vesi

cles

.H

asPA

RP

acti

vity

and

can

mod

ify

TE

RF1

,an

dth

ereb

yco

ntr

ibu

teto

the

regu

lati

onof

telo

mer

ele

ngt

h

O95

274

Ly6/

PLA

UR

dom

ain

-con

tain

ing

prot

ein

3pr

ecu

rsor

Supp

orts

cell

mig

rati

on.M

aybe

invo

lved

inu

roth

elia

lcel

l-m

atri

xin

tera

ctio

ns.

May

bein

volv

edin

tum

orpr

ogre

ssio

nO

9535

2A

uto

phag

y-re

late

dpr

otei

n7

E1

enzy

me

esse

nti

alfo

rm

ult

isu

bstr

ates

such

asG

AB

AR

AP

L1an

dA

TG

12P

0039

0G

luta

thio

ne

redu

ctas

e,m

itoc

hon

dria

lpre

curs

orM

ain

tain

sh

igh

leve

lsof

redu

ced

glu

tath

ion

ein

the

cyto

sol

P00

441

Sup

erox

ide

dism

uta

se(C

u-Z

n)

Des

troy

sra

dica

lsw

hic

har

en

orm

ally

prod

uce

dw

ith

inth

ece

llsan

dw

hic

har

eto

xic

tobi

olog

ical

syst

ems

P00

505

Asp

arta

team

inot

ran

sfer

ase,

mit

och

ondr

ialp

recu

rsor

Faci

litat

esce

llula

ru

ptak

eof

lon

g-ch

ain

free

fatt

yac

ids

P01

024

Com

plem

ent

C3

prec

urs

or

C3

play

sa

cen

tral

role

inth

eac

tiva

tion

ofth

eco

mpl

emen

tsys

tem

.Its

proc

essi

ng

byC

3co

nver

tase

isth

ece

ntr

alre

acti

onin

both

clas

sica

lan

dal

tern

ativ

eco

mpl

emen

tpa

thw

ays.

Aft

erac

tiva

tion

C3b

can

bin

dco

vale

ntl

y,vi

ait

sre

acti

veth

ioes

ter,

toce

llsu

rfac

eca

rboh

ydra

tes

orim

mu

ne

aggr

egat

es.D

eriv

edfr

ompr

oteo

lyti

cde

grad

atio

nof

com

plem

ent

C3,

C3a

anap

hyla

toxi

nis

am

edia

tor

oflo

cali

nfl

amm

ator

ypr

oces

s.It

indu

ces

the

con

trac

tion

ofsm

ooth

mu

scle

,in

crea

ses

vasc

ula

rp

erm

eabi

lity,

and

cau

ses

his

tam

ine

rele

ase

from

mas

tce

llsan

dba

soph

ilic

leu

kocy

tes

P01

034

Cys

tati

nC

prec

urs

orA

san

inh

ibit

orof

cyst

ein

epr

otei

nas

es,t

his

prot

ein

isth

ough

tto

serv

ean

impo

rtan

tph

ysio

logi

cal

role

asa

loca

lreg

ula

tor

ofth

isen

zym

eac

tivi

tyP

0245

2C

olla

genα

-1(I

)ch

ain

prec

urs

orTy

pe

Ico

llage

nis

am

embe

rof

grou

pI

colla

gen

(fibr

illar

form

ing

colla

gen

)

P02

686

Mye

linba

sic

prot

ein

Th

ecl

assi

cgr

oup

ofM

BP

isof

orm

s(i

sofo

rm4-

isof

orm

14)

are

wit

hP

LPth

em

ost

abu

nda

nt

prot

ein

com

pon

ents

ofth

em

yelin

mem

bran

ein

the

CN

S.T

hey

hav

ea

role

inbo

thit

sfo

rmat

ion

and

stab

iliza

tion

.Th

esm

alle

ris

ofor

ms

mig

ht

hav

ean

impo

rtan

tro

lein

rem

yelin

atio

nof

den

ude

dax

ons

inm

ult

iple

scle

rosi

s.T

he

non

clas

sic

grou

pof

MB

Pis

ofor

ms

(iso

form

1-is

ofor

m3/

Gol

li-M

BPs

)m

aypr

efer

enti

ally

hav

ea

role

inth

eea

rly

deve

lopi

ng

brai

nlo

ng

befo

rem

yelin

atio

n,m

aybe

asco

mpo

nen

tsof

tran

scri

ptio

nal

com

plex

es,a

nd

may

also

bein

volv

edin

sign

alin

gpa

thw

ays

inT

-cel

lsan

dn

eura

lcel

ls.D

iffer

enti

alsp

licin

gev

ents

com

bin

edw

ith

opti

onal

post

tran

slat

ion

alm

odifi

cati

ons

give

aw

ide

spec

tru

mof

isom

ers,

wit

hea

chof

them

pot

enti

ally

hav

ing

asp

ecia

lized

fun

ctio

n.I

ndu

ces

T-c

ellp

rolif

erat

ion

P02

751

Fibr

onec

tin

prec

urs

or

Fibr

onec

tin

sbi

nd

cell

surf

aces

and

vari

ous

com

pou

nds

incl

udi

ng

colla

gen

,fibr

in,h

epar

in,D

NA

,an

dac

tin

.Fib

ron

ecti

ns

are

invo

lved

ince

llad

hes

ion

,cel

lmot

ility

,ops

oniz

atio

n,w

oun

dh

ealin

g,an

dm

ain

ten

ance

ofce

llsh

ape.

Inte

ract

ion

wit

hT

NR

med

iate

sin

hib

itio

nof

cell

adh

esio

nan

dn

euri

teou

tgro

wth

P02

768

Seru

mal

bum

inpr

ecu

rsor

Seru

mal

bum

in,t

he

mai

npr

otei

nof

plas

ma,

has

ago

odbi

ndi

ng

capa

city

for

wat

er,C

a(2+

),N

a(+

),K

(+),

fatt

yac

ids,

hor

mon

es,b

iliru

bin

,an

ddr

ugs

.Its

mai

nfu

nct

ion

isth

ere

gula

tion

ofth

eco

lloid

alos

mot

icpr

essu

reof

bloo

d

Page 17: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 17

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

P04

075

Fru

ctos

e-bi

sph

osph

ate

aldo

lase

AP

0408

0C

ysta

tin

BIn

trac

ellu

lar

thio

lpro

tein

ase

inh

ibit

or

P04

179

Sup

erox

ide

dism

uta

seD

estr

oys

radi

cals

wh

ich

are

nor

mal

lypr

odu

ced

wit

hin

the

cells

and

wh

ich

are

toxi

cto

biol

ogic

alsy

stem

s

P06

733

α-e

nol

ase

Mu

ltif

un

ctio

nal

enzy

me

that

,as

wel

las

its

role

ingl

ycol

ysis

,pla

ysa

part

inva

riou

spr

oces

ses

such

asgr

owth

con

trol

,hyp

oxia

tole

ran

ce,a

nd

alle

rgic

resp

onse

s.M

ayal

sofu

nct

ion

inth

ein

trav

ascu

lar

and

per

icel

lula

rfi

brin

olyt

icsy

stem

due

toit

sab

ility

tose

rve

asa

rece

ptor

and

acti

vato

rof

plas

min

ogen

onth

ece

llsu

rfac

eof

seve

ralc

ell-

typ

essu

chas

leu

kocy

tes

and

neu

ron

s.M

aybe

atu

mor

supp

ress

orP

0674

4G

luco

se-6

-ph

osph

ate

isom

eras

eN

euro

leu

kin

isa

neu

rotr

oph

icfa

ctor

for

spin

alan

dse

nso

ryn

euro

ns

P07

195

L-la

ctat

ede

hydr

ogen

ase

Bch

ain

P07

737

Pro

filin

-1B

inds

toac

tin

and

affec

tsth

est

ruct

ure

ofth

ecy

tosk

elet

on.A

th

igh

con

cen

trat

ion

s,pr

ofilin

prev

ents

the

poly

mer

izat

ion

ofac

tin

,wh

erea

sit

enh

ance

sit

atlo

wco

nce

ntr

atio

ns.

By

bin

din

gto

PIP

2,it

inh

ibit

sth

efo

rmat

ion

ofIP

3an

dD

G

P07

814

Bif

un

ctio

nal

amin

oacy

l-tR

NA

syn

thet

ase

Cat

alyz

esth

eat

tach

men

tof

the

cogn

ate

amin

oac

idto

the

corr

espo

ndi

ng

tRN

Ain

atw

o-st

epre

acti

on:t

he

amin

oac

idis

firs

tac

tiva

ted

byA

TP

tofo

rma

cova

len

tin

term

edia

tew

ith

AM

Pan

dis

then

tran

sfer

red

toth

eac

cept

oren

dof

the

cogn

ate

tRN

AP

0790

0H

eat

shoc

kpr

otei

nH

SP90

-αM

olec

ula

rch

aper

one.

Has

AT

Pase

acti

vity

P07

996

Th

rom

bosp

ondi

n-1

prec

urs

orA

dhes

ive

glyc

opro

tein

that

med

iate

sce

ll-to

-cel

lan

dce

ll-to

-mat

rix

inte

ract

ion

s.C

anbi

nd

tofi

brin

ogen

,fibr

onec

tin

,lam

inin

,typ

eV

colla

gen

,an

din

tegr

insα

-V/β

-1,α

-V/β

-3an

-IIb

-3P

0823

8H

eat

shoc

kpr

otei

nH

SP90

Mol

ecu

lar

chap

eron

e.H

asA

TPa

seac

tivi

ty.

P09

104

γ-en

olas

eH

asn

euro

trop

hic

and

neu

ropr

otec

tive

prop

erti

eson

abr

oad

spec

tru

mof

cen

tral

ner

vou

ssy

stem

(CN

S)n

euro

ns.

