Top Banner
PROJECT REPORT SOLAR PHOTO-VOLTAIC STREET LIGHT
82

Project Solar Street Light

Apr 06, 2015

Download

Documents

Siddharth Joon
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Project Solar Street Light

PROJECT REPORT

SOLAR PHOTO-VOLTAIC STREET LIGHT

Page 2: Project Solar Street Light

OVERVIEW

• This system is designed for outdoor application especially in un-electrified remote rural areas.

• This system is an ideal application for campus and village street lighting.

• The system is provided with battery storage backup sufficient to operate the light for significant hours daily.

• The system is provided with automatic ON/OFF time switch for dusk to down operation and overcharge / deep discharge prevention cut-off with LED indicators.

Page 3: Project Solar Street Light

RENEWABLE SOURCE OF ENERGY

• The 89 petawatts of sunlight reaching the Earth's surface is plentiful - almost 6,000 times more than the 15 terawatts of average electrical power consumed by humans. Additionally, solar electric generation has the highest power density among renewable energies.

• Solar power is pollution-free during use. Production end-wastes and emissions are manageable using existing pollution controls. End-of-use recycling technologies are under development.

• PV installations can operate for many years with little maintenance or intervention after their initial set-up, so after the initial capital cost of building any solar power plant, operating costs are extremely low compared to existing power technologies.

• Solar electric generation is economically superior where grid connection or fuel transport is difficult, costly or impossible. Long-standing examples include satellites, island communities, remote locations and ocean vessels.

Page 4: Project Solar Street Light

SOLAR POWER

Solar power is the generation of electricity from sunlight. This can be direct as with photovoltaics (PV), or indirect as with concentrating solar power (CSP), where the sun's energy is focused to boil water which is then used to provide power. Solar power has the potential to provide over 1,000 times total world energy consumption in 2008, though it provided only 0.02% of the total that year. If it continues to double in use every two to three years, or less, it would become the dominant energy source this century. The largest solar power plants, like the 354 MW SEGS, are concentrating solar thermal plants, but recently multi-megawatt photovoltaic plants have been built. Completed in 2008, the 46 MW Moura photovoltaic power station in Portugal and the 40 MW Waldpolenz Solar Park in Germany are characteristic of the trend toward larger photovoltaic power stations. Much larger ones are proposed, such as the 100 MW Fort Peck Solar Farm, the 550 MW Topaz Solar Farm, and the 600 MW Rancho Cielo Solar Farm.

Terrestrial solar power is a predictably intermittent energy source, meaning that whilst solar power is not available at all times, we can predict with a very good degree of accuracy when it will and will not be available. Some technologies, such as solar thermal concentrators have an element of thermal storage, such as molten salts. These store spare solar energy in the form of heat which can be made available overnight or during periods that solar power is not available to produce electricity. Orbital solar power collection (as in solar power satellites) avoids this intermittent issue, but requires satellite launching and beaming of the collected power to receiving antennas on Earth. The increased intensity of sunlight above the atmosphere also increases generation efficiency.

APPLICATIONS

Page 5: Project Solar Street Light

Solar power is the conversion of sunlight to electricity. Sunlight can be converted directly into electricity using photovoltaics (PV), or indirectly with concentrating solar power (CSP), which normally focuses the sun's energy to boil water which is then used to provide power, and technologies such as the Stirling engine dishes which use a Stirling cycle engine to power a generator. Photovoltaics were initially used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array.

Solar power plants can face high installation costs, although this has been decreasing due to the learning curve. Developing countries have started to build solar power plants, replacing other sources of energy generation.

Solar power has great potential, but in 2008 supplied only 0.02% of the world's total energy supply. However, use has been doubling every two, or less, years, and at that rate solar power, which has the potential to supply over 1,000 times the total consumption of energy, would become the dominant energy source within a few decades.

Since solar radiation is intermittent, solar power generation is combined either with storage or other energy sources to provide continuous power, although for small distributed producer/consumers, net metering makes this transparent to the consumer. On a larger scale, in Germany, a combined power plant has been demonstrated, using a mix of wind, biomass, hydro-, and solar power generation, resulting in 100% renewable energy.

