Top Banner
ذ ک ارائ: ل بشرگیی س دریاذسیسی ارضذ ها کارضذضو ايراقات ض هساترهیي د سThe 3 nd Autonomous Surface Vehicle Competition ذ بزگشار ک: عتی شزيف صشگا داذسی درياجوي ه ام خذاا ب1
43

Propulsion%20system %203rd[1]

Aug 20, 2015

Download

Engineering

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Propulsion%20system %203rd[1]

:ارائ کذ سیل بشرگی

کارضاسی ارضذ هذسی دریا

سهیي در هساتقات ضاراي ضوذ The 3nd Autonomous Surface Vehicle Competition

: بزگشار کذ

داشگا صعتی شزيف اجوي هذسی دريا

ب ام خذا

1

Page 2: Propulsion%20system %203rd[1]

سزفصل هطالة

هعزفی ااع پیشبزذ ای دريايی يژگی ای آى ا • هعزفی پاراهتزای هثز در عولکزد پزا ای دريايی• تعییي پاراهتزای طزاحی پزا با تج ب قط طزاحی•

2

Page 3: Propulsion%20system %203rd[1]

ااع پیطثزذ ا

• Propellers

– Fixed Pitch

– Controllable (Reversible) Pitch

– CRP

– Super Cavitating

– Ducted

– Vertical Axis

• Jet

– Water jet

– Pump jet

• Podded Propulsion

3

Page 4: Propulsion%20system %203rd[1]

هشاياراذهاى باال تا سزعت ای هختلف بز •

حسب ع شي کن•

هعايب قابلیت کارکزد در شزايط عولیاتی هحذد-

(FPP) پزا اي تا گام ثاتت

4

Page 5: Propulsion%20system %203rd[1]

هشايا تزاست ر ب عقب بذى یاس ب جعب دذ• هحذد عولکزد سیع• ساسگاری بتز با هتر در سزعت ای هختلف• افشايش هار پذيزی شار•

هعايب F.P.Pراذهاى کوتز سبت ب

پیچیذگی ساختار شي باال

(CPP) پزا اي تا گام هتغیز

5

Page 6: Propulsion%20system %203rd[1]

Contra-Rotating Propellersپزا ای هعکس گزد

تعادل در گشتار+ راذهاى باال+ ارتعاشات يش کن+

پیچیذگی شي باال -

6

Page 7: Propulsion%20system %203rd[1]

پزا ای یو هغزق

راذهاى راص تاال در سزعتاي تاال• کاص درگ هلحقات• اهکاى استفاد اس پزا اي تشرگتز•کاص خردگی سایطی سطح پز اضی اس •

کایتاسیى افشایص ارتعاضات- پیچیذگی شی تاال-

در هعزض تارگذاري سای ضذیذ-

7

Page 8: Propulsion%20system %203rd[1]

(جت آب)اتز جت

:هشایا• راذهاى تاال در سزعت اي تاال• قاتلیت عولکزد در آب کن عوق• هارپذیزي تاال•

:هعایة شی تاال• هطکالت تعویز گذاري•

8

Page 9: Propulsion%20system %203rd[1]

هقایس ااع پیطثزذ ا

9

Page 10: Propulsion%20system %203rd[1]

هطخصات پزا• Blade

– Tip – Root – Leading Edge – Trailing Edge – Pitch Angle – Angle of Attack

Diameter

Pitch

Skew

Rake

Area

Slip

Thrust

10

Page 11: Propulsion%20system %203rd[1]

هطخصات ذسی پز

11

Page 12: Propulsion%20system %203rd[1]

گام پروانه

12

Page 13: Propulsion%20system %203rd[1]

سطح پزا

13

Page 14: Propulsion%20system %203rd[1]

اسکی

The best practical option for reducing

unsteady flow forces on the propeller,

and thus reducing vibration is to skew

the blades. The mid radius of a skewed

propeller is in the same place as that of

a conventional radial propeller, but the

relationship between inner and outer

radius is shifted, the tip hits it later and

there follows a cancellation of forces. A

skewed propeller can be “tuned” to a

specific wake field in order to reduce

the excitation at a given harmonic, and

thus be very effective in reducing

vibration.

14

Page 15: Propulsion%20system %203rd[1]

اصل تطات

• Dimensional analysis:

• Result is:

15

Page 16: Propulsion%20system %203rd[1]

قایي هقیاس تذي در تست هذل

• Introduce the scale ratio:

• Froude scaling results in:

• nD/VA equality results in slip ratio equality.

• The third coefficient cannot be made equal unless we adjust the

ambient pressure - cavitation tests.