Bin

ds,i

na

calc

ium

-dep

ende

nt

man

ner

,to

cult

ure

dn

eoco

rtic

aln

euro

ns

and

prom

otes

cell

surv

ival

P09

382

Gal

ecti

n-1

Cel

lapo

ptos

isan

dce

lldi

ffer

enti

atio

n

P09

486

SPA

RC

prec

urs

or

App

ears

tore

gula

tece

llgr

owth

thro

ugh

inte

ract

ion

sw

ith

the

extr

acel

lula

rm

atri

xan

dcy

toki

nes

.B

inds

calc

ium

and

copp

er,s

ever

alty

pes

ofco

llage

n,a

lbu

min

,th

rom

bosp

ondi

n,P

DG

Fan

dce

llm

embr

anes

.Th

ere

are

two

calc

ium

bin

din

gsi

tes;

anac

idic

dom

ain

that

bin

ds5

to8

Ca(

2+)

wit

ha

low

affin

ity

and

anE

F-h

and

loop

that

bin

dsa

Ca(

2+)

ion

wit

ha

hig

haffi

nit

y

P09

493

Trop

omyo

sin

chai

n

Bin

dsto

acti

nfi

lam

ents

inm

usc

lean

dn

onm

usc

lece

lls.P

lays

ace

ntr

alro

le,i

nas

soci

atio

nw

ith

the

trop

onin

com

plex

,in

the

calc

ium

depe

nde

nt

regu

lati

onof

vert

ebra

test

riat

edm

usc

leco

ntr

acti

on.S

moo

thm

usc

leco

ntr

acti

onis

regu

late

dby

inte

ract

ion

wit

hca

ldes

mon

.In

non

-mu

scle

cells

isim

plic

ated

inst

abili

zin

gcy

tosk

elet

onac

tin

fila

men

ts

P09

622

Dih

ydro

lipoy

ldeh

ydro

gen

ase,

mit

och

ondr

ialp

recu

rsor

Lipo

amid

ede

hydr

ogen

ase

isa

com

pon

ent

ofth

egl

ycin

ecl

eava

gesy

stem

asw

ella

sof

the

α-k

etoa

cid

dehy

drog

enas

eco

mpl

exes

P09

972

Fru

ctos

e-bi

sph

osph

ate

aldo

lase

CP

1007

1Z

inc

fin

ger

prot

ein

GLI

3A

role

inlim

ban

dbr

ain

deve

lopm

ent

P10

599

Th

iore

doxi

nPa

rtic

ipat

esin

vari

ous

redo

xre

acti

ons

thro

ugh

the

reve

rsib

leox

idat

ion

ofit

sac

tive

cen

ter

dith

iol

toa

disu

lfide

and

cata

lyze

sdi

thio

l-di

sulfi

deex

chan

gere

acti

ons

Page 18: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

18 Journal of Biomedicine and Biotechnology

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

P10

909

Clu

ster

inpr

ecu

rsor

Not

yet

clea

r.It

iskn

own

tobe

expr

esse

din

ava

riet

yof

tiss

ues

,an

dit

seem

sto

beab

leto

bin

dto

cells

,mem

bran

es,a

nd

hydr

oph

obic

prot

ein

s.It

has

been

asso

ciat

edw

ith

prog

ram

med

cell

deat

h(a

popt

osis

)

P11

047

Lam

inin

γ-1

chai

npr

ecu

rsor

Bin

din

gto

cells

via

ah

igh

-affi

nit

yre

cept

or,l

amin

inis

thou

ght

tom

edia

teth

eat

tach

men

t,m

igra

tion

,an

dor

gan

izat

ion

ofce

llsin

toti

ssu

esdu

rin

gem

bryo

nic

deve

lopm

ent

byin

tera

ctin

gw

ith

oth

erex

trac

ellu

lar

mat

rix

com

pon

ents

P11

117

Lyso

som

alac

idph

osph

atas

epr

ecu

rsor

P12

814

α-a

ctin

in-1

F-ac

tin

cros

s-lin

kin

gpr

otei

nw

hic

his

thou

ght

toan

chor

acti

nto

ava

riet

yof

intr

acel

lula

rst

ruct

ure

s.T

his

isa

bun

dlin

gpr

otei

n

P13

569

Cys

tic

fibr

osis

tran

smem

bran

eco

ndu

ctan

cere

gula

tor

Invo

lved

inth

etr

ansp

ort

ofch

lori

deio

ns.

May

regu

late

bica

rbon

ate

secr

etio

nan

dsa

lvag

ein

epit

hel

ialc

ells

byre

gula

tin

gth

eSL

C4A

7tr

ansp

orte

rP

1392

-en

olas

eA

ppea

rsto

hav

ea

fun

ctio

nin

stri

ated

mu

scle

deve

lopm

ent

and

rege

ner

atio

n

P14

136

Glia

lfibr

illar

yac

idic

prot

ein

,ast

rocy

teG

FAP,

acl

ass-

III

inte

rmed

iate

fila

men

t,is

ace

ll-sp

ecifi

cm

arke

rth

at,d

uri

ng

the

deve

lopm

ent

ofth

ece

ntr

aln

ervo

us

syst

em,d

isti

ngu

ish

esas

troc

ytes

from

oth

ergl

ialc

ells

P14

174

Mac

roph

age

mig

rati

onin

hib

itor

yfa

ctor

Med

iato

rin

regu

lati

ng

the

fun

ctio

nof

mac

roph

age

inh

ost

defe

nse

P14

618

Pyr

uvat

eki

nas

eis

ozym

esM

1/M

2G

lyco

lyti

cen

zym

eth

atca

taly

zes

the

tran

sfer

ofa

phos

phor

ylgr

oup

from

phos

phoe

nol

pyru

vate

(PE

P)

toA

DP,

gen

erat

ing

AT

PP

1553

1N

ucl

eosi

dedi

phos

phat

eki

nas

eA

Syn

thes

isof

nu

cleo

side

trip

hos

phat

esot

her

than

AT

P

P16

035

Met

allo

prot

ein

ase

inh

ibit

or2

prec

urs

orC

ompl

exes

wit

hm

etal

lopr

otei

nas

es(s

uch

asco

llage

nas

es)

and

irre

vers

ibly

inac

tiva

tes

them

.K

now

nto

act

onM

MP-

1,M

MP-

2,M

MP-

3,M

MP-

7,M

MP-

8,M

MP-

9,M

MP-

10,M

MP-

13,

MM

P-14

,MM

P-15

,MM

P-16

,an

dM

MP-

19P

1761

2cA

MP-

dep

ende

nt

prot

ein

kin

ase,α

-cat

alyt

icsu

bun

itP

hos

phor

ylat

esa

larg

en

um

ber

ofsu

bstr

ates

inth

ecy

topl

asm

and

the

nu

cleu

s

P18

669

Ph

osph

ogly

cera

tem

uta

se1

Inte

rcon

vers

ion

of3-

and

2-ph

osph

ogly

cera

tew

ith

2,3-

bisp

hos

phog

lyce

rate

asth

epr

imer

ofth

ere

acti

on.C

anal

soca

taly

zeth

ere

acti

onof

syn

thas

ean

dph

osph

atas

e,bu

tw

ith

are

duce

dac

tivi

tyP

2352

8C

ofilin

-1C

ontr

ols

reve

rsib

lyac

tin

poly

mer

izat

ion

and

depo

lym

eriz

atio

nP

2623

-2ca

ten

in

P27

797

Cal

reti

culin

prec

urs

or

Mol

ecu

lar

calc

ium

bin

din

gch

aper

one

prom

otin

gfo

ldin

g,ol

igom

eric

asse

mbl

yan

dqu

alit

yco

ntr

olin

the

ER

via

the

calr

etic

ulin

/cal

nex

incy

cle.

Th

isle

ctin

inte

ract

str

ansi

entl

yw

ith

alm

ost

allo

fth

em

onog

luco

syla

ted

glyc

opro

tein

sth

atar

esy

nth

esiz

edin

the

ER

.In

tera

cts

wit

hth

eD

NA

-bin

din

gdo

mai

nof

NR

3C1

and

med

iate

sit

sn

ucl

ear

expo

rt

P29

400

Col

lage

-5(I

V)

chai

npr

ecu

rsor

Typ

eIV

colla

gen

isth

em

ajor

stru

ctu

ralc

ompo

nen

tof

glom

eru

lar

base

men

tm

embr

anes

(GB

M),

form

ing

a“c

hic

ken

-wir

e”m

eshw

ork

toge

ther

wit

hla

min

ins,

prot

eogl

ycan

san

den

tact

in/n

idog

enP

2940

1Tr

ansk

etol

ase

P30

086

Ph

osph

atid

ylet

han

olam

ine-

bin

din

gpr

otei

n1

Bin

dsA

TP,

opio

ids,

and

phos

phat

idyl

eth

anol

amin

e.H

aslo

wer

affin

ity

for

phos

phat

idyl

inos

itol

and

phos

phat

idyl

chol

ine.

Seri

ne

prot

ease

inh

ibit

orw

hic

hin

hib

its

thro

mbi

n,n

euro

psin

,an

dch

ymot

ryps

inbu

tn

ottr

ypsi

n,t

issu

ety

pepl

asm

inog

enac

tiva

tor,

and

elas

tase

/HC

NP

may

bein

volv

edin

the

fun

ctio

nof

the

pres

ynap

tic

chol

iner

gic

neu

ron

sof

the

cen

tral

ner

vou

ssy

stem

.H

CN

Pin

crea

ses

the

prod

uct

ion

ofch

olin

eac

etyl

tran

sfer

ase

but

not

acet

ylch

olin

este

rase

.See

ms

tobe

med

iate

dby

asp

ecifi

cre

cept

or

P30

154

Seri

ne/

thre

onin

e-pr

otei

nph

osph

atas

e2A

65kD

are

gula

tory

subu

nit

isof

orm

Th

eP

R65

subu

nit

ofpr

otei

nph

osph

atas

e2A

serv

esas

asc

affol

din

gm

olec

ule

toco

ordi

nat

eth

eas

sem

bly

ofth

eca

taly

tic

subu

nit

and

ava

riab

lere

gula

tory

Bsu

bun

itP

3493

2H

eat

shoc

k70

kDa

prot

ein

4

Page 19: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 19

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

P35

442

Th

rom

bosp

ondi

n-2

prec

urs

orA

dhes

ive

glyc

opro

tein

that

med

iate

sce

ll-to

-cel

lan

dce

ll-to

-mat

rix

inte

ract

ion

s.C

anbi

nd

tofi

brin

ogen

,fibr

onec

tin

,lam

inin

,an

dty

pe

Vco

llage

n

P35

573

Gly

coge

nde

bran

chin

gen

zym

eM

ult

ifu

nct

ion

alen

zym

eac

tin

gas

1,4-α

-D-g

luca

n:1

,4-α

-D-g

luca

n4-α

-D-g

lyco

sylt

ran

sfer

ase

and

amyl

o-1,

6-gl

uco

sida

sein

glyc

ogen

degr

adat

ion

P35

609

α-a

ctin

in-2

F-ac

tin

cros

s-lin

kin

gpr

otei

nw

hic

his

thou

ght

toan

chor

acti

nto

ava

riet

yof

intr

acel

lula

rst

ruct

ure

s.T

his

isa

bun

dlin

gpr

otei

n

P35

711

Tran

scri

ptio

nfa

ctor

SOX

-5B

inds

spec

ifica

llyto

the

DN

Ase

quen

ce5′

-AA

CA

AT

-3′ .