CONCENTRATING SOLAR POWER

Page 6: Project Solar Street Light

A legend claims that Archimedes used polished shields to concentrate sunlight on the invading Roman fleet and repel them from Syracuse. Auguste Mouchout used a parabolic trough to produce steam for the first solar steam engine in 1866.

Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage

A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned right above the middle of the parabolic mirror and is filled with a working fluid. The reflector is made to follow the Sun during the daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology.The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology. The Suntrof-Mulk parabolic trough, developed by Melvin Prueitt, uses a technique inspired by Archimedes' principle to rotate the mirrors.

Concentrating Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has

Page 7: Project Solar Street Light

the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.

A Stirling solar dish, or dish engine system, consists of a stand-alone parabolic reflector that concentrates light onto a receiver positioned at the reflector's focal point. The reflector tracks the Sun along two axes. Paraboloidal coordinates ("parabolic") dish systems give the highest efficiency among CSP technologies. The 500 m2 ANU "Big Dish" in Canberra, Australia is an example of this technology.The Stirling solar dish combines a parabolic concentrating dish with a Stirling heat engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers are more cost effective, offer higher efficiency and better energy storage capability among CSP technologies. The Solar Two in Barstow, California and the Planta Solar 10 in Sanlucar la Mayor, Spain are representatives of this technology.

A solar bowl is a spherical dish mirror that is fixed in place. The receiver follows the line focus created by the dish (as opposed to a point focus with tracking parabolic mirrors).

PHOTOVOLTAICS

Page 8: Project Solar Street Light

A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photoelectric effect. This is based on the discovery by Alexandre-Edmond Becquerel who noticed that some materials release electrons when hit with rays of photons from light, which produces an electrical current. The first solar cell was constructed by Charles Fritts in the 1880s. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[23] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. As of late 2009, the highest efficieincy PV cells were produced commercially by Boeing/SpectroLab at about 41%. Other, similar, multi-layer cells are close. These are very expensive however, and are used only for the most exacting applications. Thin film PV cells have been developed which are made in bulk and are far less expensive and much less fragile, but are at most around 20% efficient. The most recent development (from Caltech, March 2010) is the experimental demonstration of a new design which is 85% efficient in plain sunlight and 95% efficient at certain wavelengths. It has only been produced in experimental laboratory examples, but may have some possibility for low cost bulk production in the future.

There are many competing technologies, including at least fourteen types of photovoltaic cells, such as thin film, monocrystalline silicon, polycrystalline silicon, and amorphous cells, as well as multiple types of concentrating solar power. It is too early to know which technology will become dominant.

Page 9: Project Solar Street Light

The earliest significant application of solar cells was as a back-up power source to the Vanguard I satellite in 1958, which allowed it to continue transmitting for over a year after its chemical battery was exhausted.The successful operation of solar cells on this mission was duplicated in many other Soviet and American satellites, and by the late 1960s, PV had become the established source of power for them. After the successful application of solar panels on the Vanguard satellite it still was not until the energy crisis, in the 1970s, that photovoltaic solar panels gained use outside of back up power suppliers on spacecraft. Photovoltaics went on to play an essential part in the success of early commercial satellites such as Telstar, and they remain vital to the telecommunications infrastructure today.

The high cost of solar cells limited terrestrial uses throughout the 1960s. This changed in the early 1970s when prices reached levels that made PV generation competitive in remote areas without grid access. Early terrestrial uses included powering telecommunication stations, offshore oil rigs, navigational buoys and railroad crossings. These off-grid applications accounted for over half of worldwide installed capacity until 2004.

The 1973 oil crisis stimulated a rapid rise in the production of PV during the 1970s and early 1980s. Economies of scale which resulted from increasing production along with improvements in system performance brought the price of PV down from 100 USD/watt in 1971 to 7 USD/watt in 1985. Steadily falling oil prices during the early 1980s led to a reduction in funding for photovoltaic R&D and a discontinuation of the tax credits associated with the Energy Tax Act of 1978. These factors moderated growth to approximately 15% per year from 1984 through 1996.