• The fourth coefficient (Reynolds number) cannot be made

equal. This is not as serious as for resistance.

16

Page 17: Propulsion%20system %203rd[1]

قایي هقیاس تذي در تست هذل

17

Page 18: Propulsion%20system %203rd[1]

ضزایة پزا

18

Page 19: Propulsion%20system %203rd[1]

هحی اي عولکزدي پزا

19

Page 20: Propulsion%20system %203rd[1]

پزا -اذرکص تذ

• Wake

• Slip ratio

• Relative Rotative Efficiency

• Thrust deduction

• Hull efficiency

• Propulsive efficiency

20

Page 21: Propulsion%20system %203rd[1]

ویک• The difference between the ship speed V and the speed of advance VA is the wake

speed.The wake fraction is defined as:

• w = (V −VA) / V so VA = V (1 −w )

:تک پزا اي

:د پزا اي

21

05.0C45.0w)Robertson(

8.0C7.0w)Heckscher(

C5.005.0w)Taylor(

p

p

B

2.0C5.0w)Robertson(

3.0C7.0w)Heckscher(

C55.02.0w)Taylor(

p

p

B

Page 22: Propulsion%20system %203rd[1]

راذهاى چزخص سثی

open water propeller efficiency and efficiency behind the hull:

Their ratio is called the relative rotative efficiency:

0.95 -1.0 for twin screw ships

1.0 - 1.1 for single screw.

22

Page 23: Propulsion%20system %203rd[1]

ضزیة کاص تزاست

When a hull is towed, there is an area of high pressure over the stern which has

a resultant forward component reducing the total resistance. With a self

propelled hull, however, the pressure over some of this area is reduced by the

action of the propeller in accelerating the water flowing into it, the forward

component is reduced, the resistance is increased and so is the thrust

necessary to propel the model or ship.

If R is the resistance and T the thrust, we can write for the same ship speed

where the expression (1-t) is called the thrust deduction factor .

23

Page 24: Propulsion%20system %203rd[1]

راذهاى تذ

The work done in moving a ship at a speed V against a resistance R is proportional to the

product RV or the effective power PE. The work done by the propeller in delivering a

thrust T at a speed of advance VA is proportional to the product TVA or the thrust power P.

The ratio of the work done on the ship with that done by the propeller is called the hull

efficiency

For most ships this is greater than 1.

At first sight this seems an anomalous situation in that apparently something is being obtained

for nothing. It can,however, be explained by the fact that the propeller is making use of the

energy which is already in the wake because of its forward velocity.

24

Page 25: Propulsion%20system %203rd[1]

راندمان کل رانش

• Need to select a propeller such that hP is maximized.

25

Page 26: Propulsion%20system %203rd[1]

هزر هطالة

• Thrust Coefficient (KT)

• Torque Coefficient (KQ)

• Advance Coefficient (J)

• Open-water Propeller Efficiency (h0)

• Pitch-diameter ratio (P/D)

• Expanded area ratio (AE/A0)

• Thrust deduction, t

• Wake fraction, w

• Speed of advance, VA

VwV

TtR

K

KJ

nQ

TV

nD

VJ

Dn

QK

Dn

TK

A

Q

TA

A

Q

T

)1(

)1(

220

52

42

h

26

Page 27: Propulsion%20system %203rd[1]

کایتاسیى

• Cavitation occurs when pressure on back or suction side of blade becomes so low that water vaporizes and vapor-filled cavities of bubbles form.

• Occurs on heavily loaded propellers

• high rotational speed

Bubbles can collapse on blades and cause:

• erosion

• serious noise problems

• rapid decrease in propeller efficiency

• fluctuating forces that give rise to severe vibrations

27

Page 28: Propulsion%20system %203rd[1]

کایتاسیى پزا

• Sheet

• Bubble

• Cloud

• Tip and Hub Vortex

28

Page 29: Propulsion%20system %203rd[1]

رش اي کاص کایتاسیى

• Must sufficient blade area

• Sufficient hub immersion

• Burrill Cavitation Diagram

• Keller Criterion.

29

Page 30: Propulsion%20system %203rd[1]

Keller Criterion

A

A

Z T

p p Dk

E

O o v

13 0 32

. .