Act

ivat

estr

ansc

ript

ion

ofC

OL

2A1

and

AG

C1

invi

tro

P37

268

Squ

alen

esy

nth

etas

e

P39

191

Alu

subf

amily

SB2

sequ

ence

con

tam

inat

ion

war

nin

gen

try

P40

925

Mal

ate

dehy

drog

enas

e,cy

topl

asm

ic

P46

940

Ras

GT

Pase

-act

ivat

ing-

like

prot

ein

IQG

AP

1

Bin

dsto

acti

vate

dC

DC

42bu

tdo

esn

otst

imu

late

its

GT

Pase

acti

vity

.It

asso

ciat

esw

ith

calm

odu

lin.C

ould

serv

eas

anas

sem

bly

scaff

old

for

the

orga

niz

atio

nof

am

ult

imol

ecu

lar

com

plex

that

wou

ldin

terf

ace

inco

min

gsi

gnal

sto

the

reor

gan

izat

ion

ofth

eac

tin

cyto

skel

eton

atth

epl

asm

am

embr

ane.

May

prom

ote

neu

rite

outg

row

th

P49

746

Th

rom

bosp

ondi

n-3

prec

urs

orA

dhes

ive

glyc

opro

tein

that

med

iate

sce

ll-to

-cel

lan

dce

ll-to

-mat

rix

inte

ract

ion

s.C

anbi

nd

tofi

brin

ogen

,fibr

onec

tin

,lam

inin

,an

dty

pe

Vco

llage

n

P50

395

Rab

GD

Pdi

ssoc

iati

onin

hib

itor

βR

egu

late

sth

eG

DP

/GT

Pex

chan

gere

acti

onof

mos

tR

abpr

otei

ns

byin

hib

itin

gth

edi

ssoc

iati

onof

GD

Pfr

omth

em,a

nd

the

subs

equ

ent

bin

din

gof

GT

Pto

them

P53

618

Coa

tom

ersu

bun

itβ

Th

eco

atom

eris

acy

toso

licpr

otei

nco

mpl

exth

atbi

nds

todi

lysi

ne

mot

ifs

and

reve

rsib

lyas

soci

ates

wit

hG

olgi

non

clat

hri

n-c

oate

dve

sicl

es,w

hic

hfu

rth

erm

edia

tebi

osyn

thet

icpr

otei

ntr

ansp

ort

from

the

ER

,via

the

Gol

giu

pto

the

tran

sG

olgi

net

wor

k.C

oato

mer

com

plex

isre

quir

edfo

rbu

ddin

gfr

omG

olgi

mem

bran

es,a

nd

ises

sen

tial

for

the

retr

ogra

deG

olgi

-to-

ER

tran

spor

tof

dily

sin

e-ta

gged

prot

ein

s.In

mam

mal

s,th

eco

atom

erca

non

lybe

recr

uit

edby

mem

bran

esas

soci

ated

toA

DP-

ribo

syla

tion

fact

ors

(AR

Fs),

wh

ich

are

smal

lGT

P-bi

ndi

ng

prot

ein

s;th

eco

mpl

exal

soin

flu

ence

sth

eG

olgi

stru

ctu

rali

nte

grit

y,as

wel

las

the

proc

essi

ng,

acti

vity

,an

den

docy

tic

recy

clin

gof

LDL

rece

ptor

sP

5854

6M

yotr

oph

inC

ereb

ella

rm

orph

ogen

esis

P59

998

Act

in-r

elat

edpr

otei

n2/

3co

mpl

exsu

bun

it4

Act

in-b

indi

ng

com

pon

ent

ofth

eA

rp2/

3co

mpl

exw

hic

his

invo

lved

inre

gula

tion

ofac

tin

poly

mer

izat

ion

and

toge

ther

wit

han

acti

vati

ng

nu

clea

tion

-pro

mot

ing

fact

or(N

PF)

med

iate

sth

efo

rmat

ion

ofbr

anch

edac

tin

net

wor

ksP

6017

4Tr

iose

phos

phat

eis

omer

ase

P62

937

Pept

idyl

-pro

lylc

is-t

ran

sis

omer

ase

AP

PIa

ses

acce

lera

teth

efo

ldin

gof

prot

ein

s

P63

104

14-3

-3pr

otei

nze

ta/d

elta

Ada

pter

prot

ein

impl

icat

edin

the

regu

lati

onof

ala

rge

spec

tru

mof

both

gen

eral

and

spec

ializ

edsi

gnal

ing

path

way

.Bin

dsto

ala

rge

nu

mbe

rof

part

ner

s,u

sual

lyby

reco

gnit

ion

ofa

phos

phos

erin

eor

phos

phot

hre

onin

em

otif

.Bin

din

gge

ner

ally

resu

lts

inth

em

odu

lati

onof

the

acti

vity

ofth

ebi

ndi

ng

part

ner

Page 20: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

20 Journal of Biomedicine and Biotechnology

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

P78

527

DN

A-d

epen

den

tpr

otei

nki

nas

eca

taly

tic

subu

nit

Seri

ne/

thre

onin

e-pr

otei

nki

nas

eth

atac

tsas

am

olec

ula

rse

nso

rfo

rD

NA

dam

age.

Invo

lved

inD

NA

non

hom

olog

ous

end

join

ing

(NH

EJ)

requ

ired

for

dou

ble-

stra

nd

brea

k(D

SB)

repa

iran

dV

(D)J

reco

mbi

nat

ion

.Mu

stbe

bou

nd

toD

NA

toex

pres

sit

sca

taly

tic

prop

erti

es.P

rom

otes

proc

essi

ng

ofh

airp

inD

NA

stru

ctu

res

inV

(D)J

reco

mbi

nat

ion

byac

tiva

tion

ofth

eh

airp

inen

don

ucl

ease

arte

mis

(DC

LRE

1C).

Th

eas

sem

bly

ofth

eD

NA

-PK

com

plex

atD

NA

ends

isal

sore

quir

edfo

rth

eN

HE

Jlig

atio

nst

ep.R

equ

ired

topr

otec

tan

dal

ign

brok

enen

dsof

DN

A.M

ayal

soac

tas

asc

affol

dpr

otei

nto

aid

the

loca

lizat

ion

ofD

NA

repa

irpr

otei

ns

toth

esi

teof

dam

age.

Fou

nd

atth

een

dsof

chro

mos

omes

,su

gges

tin

ga

furt

her

role

inth

em

ain

ten

ance

ofte

lom

eric

stab

ility

and

the

prev

enti

onof

chro

mos

omal

end

fusi

on.A

lso

invo

lved

inm

odu

lati

onof

tran

scri

ptio

n.R

ecog

niz

esth

esu

bstr

ate

con

sen

sus

sequ

ence

(ST

)-Q

.Ph

osph

oryl

ates

“Ser

-139

”of

his

ton

eva

rian

tH

2AX

/H2A

FX,t

her

eby

regu

lati

ng

DN

Ada

mag

ere

spon

sem

ech

anis

m.

Ph

osph

oryl

ates

DC

LRE

1C,c

-Abl

/AB

L1,h

isto

ne

H1,

HSP

CA

,c-j

un

/JU

N,p

53/T

P53

,PA

RP

1,P

OU

2F1,

DH

X9,

SRF,

XR

CC

1,X

RC

C1,

XR

CC

4,X

RC

C5,

XR

CC

6,W

RN

,c-m

yc/M

YC

,an

dR

FA2.

Can

phos

phor

ylat

eC

1Dn

oton

lyin

the

pres

ence

oflin

ear

DN

Abu

tal

soin

the

pres

ence

ofsu

per

coile

dD

NA

.Abi

lity

toph

osph

oryl

ate

TP

53/p

53in

the

pres

ence

ofsu

per

coile

dD

NA

isde

pen

den

ton

C1D

P81

274

G-p

rote

insi

gnal

ing

mod

ula

tor

2P

lays

anim

port

ant

role

insp

indl

epo

leor

ien

tati

on.I

nte

ract

san

dco

ntr

ibu

tes

toth

efu

nct

ion

alac

tivi

tyof

G(i

prot

ein

s.A

cts

tost

abili

zeth

eap

ical

com

plex

duri

ng

neu

robl

ast

divi

sion

s

P81

605

Der

mci

din

prec

urs

or

DC

D-1

disp

lays

anti

mic

robi

alac

tivi

tyth

ereb

ylim

itin

gsk

inin

fect

ion

bypo

ten

tial

path

ogen

sin

the

firs

tfe

wh

ours

afte

rba

cter

ialc

olon

izat

ion

.Hig

hly

effec

tive

agai

nst

E.c

oli,

E.f

aeca

lis,S

.aur

eus

and

C.a

lbic

ans.

Opt

imal

pHan

dsa

ltco

nce

ntr

atio

nre

sem

ble

the

con

diti

ons

insw

eat.

Surv

ival

-pro

mot

ing

pept

ide

prom

otes

surv

ival

ofn

euro

ns

and

disp

lays

phos

phat

ase

acti

vity

.It

may

bin

dIg

GP

8227

9C

rum

bsh

omol

og1

prec

urs

orP

hot

orec

epto

rm

orph

ogen

esis

inth

ere

tin

a/M

aym

ain

tain

cell

pol

ariz

atio

nan

dad

hes

ion

Q04

760

Lact

oylg

luta

thio

ne

lyas

eC

atal

yzes

the

conv

ersi

onof

hem

imer

capt

al,f

orm

edfr

omm

ethy

lgly

oxal

and

glu

tath

ion

e,to

S-la

ctoy

lglu

tath

ion

e

Q06

495

Sodi

um

-dep

ende

nt

phos

phat

etr

ansp

ort

prot

ein

2AM

aybe

invo

lved

inac

tive

lytr

ansp

orti

ng

phos

phat

ein

toce

llsvi

aN

a(+

)co

tran

spor

tin

the

ren

albr

ush

bord

erm

embr

ane.

Pro

babl

ym

edia

tes

70–8

0%of

the

apic

alin

flu

x

Q06

830

Pero

xire

doxi

n-1

Invo

lved

inre

dox

regu

lati

onof

the

cell.