Since the mid-1990s, leadership in the PV sector has shifted from the US to Japan and Europe. Between 1992 and 1994 Japan increased R&D funding, established net metering guidelines, and introduced a subsidy program to encourage the installation of residential PV systems. As a result, PV installations in the country climbed from 31.2 MW in 1994 to

Page 10: Project Solar Street Light

318 MW in 1999, and worldwide production growth increased to 30% in the late 1990s.

Germany became the leading PV market worldwide since revising its feed-in tariffs as part of the Renewable Energy Sources Act. Installed PV capacity in Germany has risen from 100 MW in 2000 to approximately 4,150 MW at the end of 2007. After 2007, Spain became the largest PV market after adopting a similar feed-in tariff structure in 2004, installing almost half of the photovoltaics (45%) in the world, in 2008, while France, Italy, South Korea and the U.S. have seen rapid growth recently due to various incentive programs and local market conditions. The power output of domestic photovoltaic devices is usually described in kilowatt-peak (kWp) units, as most are from 1 to 10 kW.

Page 11: Project Solar Street Light

Concentrating photovoltaics (CVP) are another new method of electricity generation from the sun. CPV systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Solar concentrators of all varieties may be used, which are often mounted on a solar tracker in order to keep the focal point upon the cell as the sun moves across the sky. Tracking can increase flat panel photovoltaic output by 20% in winter, and by 50% in summer.

SOLAR CELL

A solar cell is a device that converts the energy of sunlight directly into electricity by the photovoltaic effect. Sometimes the term solar cell is reserved for devices intended specifically to capture energy from sunlight such as solar panels and solar cells, while the term photovoltaic cell is used when the light source is unspecified. Assemblies of cells are used to make solar panels, solar modules, or photovoltaic arrays. Photovoltaics is the field of technology and research related to the application of solar cells in producing electricity for

Page 12: Project Solar Street Light

practical use. The energy generated this way is an example of solar energy (also known as solar power).

HISTORY OF SOLAR CELLSThe term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and "voltaic", meaning electric, from the name of the Italian physicist Volta, after whom a unit of electro-motive force, the volt, is named. The term "photo-voltaic" has been in use in English since 1849.

The photovoltaic effect was first recognized in 1839 by French physicist A. E. Becquerel. However, it was not until 1883 that the first solar cell was built, by Charles Fritts, who coated the semiconductor selenium with an extremely thin layer of gold to form the junctions. The device was only around 1% efficient. Subsequently Russian physicist Aleksandr Stoletov built the first solar cell based on the outer photoelectric effect (discovered by Heinrich Hertz earlier in 1887). Albert Einstein explained the photoelectric effect in 1905 for which he received the Nobel Prize in Physics in 1921. Russell Ohl patented the

Page 13: Project Solar Street Light

modern junction semiconductor solar cell in 1946, which was discovered while working on the series of advances that would lead to the transistor.

APPLICATIONS & IMPLEMENTATIONS

Solar cells are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting the semiconductor wafers from the elements (rain, hail, etc.).

Page 14: Project Solar Street Light

Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current. Modules are then interconnected, in series or parallel, or both, to create an array with the desired peak DC voltage and current.

The power output of a solar array is measured in watts or kilowatts. In order to calculate the typical energy needs of the application, a measurement in watt-hours, kilowatt-hours or kilowatt-hours per day is often used. A common rule of thumb is that average power is equal to 20% of peak power, so that each peak kilowatt of solar array output power corresponds to energy production of 4.8 kWh per day (24 hours x 1 kW x 20% = 4.8 kWh)

To make practical use of the solar-generated energy, the electricity is most often fed into the electricity grid using inverters (grid-connected photovoltaic systems); in stand-alone systems, batteries are used to store the energy that is not needed immediately.

Solar cells can also be applied to other electronics devices to make it self-power sustainable in the sun. There are solar cell phone chargers, solar bike light and solar camping lanterns that people can adopt for daily use.

Page 15: Project Solar Street Light

THEORY

Simple explanation

1. Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.

2. Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity. Due to the special composition of solar cells, the electrons are only allowed to move in a single direction.

3.An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.

Photo generation of charge carriers

When a photon hits a piece of silicon, one of three things can happen:

Page 16: Project Solar Street Light

1. the photon can pass straight through the silicon — this (generally) happens for lower energy photons,

2. the photon can reflect off the surface,3. The photon can be absorbed by the silicon, if the photon

energy is higher than the silicon band gap value. This generates an electron-hole pair and sometimes heat, depending on the band structure.

When a photon is absorbed, its energy is given to an electron in the crystal lattice. Usually this electron is in the valence band, and is tightly bound in covalent bonds between neighboring atoms, and hence unable to move far. The energy given to it by the photon "excites" it into the conduction band, where it is free to move around within the semiconductor. The covalent bond that the electron was previously a part of now has one fewer electron — this is known as a hole. The presence of a missing covalent bond allows the bonded electrons of neighboring atoms to move into the "hole," leaving another hole behind, and in this way a hole can move through the lattice. Thus, it can be said that photons absorbed in the semiconductor create mobile electron-hole pairs.

A photon need only have greater energy than that of the band gap in order to excite an electron from the valence band into the conduction band. However, the solar frequency spectrum approximates a black body spectrum at ~6000 K, and as such, much of the solar radiation reaching the Earth is composed of photons with energies greater than the band gap of silicon. These higher energy photons will be absorbed by the solar cell, but the difference in energy between these photons and the silicon band gap is converted into heat (via lattice vibrations — called phonons) rather than into usable electrical energy.

Charge carrier separation

There are two main modes for charge carrier separation in a solar cell:

1. drift of carriers, driven by an electrostatic field established across the device

2. diffusion of carriers from zones of high carrier concentration to zones of low carrier concentration (following a gradient of electrochemical potential).

Page 17: Project Solar Street Light

In the widely used p-n junction solar cells, the dominant mode of charge carrier separation is by drift. However, in non-p-n-junction solar cells (typical of the third generation solar cell research such as dye and polymer solar cells), a general electrostatic field has been confirmed to be absent, and the dominant mode of separation is via charge carrier diffusion.

P-N JUNCTION

The most commonly known solar cell is configured as a large-area p-n junction made from silicon. As a simplification, one can imagine bringing a layer of n-type silicon into direct contact with a layer of p-type silicon. In practice, p-n junctions of silicon solar cells are not made in this way, but rather by diffusing an n-type dopant into one side of a p-type wafer (or vice versa).

If a piece of p-type silicon is placed in intimate contact with a piece of n-type silicon, then a diffusion of electrons occurs from the region of high electron concentration (the n-type side of the junction) into the region of low electron concentration (p-type side of the junction). When the electrons diffuse across the p-n junction, they recombine with holes on the p-type side. The diffusion of carriers does not happen indefinitely, however, because charges build up on either side of the junction and create an electric field. The electric field creates a diode that promotes charge flow, known as drift current, that opposes and eventually balances out the diffusion of electron and holes. This region where electrons and holes have diffused across the junction is called the depletion region because it no longer contains any mobile charge carriers. It is also known as the space charge region.

Page 18: Project Solar Street Light

Equivalent circuit of a solar cell

The equivalent circuit of a solar cell

The schematic symbol of a solar cell

To understand the electronic behavior of a solar cell, it is useful to create a model which is electrically equivalent, and is based on discrete electrical components whose behavior is well known. An ideal solar cell may be modeled by a current source in parallel with a diode; in practice no solar cell is ideal, so a shunt resistance and a series resistance component are added to the model. The resulting equivalent circuit of a solar cell is shown on the left. Also shown, on the right, is the schematic representation of a solar cell for use in circuit diagrams.

Page 19: Project Solar Street Light

Characteristic equation

From the equivalent circuit it is evident that the current produced by the solar cell is equal to that produced by the current source, minus that which flows through the diode, minus that which flows through the shunt resistor:

I = IL − ID − ISH

Where

I = output current (amperes) IL = photo generated current (amperes) ID = diode current (amperes) ISH = shunt current (amperes).

