Top Banner
Jena JOHNSON Lewis and Clark Fund for Exploration and Field Research in Astrobiology awarded June 4, 2012 Project Report: Manganese and the evolution of oxygenic photosynthesis The evolution of oxygenic photosynthesis and accompanying rise of molecular oxygen in our atmosphere fundamentally changed our planet and its biota. I have been investigating this critical transition in Earth history using two complementary proxies: the ancient manganese cycle and sulfur isotopic measurements. South African Paleoproterozoic cores of the Koegas Subgroup, dated to 2.415 Ga, have manganese enrichments resulting from original manganese oxides, indicating the manganese oxidative cycle was turned on. This discovery is significant: manganese can only be oxidized by O2 and oxygenated nitrogen (nitrate), although a postulated Mnoxidizing photosystem has been suggested as a transitional form before oxygenic photosynthesis. Yet the cores’ manganese oxides were reduced during postdepositional reactions: isotopic and textural observations indicate the manganese oxides were respired by ancient Mnreducing bacteria. Without oxygen or nitrate present, it is possible that no manganese would be able to be stable as oxides after deposition, as manganese oxides would be reduced by all other substrates and/or be the most favorable electron acceptor during respiration. Therefore, the redox state and mineral host of the manganese in these ancient deposits may shed light on the oxidation process. Another method to probe the presence of oxygen in the atmosphere is through the use of sulfur isotopes. Interestingly, sulfur isotopic measurements made in bulk and in situ from pyrite in these cores suggest atmospheric oxygen had not yet risen. Two intriguing possibilities exist: either manganese is a more sensitive redox proxy and is recording the initial rise of atmospheric oxygen, or the original manganese oxides were formed by transitional manganeseoxidizing phototrophs before water oxidizing photosynthesis had evolved. Funded by the Lewis and Clark Grant, I traveled to the cores’ origin, South Africa, to distinguish between these two theories by sampling additional cores and field outcrops and contextualizing the cores through field studies. One of my major goals was to sample strata underlying and overlying the cores to characterize the manganese abundance and host mineral, and understand when the manganese enrichments began and when manganese starts to be preserved in oxide form (ie, not reduced biologically in the sediments). Another objective was to sample for pyrite nodules from strata overlying our current samples, to measure when the sulfur isotopic signal changed to indicate atmospheric oxygen had risen. I additionally planned field work in the Koegas Subgroup outcrops to better understand the cores’ stratigraphic relationship and to supplement the cores with outcrop observations and samples. The field portion of the trip was highly successful. The major field sites I targeted were the Naragas section and the Rooinekke Mine section, both of which overlapped
5

ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jul 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jena  JOHNSON  Lewis  and  Clark  Fund  for  Exploration  and  Field  Research  in  Astrobiology  awarded  June  4,  2012    

 

 

Project  Report:    

Manganese  and  the  evolution  of  oxygenic  photosynthesis  

The   evolution   of   oxygenic   photosynthesis   and   accompanying   rise   of   molecular  oxygen   in  our  atmosphere   fundamentally   changed  our  planet   and   its  biota.   I   have  been  investigating  this  critical  transition  in  Earth  history  using  two  complementary  proxies:   the   ancient   manganese   cycle   and   sulfur   isotopic   measurements.   South  African   Paleoproterozoic   cores   of   the   Koegas   Subgroup,   dated   to   2.415   Ga,   have  manganese   enrichments   resulting   from   original   manganese   oxides,   indicating   the  manganese  oxidative  cycle  was  turned  on.  This  discovery  is  significant:  manganese  can  only  be  oxidized  by  O2  and  oxygenated  nitrogen  (nitrate),  although  a  postulated  Mn-­‐oxidizing   photosystem   has   been   suggested   as   a   transitional   form   before  oxygenic   photosynthesis.   Yet   the   cores’   manganese   oxides   were   reduced   during  post-­‐depositional   reactions:   isotopic   and   textural   observations   indicate   the  manganese  oxides  were  respired  by  ancient  Mn-­‐reducing  bacteria.  Without  oxygen  or   nitrate   present,   it   is   possible   that   no  manganese  would  be   able   to   be   stable   as  oxides   after   deposition,   as   manganese   oxides   would   be   reduced   by   all   other  substrates   and/or   be   the   most   favorable   electron   acceptor   during   respiration.  Therefore,   the   redox   state   and   mineral   host   of   the   manganese   in   these   ancient  deposits   may   shed   light   on   the   oxidation   process.   Another   method   to   probe   the  presence   of   oxygen   in   the   atmosphere   is   through   the   use   of   sulfur   isotopes.  Interestingly,  sulfur  isotopic  measurements  made  in  bulk  and  in  situ  from  pyrite  in  these   cores   suggest   atmospheric   oxygen   had   not   yet   risen.   Two   intriguing  possibilities   exist:   either   manganese   is   a   more   sensitive   redox   proxy   and   is  recording   the   initial   rise  of  atmospheric  oxygen,  or   the  original  manganese  oxides  were   formed   by   transitional   manganese-­‐oxidizing   phototrophs   before   water-­‐oxidizing  photosynthesis  had  evolved.    