Red

uce

spe

roxi

des

wit

hre

duci

ng

equ

ival

ents

prov

ided

thro

ugh

the

thio

redo

xin

syst

embu

tn

otfr

omgl

uta

redo

xin

.May

play

anim

port

ant

role

inel

imin

atin

gpe

roxi

des

gen

erat

eddu

rin

gm

etab

olis

m.M

igh

tpa

rtic

ipat

ein

the

sign

alin

gca

scad

esof

grow

thfa

ctor

san

dtu

mor

nec

rosi

sfa

ctor

-αby

regu

lati

ng

the

intr

acel

lula

rco

nce

ntr

atio

ns

ofH

2O

2

Q08

378

Gol

gin

subf

amily

Am

embe

r3

Gol

giau

toan

tige

n;p

roba

bly

invo

lved

inm

ain

tain

ing

Gol

gist

ruct

ure

Q08

380

Gal

ecti

n-3

-bin

din

gpr

otei

npr

ecu

rsor

Pro

mot

esin

tegr

in-m

edia

ted

cell

adh

esio

n.M

ayst

imu

late

hos

tde

fen

seag

ain

stvi

ruse

san

dtu

mor

cells

Q12

799

T-c

ompl

expr

otei

n10

Ah

omol

og

Q12

841

Folli

stat

in-r

elat

edpr

otei

n1

prec

urs

orM

aym

odu

late

the

acti

onof

som

egr

owth

fact

ors

once

llpr

olif

erat

ion

and

diff

eren

tiat

ion

.Bin

dsh

epar

in

Page 21: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 21

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

Q13

045

Pro

tein

flig

htl

ess-

1h

omol

og

May

play

aro

leas

coac

tiva

tor

intr

ansc

ript

ion

alac

tiva

tion

byh

orm

one-

acti

vate

dn

ucl

ear

rece

ptor

s(N

R)

and

acts

inco

oper

atio

nw

ith

NC

OA

2an

dC

AR

M1.

Invo

lved

ines

trog

enh

orm

one

sign

alin

g.In

volv

edin

earl

yem

bryo

nic

deve

lopm

ent

(By

sim

ilari

ty).

May

play

aro

lein

regu

lati

onof

cyto

skel

etal

rear

ran

gem

ents

invo

lved

incy

toki

nes

isan

dce

llm

igra

tion

Q13

075

Bac

ulo

vira

lIA

Pre

pea

t-co

nta

inin

gpr

otei

n1

Pre

ven

tsm

otor

-neu

ron

apop

tosi

sin

duce

dby

ava

riet

yof

sign

als

Q13

136

Lipr

in-α

-1R

egu

late

the

disa

ssem

bly

offo

cala

dhes

ion

s/m

aylo

caliz

ere

cept

or-l

ike

tyro

sin

eph

osph

atas

esty

pe2A

atsp

ecifi

csi

tes

onth

epl

asm

am

embr

ane,

poss

ibly

regu

lati

ng

thei

rin

tera

ctio

nw

ith

the

extr

acel

lula

ren

viro

nm

ent

and

thei

ras

soci

atio

nw

ith

subs

trat

esQ

1337

1P

hos

duci

n-l

ike

prot

ein

Q13

740

CD

166

anti

gen

prec

urs

orC

ella

dhes

ion

mol

ecu

leth

atbi

nds

toC

D6.

Invo

lved

inn

euri

teex

ten

sion

byn

euro

ns

via

het

erop

hili

can

dh

omop

hili

cin

tera

ctio

ns.

May

play

aro

lein

the

bin

din

gof

T-

and

B-c

ells

toac

tiva

ted

leu

kocy

tes,

asw

ella

sin

inte

ract

ion

sbe

twee

nce

llsof

the

ner

vou

ssy

stem

Q14

980

Nu

clea

rm

itot

icap

para

tus

prot

ein

1M

aybe

ast

ruct

ura

lcom

pon

ent

ofth

en

ucl

eus

Q15

084

Pro

tein

disu

lfide

-iso

mer

ase

A6

prec

urs

orC

atal

yzes

the

rear

ran

gem

ent

of-S

-S-

bon

dsin

prot

ein

s

Q15

113

Pro

colla

gen

C-e

ndo

pep

tida

seen

han

cer

1pr

ecu

rsor

Bin

dsto

the

C-t

erm

inal

prop

epti

deof

typ

eI

proc

olla

gen

and

enh

ance

spr

ocol

lage

nC

-pro

tein

ase

acti

vity

Q32

MQ

0P

rote

inZ

NF7

50

Q5V

TR

2U

biqu

itin

-pro

tein

ligas

eB

RE

1A

E3

ubi

quit

in-p

rote

inlig

ase

that

med

iate

sm

onou

biqu

itin

atio

nof

“Lys

-120

”of

his

ton

eH

2B.H

2B“L

ys-1

20”

ubi

quit

inat

ion

give

sa

spec

ific

tag

for

epig

enet

ictr

ansc

ript

ion

alac

tiva

tion

and

isal

sopr

ereq

uis

ite

for

his

ton

eH

3“L

ys-4

”an

d“L

ys-7

9”m

ethy

lati

on.F

orm

sa

ubi

quit

inlig

ase

com

plex

inco

oper

atio

nw

ith

the

E2

enzy

me

UB

E2E

1/U

BC

H6.

Itth

ereb

ypl

ays

ace

ntr

alro

lein

his

ton

eco

dean

dge

ne

regu

lati

on.R

equ

ired

for

tran

scri

ptio

nal

acti

vati

onof

Hox

gen

es.R

ecru

ited

toth

eM

DM

2pr

omot

er,p

roba

bly

bybe

ing

recr

uit

edby

p53/

TP

53,a

nd

ther

eby

acts

asa

tran

scri

ptio

nal

coac

tiva

tor

Q6K

C79

Nip

ped-

B-l

ike

prot

ein

Pro

babl

ypl

ays

ast

ruct

ura

lrol

ein

chro

mat

in.I

nvol

ved

insi

ster

chro

mat

idco

hes

ion

,pos

sibl

yby

inte

ract

ing

wit

hth

eco

hes

inco

mpl

exQ

6NU

M9

All-

tran

s-re

tin

ol13

,14-

redu

ctas

epr

ecu

rsor

Pla

ya

role

inth

em

etab

olis

mof

vita

min

AQ

6ZU

80P

rote

inC

14or

f145

Q6Z

UB

1P

rote

inC

9orf

79Q

7L1I

2Sy

nap

tic

vesi

cle

glyc

opro

tein

2BP

roba

bly

play

sa

role

inth

eco

ntr

olof

regu

late

dse

cret

ion

inn

eura

lan

den

docr

ine

cells

Q7Z

3E2

Pro

tein

C10

orf1

18Q

8IW

J2G

RIP

and

coile

d-co

ildo

mai

n-c

onta

inin

gpr

otei

n2

Fun

ctio

npr

obab

lyin

volv

edin

mai

nta

inin

gG

olgi

stru

ctu

reQ

8N0X

7Sp

arti

nM

aybe

impl

icat

edin

endo

som

altr

affick

ing,

orm

icro

tubu

ledy

nam

ics,

orbo

th.

Q8N

1I0

Ded

icat

orof

cyto

kin

esis

prot

ein

4In

volv

edin

regu

lati

onof

adh

eren

sju

nct

ion

betw

een

cells

.Fu

nct

ion

sas

agu

anin

en

ucl

eoti

deex

chan

gefa

ctor

(GE

F),w

hic

hac

tiva

tes

Rap

1sm

allG

TPa

seby

exch

angi

ng

bou

nd

GD

Pfo

rfr

eeG

TP

Q8T

EU

7R

apgu

anin

en

ucl

eoti

deex

chan

gefa

ctor

6G

uan

ine

nu

cleo

tide

exch

ange

fact

or(G

EF)

for

Rap

1A,R

ap2A

,an

dM

-Ras

GT

Pase

s.D

oes

not

inte

ract

wit

hcA

MP

Page 22: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

22 Journal of Biomedicine and Biotechnology

Ta

ble

2:C

onti

nu

ed.

Swis

sPro

tN

o.P

rote

inn

ame

Pro

tein

fun

ctio

n

Q8T

F76

Seri

ne/

thre

onin

e-pr

otei

nki

nas

eH

aspi

nR

equ

ired

for

nor

mal

alig

nm

ent

ofch

rom

osom

esat

met

aph

ase.

Ph

osph

oryl

ates

his

ton

eH

3“T

hr-

3”du

rin

gm

itos

isQ

8WU

T4

Un

char

acte

rize

dpr

otei

nC

20or

f75

prec

urs

orM

aypl

ayan

impo

rtan

tro

lein

hip

poca

mpu

s-de

pen

den

tlo

ng-

last

ing

mem

ory

Q96

EZ

8M

icro

sph

eru

lepr

otei

n1

Mod

ula

tes

the

tran

scri

ptio

nre

pres

sor

acti

vity

ofD

AX

Xby

recr

uit

ing

itto

the

nu

cleo

lus.

May

bean

inh

ibit

orof

TE

RT

telo

mer

ase

acti

vity

Q96

Q42

Als

inM

ayac

tas

aG

TPa

sere

gula

tor.

Con

trol

ssu

rviv

alan

dgr

owth

ofsp

inal

mot

oneu

ron

s

Q9B

XM

0Pe

riax

inIs

requ

ired

for

mai

nte

nan

ceof

peri

pher

aln

erve

mye

linsh

eath

/may

hav

ea

role

inax

on-g

lial

inte

ract

ion

sQ

9NV

P4

Pro

tein

C20

orf1

2

Q9N

X63

Coi

led-

coil-

hel

ix-c

oile

d-co

il-h

elix

dom

ain

-con

tain

ing

prot

ein

3

Q9P

0K1

AD

AM

22pr

ecu

rsor

Pro

babl

elig

and

for

inte

grin

inth

ebr

ain

.Th

isis

an

onca

taly

tic

met

allo

prot

ease

-lik

epr

otei

n.

Invo

lved

inre

gula

tion

ofce

llad

hes

ion

and

spre

adin

gan

din

inh

ibit

ion

ofce

llpr

olif

erat

ion

Q9U

M47

Neu

roge

nic

locu

sn

otch

hom

olog

prot

ein

3pr

ecu

rsor

Fun

ctio

ns

asa

rece

ptor

for

mem

bran

e-bo

un

dlig

ands

Jagg

ed1,

Jagg

ed2,

and

Del

ta1

tore

gula

tece

ll-fa

tede

term

inat

ion

.Upo

nlig

and

acti

vati

onth

rou

ghth

ere

leas

edn

otch

intr

acel

lula

rdo

mai

n(N

ICD

)it

form

sa

tran

scri

ptio

nal

acti

vato

rco

mpl

exw

ith

RB

P-Jκ

and

acti

vate

sge

nes

ofth

een

han

cer

ofsp

litlo

cus.