Where:

T = Thrust, N

Z = Number of Blades

p - p = Pressure at propeller centerline (N / m )

k = Constant varying from 0 for transom - stern naval

vessels to 0.20 for high - powered single screw vessels

o v

2

30

Page 31: Propulsion%20system %203rd[1]

Burrill Cavitation Diagram

2 2 2A

2 2

188.2+19.62h0.7 V 4.836

( / )

0.5 [ (0.7 ) ]

Diagram gives the local

cavitation number

=

versus the mean

thrust blade loading

.P

A

R n D

T A

c V nD

2

is the head of the water (m), the propeller diameter (m), is revolutions per second, the speed of advance (m/sec),

T the thrust (kN), and the projected blade area (m ). This is related to t

A

P

h D n V

A he more commonly used developed area by

the following approximate formula 1.067 0.229 .P

D

D

A PA D

A

31

Page 32: Propulsion%20system %203rd[1]

سزي اي استاذارد پزا

• Open water tests of geometrically related propellers with pitch and other

variables varied systematically.

• Thrust, torque coefficients and open water efficiency measured and plotted

versus speed of advance.

• Comprehensive series, such as B –Wageningen&Gawn series.

32

Page 33: Propulsion%20system %203rd[1]

B-Wageningenوداراي پزا سزي

33

Page 34: Propulsion%20system %203rd[1]

هالحظات طزاحی پزا• Inputs:

– Design speed

– Diameter constraints

– EHP at design speed

– Type and number of propellers (skew angle, blades, etc.).

– Wake fraction (w) and thrust deduction (t)

• Approach

– Select number of blades based on frequency of excitation (similar designs).

– Select area ratio based on cavitation limitations

– The minimum area ratio allowed by cavitation or strength will have the best efficiency.

– In general, larger diameter is better.

– In general, lower RPM is better.

– If machinery sets RPM, then seek the optimum diameter.

34

Page 35: Propulsion%20system %203rd[1]

طزاحی تا قطز ثاتت اس طزیق ضزیة تزاست

Case 1: From the hull requirements we might have a required ship speed and resistance:

– Select a blade number.

– Select a minimum acceptable AE/A0.

– Work with KT and J.

– Form the ratio KT/J2 to eliminate the unknown n.

– Optimize for maximum open water propeller efficiency.

35

Page 36: Propulsion%20system %203rd[1]

B-Wageningenو اي اس وداراي طزاحی سزي

36

Page 37: Propulsion%20system %203rd[1]

طزاحی تا قطز ثاتت اس طزیق ضزیة گطتار

Case 2: From the engine requirements we might have a delivered power

and ship speed:

Select a blade number.

Select a minimum acceptable AE/A0.

Work with KQ and J.

Form the ratio KQ/J3 to eliminate the unknown n.

Optimize for maximum open water propeller efficiency.

37

Page 38: Propulsion%20system %203rd[1]

طزاحی تا در ثاتت ت اس طزیق ضزیة تزاست

Case 1: From the hull requirements we might have a required ship speed and resistance:

• Select a blade number.

• Select a minimum acceptable AE/A0. Iterations may be necessary since some

cavitation criteria involve the diameter D.

• Work with KT and J.

• Form the ratio KT/J4 to eliminate the unknown D.

• Optimize for maximum open water propeller efficiency.

38

Page 39: Propulsion%20system %203rd[1]

طزاحی تا در ثاتت ت اس طزیق ضزیة گطتار

Case 2: From the engine requirements we might have a required ship speed and

delivered power:

• Select a blade number.

• Select a minimum acceptable AE/A0. Iteration may be necessary since some

cavitation criteria involve the diameter D.

• Work with KQ and J.

• Form the ratio KQ/J5 to eliminate the unknown D.

• Optimize for maximum open water propeller efficiency.

39

Page 40: Propulsion%20system %203rd[1]

قذرت هرد یاس هتر در حالت سزیس

• To maintain contracted design speed on average over ship’s service life in actual sea conditions (referred to as “sustained speed” by USN), installed power must be greater than PS.

• A service power allowance is added, expressed as fraction of PS.

• USN determines sustained speed at 80% of maximum continuous installed power.

• This covers added resistance due to sea waves.

21 February 2002 Propellers 40

Page 41: Propulsion%20system %203rd[1]

اتز جت

jet jet 2

2 21jet2

Basic variables and assumptions:

Ship speed , Resistance

Water jet diameter .

100% efficient pumping system.

Basic equations:

, / 4

Power in:

Power out:

PowEfficiency:

V R

D

QR Q V V V

D

Q V V

RV

jet

2 21jetjet2

er out 2

Power in

Efficiency goes down as becomes smaller.

Q V V V V

V VQ V V

V

41

Page 42: Propulsion%20system %203rd[1]

آب تذي ضفت

42

Page 43: Propulsion%20system %203rd[1]

با تشکر از حضور و توجه شما

43