The current through these elements is governed by the voltage across them:

Vj = V + IRS

Where

Vj = voltage across both diode and resistor RSH (volts) V = voltage across the output terminals (volts) I = output current (amperes) RS = series resistance (Ω).

By the Shockley diode equation, the current diverted through the diode is:

Where

I0 = reverse saturation current (amperes) n = diode ideality factor (1 for an ideal diode) q = elementary charge k = Boltzmann's constant T = absolute temperature At 25°C, volts.

Page 20: Project Solar Street Light

By Ohm's law, the current diverted through the shunt resistor is:

Where

RSH = shunt resistance (Ω).

Substituting these into the first equation produces the characteristic equation of a solar cell, which relates solar cell parameters to the output current and voltage:

An alternative derivation produces an equation similar in appearance, but with V on the left-hand side. The two alternatives are identities; that is, they yield precisely the same results.

In principle, given a particular operating voltage V the equation may be solved to determine the operating current I at that voltage. However, because the equation involves I on both sides in a transcendental function the equation has no general analytical solution. However, even without a solution it is physically instructive. Furthermore, it is easily solved using numerical methods. (A general analytical solution to the equation is possible using Lambert's W function, but since Lambert's W generally itself must be solved numerically this is a technicality.)

Since the parameters I0, n, RS, and RSH cannot be measured directly, the most common application of the characteristic equation is nonlinear regression to extract the values of these parameters on the basis of their combined effect on solar cell behavior.

Effect of physical size

The values of I0, RS, and RSH are dependent upon the physical size of the solar cell. In comparing otherwise identical cells, a

Page 21: Project Solar Street Light

cell with twice the surface area of another will, in principle, have double the I0 because it has twice the junction area across which current can leak. It will also have half the RS and RSH because it has twice the cross-sectional area through which current can flow. For this reason, the characteristic equation is frequently written in terms of current density, or current produced per unit cell area:

Where

J = current density (amperes/cm2) JL = photo generated current density (amperes/cm2) J0 = reverse saturation current density (amperes/cm2) rS = specific series resistance (Ω-cm2) rSH = specific shunt resistance (Ω-cm2).

This formulation has several advantages. One is that since cell characteristics are referenced to a common cross-sectional area they may be compared for cells of different physical dimensions. While this is of limited benefit in a manufacturing setting, where all cells tend to be the same size, it is useful in research and in comparing cells between manufacturers. Another advantage is that the density equation naturally scales the parameter values to similar orders of magnitude, which can make numerical extraction of them simpler and more accurate even with naive solution methods.

There are practical limitations of this formulation. For instance, certain parasitic effects grow in importance as cell sizes shrink and can affect the extracted parameter values. Recombination and contamination of the junction tend to be greatest at the perimeter of the cell, so very small cells may exhibit higher values of J0 or lower values of RSH than larger cells that are otherwise identical. In such cases, comparisons between cells must be made cautiously and with these effects in mind.

This approach should only be used for comparing solar cells with comparable layout. For instance, a comparison between primarily quadratical solar cells like typical crystalline silicon solar cells and narrow but long solar cells like typical thin film

Page 22: Project Solar Street Light

solar cells can lead to wrong assumptions caused by the different kinds of current paths and therefore the influence of for instance a distributed series resistance rS.

Cell temperature

Temperature affects the characteristic equation in two ways: directly, via T in the exponential term, and indirectly via its effect on I0 (strictly speaking, temperature affects all of the terms, but these two far more significantly than the others). While increasing T reduces the magnitude of the exponent in the characteristic equation, the value of I0 increases exponentially with T. The net effect is to reduce VOC (the open-circuit voltage) linearly with increasing temperature. The magnitude of this reduction is inversely proportional to VOC; that is, cells with higher values of VOC suffer smaller reductions in voltage with increasing temperature. For most crystalline silicon solar cells the reduction is about 0.50%/°C, though the rate for the highest-efficiency crystalline silicon cells is around 0.35%/°C. By way of comparison, the rate for amorphous silicon solar cells is 0.20-0.30%/°C, depending on how the cell is made.