Aff

ects

the

impl

emen

tati

onof

diff

eren

tiat

ion

,pro

lifer

atio

n,a

nd

apop

toti

cpr

ogra

ms

Q9U

M54

Myo

sin

-6

Myo

sin

sar

eac

tin

-bas

edm

otor

mol

ecu

les

wit

hA

TPa

seac

tivi

ty.U

nco

nven

tion

alm

yosi

ns

serv

ein

intr

acel

lula

rm

ovem

ents

.Myo

sin

6is

are

vers

e-di

rect

ion

mot

orpr

otei

nth

atm

oves

tow

ards

the

min

us-

end

ofac

tin

fila

men

ts.H

assl

owra

teof

acti

n-a

ctiv

ated

AD

Pre

leas

edu

eto

wea

kA

TP

bin

din

g.Fu

nct

ion

sin

ava

riet

yof

intr

acel

lula

rpr

oces

ses

such

asve

sicu

lar

mem

bran

etr

affick

ing

and

cell

mig

rati

on.R

equ

ired

for

the

stru

ctu

rali

nte

grit

yof

the

Gol

giap

para

tus

via

the

p53-

dep

ende

nt

pros

urv

ival

path

way

.App

ears

tobe

invo

lved

ina

very

earl

yst

epof

clat

hri

n-m

edia

ted

endo

cyto

sis

inpo

lari

zed

epit

hel

ialc

ells

.May

act

asa

regu

lato

rof

F-ac

tin

dyn

amic

s.M

aypl

aya

role

intr

ansp

orti

ng

DA

B2

from

the

plas

ma

mem

bran

eto

spec

ific

cellu

lar

targ

ets.

Req

uir

edfo

rst

ruct

ura

lin

tegr

ity

ofin

ner

ear

hai

rce

lls

Q9U

PQ

9Tr

inu

cleo

tide

repe

at-c

onta

inin

g6B

prot

ein

Pla

ysa

role

inR

NA

-med

iate

dge

ne

sile

nci

ng

bybo

thm

icro

-RN

As

(miR

NA

s)an

dsh

orti

nte

rfer

ing

RN

As

(siR

NA

s).R

equ

ired

for

miR

NA

-dep

ende

nt

tran

slat

ion

alre

pres

sion

and

siR

NA

-dep

ende

nt

endo

nu

cleo

lyti

ccl

eava

geof

com

plem

enta

rym

RN

As

byar

gon

aute

fam

ilypr

otei

ns

Q9U

PT

6C

-ju

n-a

min

o-te

rmin

alki

nas

e-in

tera

ctin

gpr

otei

n3

Med

iate

sJN

Ksi

gnal

ing

byag

greg

atin

gsp

ecifi

cco

mpo

nen

tsof

the

MA

PK

casc

ade

tofo

rma

fun

ctio

nal

JNK

sign

alin

gm

odu

le.M

ayfu

nct

ion

asa

regu

lato

rof

vesi

cle

tran

spor

t,th

rou

ghin

tera

ctio

ns

wit

hth

eJN

K-s

ign

alin

gco

mpo

nen

tsan

dm

otor

prot

ein

sQ

9UQ

26R

egu

lati

ng

syn

apti

cm

embr

ane

exoc

ytos

ispr

otei

n2

Rab

effec

tor

invo

lved

inex

ocyt

osis

.May

act

assc

affol

dpr

otei

n.

Q9Y

333

U6

snR

NA

-ass

ocia

ted

Sm-l

ike

prot

ein

LSm

2B

inds

spec

ifica

llyto

the

3′-t

erm

inal

U-t

ract

ofU

6sn

RN

A.M

aybe

invo

lved

inpr

e-m

RN

Asp

licin

g

Q9Y

587

AP-

4co

mpl

exsu

bun

itsi

gma-

1Su

bun

itof

nov

elty

pe

ofcl

ath

rin

-or

non

clat

hri

n-a

ssoc

iate

dpr

otei

nco

atin

volv

edin

targ

etin

gpr

otei

ns

from

the

tran

s-G

olgi

net

wor

k(T

GN

)to

the

endo

som

al-l

ysos

omal

syst

em∗

sort

bySw

issP

rot

No.

Page 23: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 23

roles for ECM proteins in cell growth and differentiation canbe indicated by their abilities to modulate a variety of growthfactors [33].

Thrombospondin (TSP, MW∼420 kDa), which belongsto a multigene family of modular modular glycoproteins,is composed of three identical subunits within a disulfidelinkage. TSP is synthesized by several matrix-forming cellsand is incorporated into their extracellular matrix. In severalcell types, this protein supports cell growth and proliferation.As a component of ECM, TSP is involved in the regulation ofmediate platelet aggregation, inflammation, and angiogene-sis as well as adhesion, migration, growth, and differentiationof a number of normal and transformed cells [34, 35]. Theexpression of the TSP has been also investigated duringthe process of differentiation of embryonal carcinoma cells,granulose cells and HL-60 cells in vitro [36–39]. Althoughthe TSP is prevalent in differentiated cells, the induced TSPsyntheses during the differentiation may function differentlyduring neurogenesis.

In the eye, TSP-1 is localized in the epiretinal mem-brane and between the retinal pigment epithelial layer andBruch’s membrane, which is a cell-attachment factor withcell-specific affinity. TSP-1 production by retinal pigmentepithelial cells is affected by the state of proliferation andcell density. With its anti-angiogenic activity, TSP-1 mayplay several biologic roles on Bruch’s membrane [35]. Inanother report, the authors evaluated the bone marrowstromal cells (BMSCs) secretion of TSP-1, which is a putativemechanistic agent acting on RGCs for survival and growth[40]. The BMSC-derived TSP-1 is identified as a specificmediator of reparative processes in neurons, which functionsincluded enhanced RGC neurite formation, cell survival, andexpression of synaptophysin. It suggested that the TSP-1signaling pathway might be an important role in neural-likedifferentiation in BMSCs and outgrowth in RGCs [40]. Theseobservations suggest that the synthesis of TSP contributes tothe differentiation options/alternatives of RGC-5 cells towarda neural fate, reminiscent of their neural crest origin.

TSP-2 and SPARC (secreted protein, acidic and richin cysteine) are classified as matricellular proteins. TSP-2appears to play a role in reducing proliferation, while SPARCmay have a positive role in progenitor cell expansion. TSP-2 and SPARC have been shown to positively influenceosteoblast differentiation, with the ability to limit adipoge-nesis [41, 42].

TSP-3 is structurally similar to cartilage oligomericmatrix protein (COMP/TSP-5), and was a recently describedmember with the calcium binding Type 3 repeats. LikeType 1 and 2 repeats, TSP-3 is absence of the complementand contains four epidermal growth factor receptors with adistinct N terminus that has no significant homology to otherTSPs. TSP-3 is also an oligomeric heparin binding proteinpresent in both the cell layer and medium [43].

Galectin-3-binding protein (G3BP), also known as Mac-2 binding protein, is a secreted glycoprotein with a molecularmass of ∼90 kDa present in the extracellular matrix ofcells. Gelectins and their binding proteins have primarilybeen described in cell-cell and cell-matrix interactionsand play roles in autoimmunity, inflammation and tumor

progression or metastasis [44]. G3BP promotes integrin-mediated cell adhesion and functions in cancer progressionof human tumor cells. It also binds to multiple proteins inthe extracellular matrix including collagen, fibronectin, andnidogen, and to molecules mediating cell-cell and cell-matrixadhesions that are critical during tumor cell invasion andmigration [45–48].

Notch-3 was the third discovered human homologueof the Drosophila melanogaster type I membrane proteinnotch. In Drosophila, the interaction of notch with its cell-bound ligands (delta and serrate) establishes an intercellularsignaling pathway that plays a key role in neural develop-ment. Members of the Notch gene family were thought to beinvolved as receptors for membrane-bound ligands Jagged1,Jagged2, and Delta1 in the regulation of cell fate in a varietyof neurogenesis of embryos, particularly in the developingcentral nervous system (CNS) from the homogenous cellpopulation of the neural tube [49, 50]. The Notch-3 activa-tion induces the increase of the progenitor cell number in theCNS and affected CNS development. The Notch-3 mutationmay lead to cerebral autosomal dominant arteriopathy withsubcortical infarcts and leukoencephalopathy (CADASIL).CADASIL leads to stroke and dementia and is the mainfeature of recurrent subcortical ischemic events and vasculardementia. Such mutations affect highly-conserved cysteineresidues in epidermal growth factor- (EGF-) like repeatdomain in the extracellular part of the receptor [51, 52].

Follistatin-related protein (FSRP) is a recently discoveredglycoprotein that is highly homologous in both primarysequence and exon/intron domain structure to the activin-binding protein, follistatin (FS). FS is a secreted monomericglycoprotein and a member of a large group of proteins con-taining a highly conserved module of cysteine-rich sequencetermed the follistatin domain. It was first isolated from ovar-ian follicular fluid on the basis of its ability to suppress FSHsecretion by pituitary cells in vitro [53]. This follistatin genefamily includes follistatin, follistatin-related gene (FLRG)protein, follistatin-related protein (FSRP), agrin, secretedprotein acidic, and it is rich in cysteine (SPARC), and Mac25[54]. A follistatin-like sequence containing 10 conservedcysteine residues may modulate the action of some growthfactors on cell proliferation and differentiation. It was alsothought to be an autoantigen associated with rheumatoidarthritis [55].

SPARC, also known as osteonectin, 43 K protein, orBM-40, is a 32.7 kDa calcium- and copper-binding gly-coprotein, which is a product of natural synthesis fromosteoblasts, endothelial cells, and megakaryocytes. It func-tions as a counteradhesive protein, as a modulator ofgrowth factor activity, and as a cell-cycle inhibitor [56].SPARC belongs to matrix-associated factors that mediatecell-matrix interactions. Other members of this groupinclude TSP-1 and -2, osteopontin (OPN), tenascins, andthe SPARC-related proteins. Expressed during many stagesof development in a variety of organisms, the expressionof this matricellular protein, SPARC, is restricted in adultvertebrates primarily to tissues that undergo consistentturnover or to sites of injuries and diseases [56]. VertebrateSPARC binds to a number of different ECM components

Page 24: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

24 Journal of Biomedicine and Biotechnology

including albumin, thrombospondin 1, PDGF, vitronectin,entactin/nidogen, fibrillar collagens (types I, II, III, andV), and collagen type IV, the prevalent collagen in base-ment membranes [57]. The ability of SPARC to bind toseveral resident ECM proteins affects the expression ofmatrix metalloproteinases and adjusts effects of growthfactors; as a counteradhesive factor of cell shape change,this supports SPARC to regulate cell interactions duringtheir development [57]. SPARC appears to regulate cellgrowth through interactions with the extracellular matrixand cytokines. It is also a matricellular protein thatmodulates cell adhesion and proliferation and is thoughtto function in tissue remodeling and angiogenesis [58,59].