Funded  by  the  Lewis  and  Clark  Grant,  I  traveled  to  the  cores’  origin,  South  Africa,  to  distinguish   between   these   two   theories   by   sampling   additional   cores   and   field  outcrops  and  contextualizing  the  cores  through  field  studies.  One  of  my  major  goals  was   to   sample   strata   underlying   and   overlying   the   cores   to   characterize   the  manganese   abundance   and   host   mineral,   and   understand   when   the   manganese  enrichments  began  and  when  manganese  starts   to  be  preserved   in  oxide   form  (ie,  not   reduced   biologically   in   the   sediments).   Another   objective   was   to   sample   for  pyrite   nodules   from   strata   overlying   our   current   samples,   to   measure   when   the  sulfur   isotopic   signal   changed   to   indicate   atmospheric   oxygen   had   risen.   I  additionally   planned   field   work   in   the   Koegas   Subgroup   outcrops   to   better  understand   the  cores’   stratigraphic   relationship  and   to  supplement   the  cores  with  outcrop  observations  and  samples.    

The   field  portion  of   the   trip  was  highly  successful.  The  major   field  sites   I   targeted  were  the  Naragas  section  and  the  Rooinekke  Mine  section,  both  of  which  overlapped  

Page 2: ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jena  JOHNSON  Lewis  and  Clark  Fund  for  Exploration  and  Field  Research  in  Astrobiology  awarded  June  4,  2012    

 

 

the   stratigraphy   of   the   cores   and   allowed   complementary   observations   and  sampling,   and   the   United   Manganese   of   Kalahari   mine   for   exposures   of   strata  overlying   the   cores   (Fig.   1).   Additionally,   I   observed   and   sampled   the   underlying  Kogelbeen,  Gamohaan  and  Kuruman  Formations  at  Kuruman  Kop  (Fig.  1).  

 

 

The  Naragas  section  (-­‐29°  22'  14.90",  +22°  34'  58.73")  of  the  Koegas  Subgroup  was  a  nice  exposure  of  most  of  the  formations  sampled  by  the  cores  (Fig.  2A).  The  strata  were   more   deformed   than   the   cores,   but   the   formations   were   recognizable   and  allowed   complementary   sampling   and   more   paleoenvironmental   contextualizing.  Observations   of   abundant   hummocky   cross-­‐stratification   (Fig.   2B)   placed   the  

Page 3: ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jena  JOHNSON  Lewis  and  Clark  Fund  for  Exploration  and  Field  Research  in  Astrobiology  awarded  June  4,  2012    

 

 

ancient  environmental   setting   to  be  approximately  at   the  storm  wave  base.  A  unit  tentatively  assigned  as  stromatolitic  in  the  cores  could  be  definitively  identified  as  a  microbialite  (a  deposit  characterized  by  an  interaction  between  a  former  microbial  community  and  sediments)  by  its  trapped-­‐and-­‐bound  texture  and  irregular  laminae  (Fig.   2C).   Manganese-­‐bearing   iron   formation   was   sampled   for   manganese  characterization,   and   the   thin   microbialite   unit   appeared   to   also   have   abundant  manganese  and  iron.  I  sampled  this  microbial  unit  extensively.    

The  Rooinekke  Mine  section   (-­‐28°   52'  21.36",   +22°   42'  55.40")   was   a   less  

comprehensive  portion   of   the  Koegas   Subgroup,  but   nevertheless  was   informative.  This  section  also  had  the  microbialite  unit,  but   it   was   less  established   and  looked   more   like   a  transitional   unit  between   a   purely  sedimentary   and   a  

microbial-­‐sedimentary   deposit.  It   was   also  significantly   more  iron   and  

manganese-­‐enriched,  and  therefore  was  sampled  extensively.  Similar  to  the  Naragas  section,  the  Rooinekke  Mine  section  additionally  had  manganese  deposits   in   its   iron  formation  (Fig.  3),  which  I  also  sampled.        

The  United  Manganese  of  Kalahari  mine   (-­‐27°  22'  52.38",  +22°  59'  9.41")  exposed  completely  different  strata:  manganese  and  iron  deposits  in  the  Hotazel  Formation  overlying   the   strata   of   the   Koegas   Subgroup   (Fig.   4).   This   was   an   extremely  illuminating   field   stop   as   it   was   immediately   clear   how   different   the   manganese  enrichments  were  in  the  overlying  strata  as  opposed  to  the  manganese  preserved  in  the   cores.   These   manganese   deposits   were   massive   and   concentrated,   and  dominated   by   manganese   oxides   although   a   fair   amount   of   manganese   was   still  hosted   in   carbonates   from   early   biological   reduction   in   the   sediments.   I   sampled  

Page 4: ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jena  JOHNSON  Lewis  and  Clark  Fund  for  Exploration  and  Field  Research  in  Astrobiology  awarded  June  4,  2012    

 

 

both   core   and   field   samples   at   this   mine,   and   obtained   samples   both   relatively  pristine   in  preservation  and  also  highly  altered  by   later   fluids,  heat,   and  pressure,  which  will  be  an   interesting   study   in   itself   and  a  good  database   to   compare  other  manganese  deposits  to,  such  as  the  manganese  enrichments  in  the  cores.    

