Top Banner
Manuel Núñez Regueiro Properties of Solids Electrical Resistivity
27

Properties of Solids Electrical Resistivity

Mar 12, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Properties of Solids Electrical Resistivity

Manuel Núñez Regueiro

Properties of Solids

Electrical Resistivity

Page 2: Properties of Solids Electrical Resistivity

Semiclassical theory of conduction in metals

Drude’s Law ρ =m*

ne2ττ =

lv

l ≈ T  independant

ρ0 =m*

ne2τ≠  f (T )

Residual resistivity, due to defects

temperature independant

Page 3: Properties of Solids Electrical Resistivity

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250

Elec

tric

al r

esist

ance

(Ω)

Temperature (K)

R α T

R α T 5

Bloch-Grüneisen

The idealresistanceof a metal

linear in TandT 5 at low T

Carrier-phonon scattering

Electron-phonon scattering

Page 4: Properties of Solids Electrical Resistivity

kBT

k2

k3

k1

k4

τ ee−1(

k1)∝k2 ,k3 ,k4Σ P

k1,→

k2 ;→

k3 ,→

k4⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

τ ee−1(

k1)∝q ,E(k2 ),E(k3 )Σ P q,

E(k2),→

E(k3)⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

τ ee−1∝T 2

delocalized s-electrons versus localized d-electronselectron scattering against spin fluctuations of the d-electronsthen also T2

q =→

k3 −→

k2

Landau theory of Fermi liquids : Quasiparticle-quasiparticle scattering

very general result

Page 5: Properties of Solids Electrical Resistivity

5

Rice PRL 1968Kadowaki&Woods 1986

Quasiparticle-quasiparticle scattering

Page 6: Properties of Solids Electrical Resistivity

There is a clear  correlation between Tc  and A as they vary simultaneously with an external parameter, e.g. pressure

Quasiparticle-quasiparticle scattering

Tc ∝ e−

ςA

From Landau theory ofFermi liquids

A ∝ λ2

Tc ∝ e−1λ

as

then

Page 7: Properties of Solids Electrical Resistivity

Aluminum!

High Temperaturee-phonon scatteringT dependence

attractive V

Temperature

Low TemperaturePhonon mediatede-e scatteringAT dependence2

Superconductivity

TcThe same scattering that causes the resistance is the one responsible

for superconductivity :the worst the conductance is the stronger the superconductivity

Quasiparticle-quasiparticle scattering

Page 8: Properties of Solids Electrical Resistivity

Empirical relation betweensuperconducting transition temperature andquadratic resistance temperature term

The relation can be explained byLandau theory of Fermi liquids

Scaling yields coupling parameter λ

Tc = f A( )

Quasiparticle-quasiparticle scattering

Page 9: Properties of Solids Electrical Resistivity

Inelastic impurity scattering R = AT2 can be also due to inelastic scattering against impurities

Koshino-Taylor

In fact, much more subtleMahan & Wang, PRB 39(1989)4926Reizer Sov. Phys. JETP 65 (1987) 1291

Page 10: Properties of Solids Electrical Resistivity

Example : Nb0.47Ti0.53 superconducting alloy

A proportional to Ro , not Ro2

inelastic impurity scattering, expected due to disordered natureof sample

If  A ~ 10−5R0     then AT2  due to inelasticimpurity scattering

Inelastic impurity scattering

Page 11: Properties of Solids Electrical Resistivity

0

0.2

0.4

0.6

0.8

1

1

0 50 100 150 200 250 300

Δ

Temperature

Δ = 1− TTc

⎛⎝⎜

⎞⎠⎟

2Mean field gap

τ ∝ (1− Δ2 )−1Nordheim

ρ =m*

ne2τ∝ (1− Δ2 )

Magnetic scattering and magnetic order

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

De Gennes Friedel Model

Electrical Resistivity

A

Tc

Tc

Page 12: Properties of Solids Electrical Resistivity

ρCF T( ) = ρCF ∞( )1

cosh2 Δ / 2kBT( )

Magnetic ScatteringCrystal Field Resistivity

Temperature increases the accesible components of  the localized  magnetic moment

ΔkBT

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300El

ectr

ical

resi

stan

ceTemperature (K)