Peroxiredoxin (PRDX) is a recently identified familyof antioxidative proteins that includes six isoforms inmammals. They share a common reactive Cys residue in theN-terminal region and are capable of serving as a peroxidase,involving thioredoxin and/or glutathione as the electrondonor. PRDX 1–4 have an additional reactive Cys residue inthe conserved C-terminal region and show >70% amino acidsequence homology. In this capacity, they may be involved inthe protection of cells from oxidative stress. Peroxiredoxin1(PRDX1) is ubiquitously expressed and functions as anantioxidant enzyme, which reduces hydrogen peroxide andalkyl hydroperoxide and is involved in cellular prolifera-tion, differentiation, apoptosis, and innate immunity [60].PRDX1 may participate in the signal cascades of growth fac-tors and tumor necrosis factor-α by regulating the intracellu-lar concentrations of hydrogen peroxide [61–63]. A previousstudy also applied a proteomic approach to study PRDX1, -2,and -3 expressions in Alzheimer’s diseases and Down’s syn-drome, and found a significant increase in PRDX1 expressionassociated with the neurodegenerative diseases [64].

The human cofilin protein has a molecular weightof approximately 21 kDa. It is a member of the actindepolymerization factor (ADF)/cofilin family. Cofilin is anessential cellular protein that can bind the barbed end ofactin and is required for cell viability [65]. In cells, cofilinacts in harmony with other regulatory proteins to mediatethe response of the actin cytoskeleton to extracellular signals.In vertebrates, cofilin is regulated by pH, phosphorylationand phosphoinositides. It is involved in the translocation ofthe actin-cofilin complex from cytoplasm to nucleus. Cofilinplays an essential role in actin filament dynamics by enhanc-ing depolymerization and severance of actin filaments [66].These activities of cofilin can be abolished by phosphoryla-tion at Ser-3; therefore, phosphorylation/dephosphorylationof cofilin at Ser-3 is regarded as one of the important mech-anisms for regulating cofilin activities and actin filamentdynamics [67]. Sinha et al. reported that the suppression ofcofilin might lead to cancer regression [68].

Profilin-1 (PFN1) is a widely and highly expressed 14-to 17-kDa cytoplasmic and nuclear ligand protein of themicrofilament system. It is a ubiquitous actin monomer-binding protein involved in actin polymerization in responseto extracellular signaling pathways. PFN1 plays a central rolein the regulation of de novo actin assembly by preventingspontaneous actin polymerisation through the binding of

actin monomers and addition of monomeric actin tothe barbed actin-filament ends [69]. The importance ofprofilins for normal cell proliferation, differentiation, cellularsurvival, motility, adhesion, migration, and cytoskeletonremodelling has been verified [69–72]. PFN1 may be atumor suppressor because its expression was reduced inseveral types of invasive cancers and it was able to sup-press tumorigenicity when overexpressed [73]. In addition,the immunohistochemistry analysis also showed low levelsof PFN1 in several human breast cancers. Other thanbeing a tumor suppressor, PFN1 was reported as a nec-essary element for differentiation of human epithelial cells[74].

Galectins are a family of structurally related carbohy-drate-binding proteins and widely distributed in nema-todes, insects, and porifer, as well as vertebrates andfungi [75]. They are defined by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and sequencesimilarities in the carbohydrate recognition domain. Thegalectins are a family of β-galactoside-binding proteins im-plicated in modulating cell-cell and cell-matrix interactions,which would be required for protein secretion through theclassical secretory pathways found in the extracellular space[76].

Galectin-1 is expressed during human embryogenesis,and many adult cell types express and secrete galectin-1into the extracellular matrix [76]. Galectin-1 contributes todifferent events associated with cancer biology, includingtumour transformation, proliferation, differentiation, cellcycle regulation, growth arrest, apoptosis, cell adhesion,migration, inflammation, and inhibition of full cell acti-vation [77]. A previous study has shown that galectin-1induced sustained exposure of phosphatidylserine on the cellsurface in a carbohydrate-dependent fashion, but phosphati-dylserine exposure is not associated with cell death byapoptosis and does not affect cell viability. There is evidencethat galectin-1 contributes to tumour evasion of immuneresponses [78].

A positive correlation has recently been shown betweengalectin-3 expression and the degree of malignant transfor-mation in certain types of cell lines, and the amount ofgalectin-3 expression is expected to possibly serve as an indexof degree for neoplastic transformation, tumor cell survival,angiogenesis, tumor metastasis, and tumor malignancy [79,80]. Recent studies have revealed that intracellular galectin-3 exhibits the activity to suppress drug-induced apoptosisand anoikis that contribute to cell survival. Resistance toapoptosis is essential for cancer cell survival and plays a rolein tumor progression [81].

Moreover, both galectin-1 and galectin-3 expressions arenecessary for the initiation of the transformed phenotypeof tumors. Inhibition of galectin-1 expression can suppressthe transformed phenotype of human glioma cells [82]. Inaddition, following the inhibition of galectin-3 expression,breast carcinoma cells and thyroid papillary carcinoma cellslose their transformed characteristic phenotypes in cellculture [83, 84].

Myotrophin, a 12 kDa protein consists of 117 aminoacids, has a potential role in cerebellar morphogenesis and

Page 25: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 25

may be involved in differentiation of cerebellar neurons,particularly of granule cells, and associated with cardiachypertrophy. It appears to be a primary modulator formyocardial cell growth and differentiation [85]. Myotrophinaccelerates myocyte growth by stimulating protein synthesisand may be correlated with cardiac hypertrophy in thepathogenesis, where it is involved in the conversion of NF-κ Bp50-p65 heterodimers to p50-p50 and p65-p65 homodimersas well as in the normal development of cardiac myocytes[86]. A previous study also indicated that myotrophin may beinvolved in the upregulation of myofibrillar protein and theactivation of cardiac gene transcription during the growthand hypertrophy of myocardium; thus, the induction of earlyresponse of gene expression may be linked to this response[87].

The 132 proteins identified in this study may be involvedin some biologic processes that are associated with celldifferentiation, proliferation, and adhesion. We have testedsome proteins incorporated into the medium; however, noneof those proteins can solely induce cell differentiation. Theresults form a database with a diversity and relative abun-dance of various proteins found in the HNPE cell-secretedproteins. The database provides not only information on thenature of protein contents in HNPE cells but also potentialproteins to be examined in further investigations.

4. Conclusions

In this study, we established the first secretome databasefor HNPE cells. The experimental results obtained by SDS-PAGE and nano-high performance liquid chromatographyelectrospray ionization tandem mass spectrometry (nano-HPLC-ESI-MS/MS) system revealed the identification of132 unique proteins from HNPE cell secretome. Amongthese 132 proteins identified with higher confidence lev-els, some proteins have been reported involving in celldifferentiation, such as thrombospondin-1, 2, 3 precursor,galectin-3-binding protein, neurogenic locus notch homologprotein 3, follistatin-related protein 1 precursor, sPARCprecursor, peroxiredoxin-1, cofilin 1, profilin 1, galectin-1,and myotrophin. However, none of those proteins can inducecell differentiation solely. This list serves as a starting pointfor buildingup a comprehensive database of the proteomeof this cell-line. The database can include diverse repertoiresof proteins expressed by HNPE cells. All of this data willenhance our understanding of the molecular mechanismsinvolved in maintaining the differentiated states of HNPEcells and directing their differentiation and, in turn, willbring us closer to fulfill the vast clinical potentials of thecells.

In conclusion, we have demonstrated that RGC-5 cellsupon coculturing with HNPE cell conditioned SF-mediumdeveloped a differentiated morphology and continued toexpress the necessary RGC markers. The differentiated RGC-5 cells would therefore be useful to study apoptotic pathwaysof retinal ganglion cell death. The findings from this studymay have significant impacts on HNPE cell biology and cellengineering.

Acknowledgments

This paper was supported by research Grants Q097004from the Kaohsiung Medical University Research Foun-dation, NSC96-2321-B-037-006, NSC-099-2811-E-224-002,and NSC97-2320-B-037-012-MY3 from the National ScienceCouncil, Taiwan.

References

[1] V. R. Rao, R. R. Krishnamoorthy, and T. Yorio, “Endothelin-1 mediated regulation of extracellular matrix collagens in cellsof human lamina cribrosa,” Experimental Eye Research, vol. 86,no. 6, pp. 886–894, 2008.

[2] M. Hernandez, J. H. Urcola, and E. Vecino, “Retinal ganglioncell neuroprotection in a rat model of glaucoma following bri-monidine, latanoprost or combined treatments,” ExperimentalEye Research, vol. 86, no. 5, pp. 798–806, 2008.

[3] H. Quigley and A. T. Broman, “The number of people withglaucoma worldwide in 2010 and 2020,” British Journal ofOphthalmology, vol. 90, no. 3, pp. 262–267, 2006.

[4] H. A. Quigley, “Glaucoma: macrocosm to microcosm theFriedenwald lecture,” Investigative Ophthalmology and VisualScience, vol. 46, no. 8, pp. 2663–2670, 2005.

[5] J. E. Morgan, H. Uchida, and J. Caprioli, “Retinal ganglioncell death in experimental glaucoma,” British Journal ofOphthalmology, vol. 84, no. 3, pp. 303–310, 2000.

[6] G. R. Howell, R. T. Libby, T. C. Jakobs et al., “Axons of retinalganglion cells are insulted in the optic nerve early in DBA/2Jglaucoma,” Journal of Cell Biology, vol. 179, no. 7, pp. 1523–1537, 2007.

[7] N. A. Castle, “Aquaporins as targets for drug discovery,” DrugDiscovery Today, vol. 10, no. 7, pp. 485–493, 2005.

[8] R. W. Rodieck, The First Steps in Seeing, Sinauer Associates,Sunderland, Mass, USA, 1998.

[9] B. Schwartz, J. C. Rieser, and S. L. Fishbein, “Fluoresceinangiographic defects of the optic disc in glaucoma,” Archivesof Ophthalmology, vol. 95, no. 11, pp. 1961–1974, 1977.

[10] C. J. Barnstable and U. C. Drager, “Thy-1 antigen: a ganglioncell specific marker in rodent retina,” Neuroscience, vol. 11, no.4, pp. 847–855, 1984.