 

A   final  destination  was  the  Kuruman  Kop  section  (-­‐27°  22'  9.58",  +23°  20'  38.52")  which  exposed  strata   from  the  earlier  ~2.6  Ga  carbonate  platform  (the  Kogelbeen  and   Gamohaan   Formation)   and   going   through   to   the   ~2.5   Ga   Kuruman   Iron  formation.  There  were  no  obvious  signs  of  manganese  enrichments  in  these  sections,  but   well-­‐preserved   carbonate   textures   and   the   overlying   iron   formation   were  sampled  for  manganese  abundance.    

The  suite  of  field  samples  was  complemented  by  core  samples  from  the  collection  of  our  collaborator,  Professor  Nic  Beukes  at  the  University  of  Johannesburg  (Fig.  1).  He  provided   additional   samples   of   the   Kuruman   Iron   Formation,   as   well   as   samples  from   the   Griquatown   Iron   Formation   which   lies   between   the   Kuruman   and   the  beginning   of   the   cores’   strata.   Professor   Beukes   additionally   provided   samples   of  iron  and  manganese  samples   from  the  Hotazel  Formation,  supplementing  the   field  samples  from  the  United  Manganese  of  Kalahari  mine.    

This   large   suite   of   samples   will   be   thoroughly   analyzed   using   a   variety   of  instrumentation.  Unfortunately,  no  pyrite  nodules  were  found  from  overlying  strata  to  perform  texture-­‐specific  sulfur  isotopic  analyses  on.  However,  I  now  have  a  vast  collection  of  samples  from  which  to  unravel  the  ancient  manganese  cycle.    

The  abundant  microbialite  field  samples  will  be  examined  for  possible  indications  of  manganese-­‐oxidizing  or  manganese-­‐reducing  bacteria.  Thin  sections  will  be  made  of  the  microbialite  samples  and  manganese  abundance  maps  will  be  generated  using  the   Electron   Probe   Micro-­‐analyzer   at   Caltech.   Additionally,   the   samples   will   be  analyzed   on   the   X-­‐ray   microprobe   at   the   Stanford   Synchrotron   Radiation  

Page 5: ProjectReport: !! Manganese!and!the!evolution!of!oxygenic ... · Jena%JOHNSON% LewisandClark%Fundfor%ExplorationandFieldResearch%in%Astrobiology% awarded%June4,%2012% % % % ProjectReport:!!

Jena  JOHNSON  Lewis  and  Clark  Fund  for  Exploration  and  Field  Research  in  Astrobiology  awarded  June  4,  2012    

 

 

Lightsource,  which  generates  manganese  redox  maps  and  would  reveal  any  signs  of  manganese  oxides.    

The   returned   samples   from   strata   above   and   beneath   the   cores’   extent   will   be  thoroughly   explored.   Their   manganese   content   will   be   determined   using   atomic  absorption   spectroscopy   housed   in   the   environmental   microbiology   lab   at   the  University   of   Southern   California.   I   will   then   investigate   manganese-­‐enriched  intervals  using  two  micrometer-­‐scale  techniques,  which  is  necessary  due  to  the  fine-­‐grained   nature   of   iron   formations.   The   Field   Emission   Scanning   Electron  Microprobe   (Fe-­‐SEM)   with   an   energy   dispersive   spectrometer   (EDS)   and   the  Electron  Probe  at  Caltech  will  map  both  variations  in  manganese  concentration  and  indicate  co-­‐occurring  elements.  These  techniques  will  yield  likely  mineral  hosts  for  the  manganese  and  are  well  complemented  by  X-­‐ray  mapping  at  a  2  µm  scale  at  the  Stanford   Synchrotron   Radiation   Lightsource.   Collectively,   these   analyses   will  determine   when   in   the   South   African   sedimentary   record   the   manganese  enrichments  begin  and  in  what  form,  and  additionally,  when  the  manganese  begins  to   be   stabilized   in   the   record   as   an   oxide   instead   of   reduced  by  post-­‐depositional  processes.    

This  Lewis  and  Clark-­‐funded  expedition  to  South  Africa  has  enabled  me  to  collect  a  range   of   samples   vital   to   understanding   the   evolution   of   the   ancient   manganese  cycle,  shedding   light  on  the  evolution  of  atmospheric  oxygen  and  the  development  of  oxygenic  photosynthesis.