Page 13: Properties of Solids Electrical Resistivity

TN DeGennes-Friedel Crystal Field

Magnetic scattering and magnetic order

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Elec

tric

al re

sist

ance

Temperature (K)-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

De Gennes Friedel Model

Electrical Resistivity

A

Page 14: Properties of Solids Electrical Resistivity

Magnetic scattering : Kondo Effect

kk'First order scattering gives impurity scattering Ro

Mysterious minimum in resistivity 1950’sKondo 1964

Page 15: Properties of Solids Electrical Resistivity

Magnetic scattering : Kondo Effect

Kondo Lattice

Kondo + crystal field

Page 16: Properties of Solids Electrical Resistivity

Itinerant antiferromagnetismSpin density waves

Charge density waves

Nesting wavevector

portions of Fermi surface

gapped & lost for conduction

n → n − ngapped

SDW in Chromium

Q

Page 17: Properties of Solids Electrical Resistivity

ρ ∝m*

nττ ∝ (1− Δ T( )2 )−1Nordheim

Itinerant antiferromagnetismSpin density waves

Charge density waves ngapped T( )∝ Δ T( )

n = n − ngapped T( )

ρ ∝m*

nτ∝

m* ⋅ 1− Δ2 T( )( )n − ngapped ⋅ Δ T( )⎡⎣ ⎤⎦

+ ρphT

Δ T( ) = Δ0 1− TTc

⎛⎝⎜

⎞⎠⎟

2

SDW in Chromium

0.000

50.00

100.0

150.0

200.0

0 50 100 150 200 250 300

Elec

tric

al R

esist

ivity

Temperature

Page 18: Properties of Solids Electrical Resistivity

1D − NbSe3 2D − Na0.5CoO2

CDW SDW

Examples with two DW

From the ratio of the slopes we can estimate the percentage of the FS

that disappears at each transition

Page 19: Properties of Solids Electrical Resistivity

Semiconductors

ρ ∝m*

nτ∝

1

ninte−

ΔkBT + next

⎝⎜

⎠⎟

n ∝ e−

ΔkBT

The exponential carrier population controls

the temperature resistivity dependancein intrinsic semiconductors

∴  ρ ∝ eΔkBT

extrinsic impurity band conduction

But impurities give extrinsic carriers

semiconducting gap Δ

1.000

10.00

100.0

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Elec

tric

la re

sistiv

ity

Inverse Temperature

Page 20: Properties of Solids Electrical Resistivity

Localization

Defects cause localized states

where effective masses are higher

Interference through elastic scattering

also causes localization

Page 21: Properties of Solids Electrical Resistivity

LocalizationEF

σ1 ∝ e−(Ec −EF )kBT

1. Conduction by thermal activation above mobility edge Ec

2. Activation to a neighbouringlocalized state

ξ

Δξ ~ n 0( )ξd⎡⎣ ⎤⎦−1

average energy separation σ 2 ∝ e−

Δξ

kBT

3. Variable range hoppingi.e. between sites of similar energy

ξ

ΔL ~ n 0( )Ld⎡⎣ ⎤⎦

−1~ Δξ

ξL

⎛⎝⎜

⎞⎠⎟d

          L ξ( )

dependence of hopping with distance ~ e2L

ξ

Total dependencee−2Lξ

−ΔL

kBT ~ e−2Lξ

−ΔξξL

⎛⎝⎜

⎞⎠⎟d

optimizing

whereσ 3 ∝ e

−CT0T

⎛⎝⎜

⎞⎠⎟1 d+1( )

kBT0 ~ Δξ

Page 22: Properties of Solids Electrical Resistivity

2D − (Bi,Pb)2Ba3Co2Oy

14→

13+1

 → 3D

In bulk materials only 3D behaviour

12 not   1

1+1 but  "Coulomb"  Gap!

Localization

Page 23: Properties of Solids Electrical Resistivity

“Heavy Carriers” : Polarons

The carrier is dressedby a lattice deformation

must jump with it

Thermal  activated  hopping    w ~ e−ω* /kBT

the mobility is   µ =2ea2

kBTw     (Einstein diffusion relation)

ρ ~ 1

µ~ T ⋅ eω

* /kBThence

Page 24: Properties of Solids Electrical Resistivity

“Heavy Carriers” : Polarons

Manganites

Page 25: Properties of Solids Electrical Resistivity

Ln-1111

Æ-122

“Heavy Carriers” : Polarons

Also “polaron-like” behaviour in Iron superconductors

Page 26: Properties of Solids Electrical Resistivity

Cuprates

AF

SuperConductorFree Fermions

T*

δ

T

TN

δc

Optimal doping ρ~T

Overdoped ρ~T2

Underdoped ρ~ Crystal field type

Page 27: Properties of Solids Electrical Resistivity

Conclusions

The behavior of the the electrical resistivity can yield many hints into the understanding of the physics of materials