[11] Z. Q. Xiang, B. B. Knowles, J. W. McCarrick, and H. C. J.Ertl, “Immune effector mechanisms required for protection torabies virus,” Virology, vol. 214, no. 2, pp. 398–404, 1995.

[12] Y. Otori, S. Kusaka, A. Kawasaki, H. Morimura, A. Miki, and Y.Tano, “Protective effect of nilvadipine against glutamate neu-rotoxicity in purified retinal ganglion cells,” Brain Research,vol. 961, no. 2, pp. 213–219, 2003.

[13] M. Coca-Prados, J. Escribano, and J. Ortego, “Differentialgene expression in the human ciliary epithelium,” Progress inRetinal and Eye Research, vol. 18, no. 3, pp. 403–429, 1999.

[14] J. Escribano, J. Ortego, and M. Coca-Prados, “Isolationand characterization of cell-specific cDNA clones from asubtractive library of the ocular ciliary body of a singlenormal human donor: transcription and synthesis of plasmaproteins,” Journal of Biochemistry, vol. 118, no. 5, pp. 921–931,1995.

[15] J. Ortego and M. Coca-Prados, “Molecular characterizationand differential gene induction of the neuroendocrine-specificgenes neurotensin, neurotensin receptor, PC1, PC2, and7B2 in the human ocular ciliary epithelium,” Journal ofNeurochemistry, vol. 69, no. 5, pp. 1829–1839, 1997.

Page 26: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

26 Journal of Biomedicine and Biotechnology

[16] N. J. van Bergen, J. P. Wood, G. Chidlow et al., “Recharacter-ization of the RGC-5 retinal ganglion cell line,” InvestigativeOphthalmology and Visual Science, vol. 50, no. 9, pp. 4267–4272, 2009.

[17] Y. C. Tyan, H. Y. Wu, W. C. Su, P. W. Chen, and P. C. Liao,“Proteomic analysis of human pleural effusion,” Proteomics,vol. 5, no. 4, pp. 1062–1074, 2005.

[18] Y. C. Tyan, H. Y. Wu, W. W. Lai, W. C. Su, and P. C.Liao, “Proteomic profiling of human pleural effusion usingtwo-dimensional nano liquid chromatography tandem massspectrometry,” Journal of Proteome Research, vol. 4, no. 4, pp.1274–1286, 2005.

[19] A. Pandey, A. V. Podtelejnikov, B. Blagoev, X. R. Bustelo,M. Mann, and H. F. Lodish, “Analysis of receptor signalingpathways by mass spectrometry: identification of vav-2 as asubstrate of the epidermal and platelet-derived growth factorreceptors,” Proceedings of the National Academy of Sciences ofthe United States of America, vol. 97, no. 1, pp. 179–184, 2000.

[20] C. O’Donovan, M. J. Martin, A. Gattiker, E. Gasteiger, A.Bairoch, and R. Apweiler, “High-quality protein knowledgeresource: SWISS-PROT and TrEMBL,” Briefings in Bioinfor-matics, vol. 3, no. 3, pp. 275–284, 2002.

[21] E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel,and A. Bairoch, “ExPASy: the proteomics server for in-depthprotein knowledge and analysis,” Nucleic Acids Research, vol.31, no. 13, pp. 3784–3788, 2003.

[22] S. R. Piersma, U. Fiedler, S. Span et al., “Workflow comparisonfor label-free, quantitative secretome proteomics for cancerbiomarker discovery: method evaluation, differential analysis,and verification in serum,” Journal of Proteome Research, vol.9, no. 4, pp. 1913–1922, 2010.

[23] M. Makridakis and A. Vlahou, “Secretome proteomics fordiscovery of cancer biomarkers,” Journal of Proteomics, vol. 73,no. 12, pp. 2291–2305, 2010.

[24] Y. Hathout, “Approaches to the study of the cell secretome,”Expert Review of Proteomics, vol. 4, no. 2, pp. 239–248, 2007.

[25] I. Surgucheva, A. D. Weisman, J. L. Goldberg, A. Shnyra, andA. Surguchov, “γ-synuclein as a marker of retinal ganglioncells,” Molecular Vision, vol. 14, pp. 1540–1548, 2008.

[26] L. J. Frassetto, C. R. Schlieve, C. J. Lieven et al., “Kinase-dependent differentiation of a retinal ganglion cell precursor,”Investigative Ophthalmology and Visual Science, vol. 47, no. 1,pp. 427–438, 2006.

[27] J. P. Wood, G. Chidlow, T. Tran, J. G. Crowston, and R. J.Casson, “A comparison of differentiation protocols for RGC-5 cells,” Investigative Ophthalmology & Visual Science, vol. 51,no. 7, pp. 3774–3783, 2010.

[28] R. R. Krishnamoorthy, P. Agarwal, G. Prasanna et al., “Char-acterization of a transformed rat retinal ganglion cell line,”Molecular Brain Research, vol. 86, no. 1-2, pp. 1–12, 2001.

[29] L. Gan, S. W. Wang, Z. Huang, and W. H. Klein, “POUdomain factor Brn-3b is essential for retinal ganglion celldifferentiation and survival but not for initial cell fatespecification,” Developmental Biology, vol. 210, no. 2, pp. 469–480, 1999.

[30] X. Mu and W. H. Klein, “A gene regulatory hierarchy for retinalganglion cell specification and differentiation,” Seminars inCell and Developmental Biology, vol. 15, no. 1, pp. 115–123,2004.

[31] J. D. Jaffe, H. C. Berg, and G. M. Church, “Proteogenomicmapping as a complementary method to perform genomeannotation,” Proteomics, vol. 4, no. 1, pp. 59–77, 2004.

[32] Y. Guo, S. F. Ma, D. Grigoryev, J. Van Eyk, and J. G. N.Garcia, “1-DE MS and 2-D LC-MS analysis of the mouse

bronchoalveolar lavage proteome,” Proteomics, vol. 5, no. 17,pp. 4608–4624, 2005.

[33] N. M. Kumar, S. L. Sigurdson, D. Sheppard, and J. S. Lwebuga-Mukasa, “Differential modulation of integrin receptors andextracellular matrix laminin by transforming growth factor-β1 in rat alveolar epithelial cells,” Experimental Cell Research,vol. 221, no. 2, pp. 385–394, 1995.

[34] V. Alessandra, D. M. Lucia, G. Giuseppe et al.,“Thrombospondin-1 is a mediator of the neurotypicdifferentiation induced by EGF in thymic epithelial cells,”Experimental Cell Research, vol. 248, no. 1, pp. 79–86, 1999.

[35] H. Miyajima-Uchida, H. Hayashi, R. Beppu et al., “Productionand accumulation of thrombospondin-1 in human retinalpigment epithelial cells,” Investigative Ophthalmology andVisual Science, vol. 41, no. 2, pp. 561–567, 2000.

[36] D. J. Liska, R. Hawkins, K. Wikstrom, and P. Bornstein, “Mod-ulation of thrombospondin expression during differentiationof embryonal carcinoma cells,” Journal of Cellular Physiology,vol. 158, no. 3, pp. 495–505, 1994.

[37] S. J. Suchard, P. J. Mansfield, and V. M. Dixit, “Modulationof thrombospondin receptor expression during HL-60 celldifferentiation,” Journal of Immunology, vol. 152, no. 2, pp.877–888, 1994.

[38] M. Dreyfus, R. Dardik, B. S. Suh, A. Amsterdam, and J.Lahav, “Differentiation-controlled synthesis and binding ofthrombospondin to granulosa cells,” Endocrinology, vol. 130,no. 5, pp. 2565–2570, 1992.

[39] K. S. O’Shea and V. M. Dixit, “Unique distribution ofthe extracellular matrix component thrombospondin in thedeveloping mouse embryo,” Journal of Cell Biology, vol. 107,no. 6, pp. 2737–2748, 1988.

[40] K. Yu, J. Ge, J. B. Summers et al., “TSP-1 secreted byone marrow stroma cells contributes to retinal ganglion cellneurite outgrowth and survival,” PLoS One, vol. 3, no. 6,Article ID e2470, pp. 1–11, 2008.

[41] A. E. Canfield, A. B. Sutton, J. A. Hoyland, and A. M.Schor, “Association of thrombospondin-1 with osteogenicdifferentiation of retinal pericytes in vitro,” Journal of CellScience, vol. 109, no. 2, pp. 343–353, 1996.

[42] A. M. Delany and K. D. Hankenson, “Thrombospondin-2 and SPARC/osteonectin are critical regulators of boneremodeling,” Journal of Cell Communication and Signaling, vol.3, no. 3-4, pp. 227–238, 2009.

[43] A. N. Qabar, Z. Lin, F. W. Wolf, K. S. O’Shea, J. Lawler, and V.M. Dixit, “Thrombospondin 3 is a developmentally regulatedheparin binding protein,” Journal of Biological Chemistry, vol.269, no. 2, pp. 1262–1269, 1994.

[44] M. Blostein, J. Cuerquis, and J. Galipeau, “Galectin 3-bindingprotein is a potential contaminant of recombinantly producedfactor IX,” Haemophilia, vol. 13, no. 6, pp. 701–706, 2007.

[45] T. Plavina, E. Wakshull, W. S. Hancock, and M. Hincapie,“Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma proteinbiomarker discovery,” Journal of Proteome Research, vol. 6, no.2, pp. 662–671, 2007.

[46] G. Calabrese, I. Sures, F. Pompetti, G. Natoli, G. Palka, and S.Iacobelli, “The gene (LGALS3BP) encoding the serum protein90K, associated with cancer and infection by the humanimmunodeficiency virus, maps at 17q25,” Cytogenetics andCell Genetics, vol. 69, no. 3-4, pp. 223–225, 1995.

[47] K. Koths, E. Taylor, R. Halenbeck, C. Casipit, and A. Wang,“Cloning and characterization of a human Mac-2-bindingprotein, a new member of the superfamily defined by themacrophage scavenger receptor cysteine-rich domain,” Journal

Page 27: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

Journal of Biomedicine and Biotechnology 27

of Biological Chemistry, vol. 268, no. 19, pp. 14245–14249,1993.

[48] Y. Fukaya, H. Shimada, L. C. Wang, E. Zandi, and Y. A.DeClerck, “Identification of galectin-3-binding protein as afactor secreted by tumor cells that stimulates interleukin-6expression in the bone marrow stroma,” Journal of BiologicalChemistry, vol. 283, no. 27, pp. 18573–18581, 2008.

[49] S. A. Sullivan, L. K. Barthel, B. L. Largent, and P. A. Raymond,“A goldfish Notch-3 homologue is expressed in neurogenicregions of embryonic, adult and regenerating brain andretina,” Developmental Genetics, vol. 20, no. 3, pp. 208–223,1997.

[50] Y. Qu, K. Sakamoto, S. Takeda, T. Kayano, M. Takagi, andK. Katsube, “Differential expression of notch genes in theneurogenesis of mouse embryos,” Oral Medicine & Pathology,vol. 3, pp. 21–28, 1998.

[51] M. Lardelli, R. Williams, T. Mitsiadis, and U. Lendahl,“Expression of the Notch 3 intracellular domain in mousecentral nervous system progenitor cells is lethal and leads todisturbed neural tube development,” Mechanisms of Develop-ment, vol. 59, no. 2, pp. 177–190, 1996.

[52] A. Joutel, C. Corpechot, A. Ducros et al., “Tournier-Lasserve,Notch3 mutations in CADASIL, a hereditary adult-onsetcondition causing stroke and dementia,” Nature, vol. 383, no.6602, pp. 707–710, 1996.

[53] D. V. Tortoriello, Y. Sidis, D. A. Holtzman, W. E. Holmes,and A. L. Schneyer, “Human follistatin-related protein: astructural homologue of follistatin with nuclear localization,”Endocrinology, vol. 142, no. 8, pp. 3426–3434, 2001.

[54] J. Liu, T. Vanttinen, C. Hyden-Granskog, and R. Voutilainen,“Regulation of follistatin-related gene (FLRG) expressionby protein kinase C and prostaglandin E(2) in culturedgranulosa-luteal cells,” Molecular Human Reproduction, vol. 8,no. 11, pp. 992–997, 2002.

[55] Y. Ehara, D. Sakurai, N. Tsuchiya et al., “Follistatin-relatedprotein gene (FRP) is expressed in the synovial tissues ofrheumatoid arthritis, but its polymorphisms are not asso-ciated with genetic susceptibility,” Clinical and ExperimentalRheumatology, vol. 22, no. 6, pp. 707–712, 2004.

[56] R. A. Brekken and E. H. Sage, “SPARC, a matricellular protein:at the crossroads of cell-matrix communication,” MatrixBiology, vol. 19, no. 8, pp. 815–827, 2001.

[57] A. D. Bradshaw and E. H. Sage, “SPARC, a matricellularprotein that functions in cellular differentiation and tissueresponse to injury,” Journal of Clinical Investigation, vol. 107,no. 9, pp. 1049–1054, 2001.

[58] A. D. Bradshaw, J. A. Bassuk, A. Francki, and E. H. Sage,“Expression and purification of recombinant human SPARCproduced by baculovirus,” Molecular Cell Biology ResearchCommunications, vol. 3, no. 6, pp. 345–351, 2000.

[59] M. J. Alvarez, F. Prada, E. Salvatierra et al., “Secreted proteinacidic and rich in cysteine produced by human melanomacells modulates polymorphonuclear leukocyte recruitmentand antitumor cytotoxic capacity,” Cancer Research, vol. 65,no. 12, pp. 5123–5132, 2005.

[60] J. Nawarak, R. Huang-Liu, S. H. Kao et al., “Proteomicsanalysis of A375 human malignant melanoma cells in responseto arbutin treatment,” Biochimica et Biophysica Acta, vol. 1794,no. 2, pp. 159–167, 2009.

[61] K. A. Daly, C. Lefevre, K. Nicholas, E. Deane, and P.Williamson, “Characterization and expression of Peroxire-doxin 1 in the neonatal tammar wallaby (Macropus eugenii),”Comparative Biochemistry and Physiology—B, vol. 149, no. 1,pp. 108–119, 2008.

[62] W. Lee, K. S. Choi, J. Riddell et al., “Human peroxiredoxin 1and 2 are not duplicate proteins: the unique presence of CYS83in Prx1 underscores the structural and functional differencesbetween Prx1 and Prx2,” Journal of Biological Chemistry, vol.282, no. 30, pp. 22011–22022, 2007.

[63] P. Karihtala, A. Mantyniemi, S. W. Kang, V. L. Kinnula, andY. Soini, “Peroxiredoxins in breast carcinoma,” Clinical CancerResearch, vol. 9, no. 9, pp. 3418–3424, 2003.

[64] S. H. Kim, M. Fountoulakis, N. Cairns, and G. Lubec, “Proteinlevels of human peroxiredoxin subtypes in brains of patientswith Alzheimer’s disease and Down Syndrome,” Journal ofNeural Transmission, Supplement, no. 61, pp. 223–235, 2001.

[65] P. Lappalainen and D. G. Drubin, “Cofilin promotes rapidactin filament turnover in vivo,” Nature, vol. 388, no. 6637,pp. 78–82, 1997.

[66] A. McGough, B. Pope, W. Chiu, and A. Weeds, “Cofilinchanges the twist of F-actin: implications for actin filamentdynamics and cellular function,” Journal of Cell Biology, vol.138, no. 4, pp. 771–781, 1997.

[67] J. Toshima, J. Y. Toshima, T. Amano, N. Yang, S. Narumiya,and K. Mizuno, “Cofilin phosphorylation by protein kinasetesticular protein kinase 1 and its role in integrin-mediatedactin reorganization and focal adhesion formation,” MolecularBiology of the Cell, vol. 12, no. 4, pp. 1131–1145, 2001.

[68] P. Sinha, G. Hutter, E. Kottgen, M. Dietel, D. Schadendorf, andH. Lage, “Increased expression of epidermal fatty acid bindingprotein, cofilin, and 14-3-3-sigma (stratifin) detected bytwo-dimensional gel electrophoresis, mass spectrometry andmicrosequencing of drug-resistant human adenocarcinoma ofthe pancreas,” Electrophoresis, vol. 20, pp. 2952–2960, 1999.

[69] W. Witke, J. D. Sutherland, A. Sharpe, M. Arai, and D.J. Kwiatkowski, “Profilin I is essential for cell survival andcell division in early mouse development,” Proceedings of theNational Academy of Sciences of the United States of America,vol. 98, no. 7, pp. 3832–3836, 2001.

[70] M. Haugwitz, A. A. Noegel, J. Karakesisoglou, and M. Schle-icher, “Dictyostelium amoebae that lack G-actin-sequesteringprofilins show defects in F-actin content, cytokinesis, anddevelopment,” Cell, vol. 79, no. 2, pp. 303–314, 1994.

[71] E. M. Verheyen and L. Cooley, “Profilin mutations disruptmultiple actin-dependent processes during Drosophila devel-opment,” Development, vol. 120, no. 4, pp. 717–728, 1994.

[72] D. J. Mazzatti, G. Pawelec, R. Longdin, J. R. Powell, and R.J. Forsey, “SELDI-TOF-MS ProteinChip array profiling of T-cell clones propagated in long-term culture identifies humanprofilin-1 as a potential bio-marker of immunosenescence,”Proteome Science, vol. 5, article 7, pp. 1–13, 2007.

[73] L. Zou, M. Jaramillo, D. Whaley et al., “Profilin-1 is anegative regulator of mammary carcinoma aggressiveness,”British Journal of Cancer, vol. 97, no. 10, pp. 1361–1371, 2007.

[74] N. Wittenmayer, B. Jandrig, M. Rothkegel et al., “Tumorsuppressor activity of profilin requires a functional actinbinding site,” Molecular Biology of the Cell, vol. 15, no. 4, pp.1600–1608, 2004.

[75] J. Hirabayashi, T. Hashidate, Y. Arata et al., “Oligosaccharidespecificity of galectins: a search by frontal affinity chromatog-raphy,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp.232–254, 2002.

[76] F. A. Van Den Brule, P. L. Fernandez, C. Buicu et al., “Dif-ferential expression of galectin-1 and galectin-3 during firsttrimester human embryogenesis,” Developmental Dynamics,vol. 209, no. 4, pp. 399–405, 1997.

[77] G. A. Rabinovich, “Galectin-1 as a potential cancer target,”British Journal of Cancer, vol. 92, no. 7, pp. 1188–1192, 2005.

Page 28: Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

28 Journal of Biomedicine and Biotechnology

[78] K. Stowell, N. Pollock, and E. Langton, “Perinatal diagnosisof malignant hyperthermia susceptibility,” Anaesthesia andIntensive Care, vol. 35, no. 3, pp. 454–455, 2007.

[79] H. J. Gabius, “Concepts of tumor lectinology,” Cancer Investi-gation, vol. 15, no. 5, pp. 454–464, 1997.

[80] H. Legendre, C. Decaestecker, N. Nagy et al., “Prognosticvalues of galectin-3 and the macrophage migration inhibitoryfactor (MIF) in human colorectal cancers,” Modern Pathology,vol. 16, no. 5, pp. 491–504, 2003.

[81] S. Nakahara, N. Oka, and A. Raz, “On the role of galectin-3 incancer apoptosis,” Apoptosis, vol. 10, no. 2, pp. 267–275, 2005.

[82] K. Goldring, G. E. Jones, R. Thiagarajah, and D. J. Watt, “Theeffect of galectin-1 on the differentiation of fibroblasts andmyoblasts in vitro,” Journal of Cell Science, vol. 115, no. 2, pp.355–366, 2002.

[83] H. P. Hahn, M. Pang, J. He et al., “Galectin-1 induces nucleartranslocation of endonuclease G in caspase- and cytochromec-independent T cell death,” Cell Death and Differentiation,vol. 11, no. 12, pp. 1277–1286, 2004.

[84] J. Ellerhorst, T. Nguyen, D. N. Cooper, Y. Estrov, D. Lotan,and R. Lotan, “Induction of differentiation and apoptosis inthe prostate cancer cell line LNCaP by sodium butyrate andgalectin-1,” International Journal of Oncology, vol. 14, pp. 225–232, 1999.

[85] R. J. O’Brien, I. Loke, J. E. Davies, I. B. Squire, and L. L. Ng,“Myotrophin in human heart failure,” Journal of the AmericanCollege of Cardiology, vol. 42, no. 4, pp. 719–725, 2003.

[86] P. Sil, D. Mukherjee, and S. Sen, “Quantification ofmyotrophin from spontaneously hypertensive and normal rathearts,” Circulation Research, vol. 76, no. 6, pp. 1020–1027,1995.

[87] D. P. Mukherjee, C. F. McTiernan, and S. Sen, “Myotrophininduces early response genes and enhances cardiac geneexpression,” Hypertension, vol. 21, no. 2, pp. 142–148, 1993.