The amount of photo generated current IL increases slightly with increasing temperature because of an increase in the number of thermally generated carriers in the cell. This effect is slight, however: about 0.065%/°C for crystalline silicon cells and 0.09% for amorphous silicon cells.

Page 23: Project Solar Street Light

The overall effect of temperature on cell efficiency can be computed using these factors in combination with the characteristic equation. However, since the change in voltage is much stronger than the change in current, the overall effect on efficiency tends to be similar to that on voltage. Most crystalline silicon solar cells decline in efficiency by 0.50%/°C and most amorphous cells decline by 0.15-0.25%/°C. The figure above shows I-V curves that might typically be seen for a crystalline silicon solar cell at various temperatures.

Reverse saturation current

If one assumes infinite shunt resistance, the characteristic equation can be solved for VOC:

Thus, an increase in I0 produces a reduction in VOC proportional to the inverse of the logarithm of the increase. This explains mathematically the reason for the reduction in VOC that accompanies increases in temperature described above. The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p-n junction in reverse bias. This leakage is a result of carrier recombination in the neutral regions on either side of the junction.

Page 24: Project Solar Street Light

SOLAR CELL EFFICIENCYEnergy conversion efficiency

Dust often accumulates on the glass of solar panels seen here as black dots.

Page 25: Project Solar Street Light

A solar cell's energy conversion efficiency (η, "eta"), is the percentage of power converted (from absorbed light to electrical energy) and collected, when a solar cell is connected to an electrical circuit. This term is calculated using the ratio of the maximum power point, Pm, divided by the input light irradiance (E, in W/m2) under standard test conditions (STC) and the surface area of the solar cell (Ac in m2).

STC specifies a temperature of 25 °C and an irradiance of 1000 W/m2 with an air mass 1.5 (AM1.5) spectrums. These correspond to the irradiance and spectrum of sunlight incident on a clear day upon a sun-facing 37°-tilted surface with the sun at an angle of 41.81° above the horizon. This condition approximately represents solar noon near the spring and autumn equinoxes in the continental United States with surface of the cell aimed directly at the sun. Thus, under these conditions a solar cell of 12% efficiency with a 100 cm2 (0.01 m2) surface area can be expected to produce approximately 1.2 watts of power.

The efficiency of a solar cell may be broken down into reflectance efficiency, thermodynamic efficiency, charge carrier separation efficiency and conductive efficiency. The overall efficiency is the product of each of these individual efficiencies.

Due to the difficulty in measuring these parameters directly, other parameters are measured instead: thermodynamic efficiency, quantum efficiency, VOC ratio, and fill factor. Reflectance losses are a portion of the quantum efficiency under "external quantum efficiency". Recombination losses make up a portion of the quantum efficiency, VOC ratio, and fill factor. Resistive losses are predominantly categorized under fill factor, but also make up minor portions of the quantum efficiency, VOC ratio.

Thermodynamic efficiency limit

Solar cells operate as quantum energy conversion devices, and are therefore subject to the "thermodynamic efficiency limit". Photons with an energy below the band gap of the absorber

Page 26: Project Solar Street Light

material cannot generate a hole-electron pair, and so their energy is not converted to useful output and only generates heat if absorbed. For photons with an energy above the band gap energy, only a fraction of the energy above the band gap can be converted to useful output. When a photon of greater energy is absorbed, the excess energy above the band gap is converted to kinetic energy of the carrier combination. The excess kinetic energy is converted to heat through phonon interactions as the kinetic energy of the carriers slows to equilibrium velocity.

Solar cells with multiple band gap absorber materials are able to more efficiently convert the solar spectrum. By using multiple band gaps, the solar spectrum may be broken down into smaller bins where the thermodynamic efficiency limit is higher for each bin.

Quantum efficiency

As described above, when a photon is absorbed by a solar cell it can produce a pair of free charge carriers, i.e. an electron-hole pair. One of the carriers (the minority carrier) may then be able to reach the p-n junction and contribute to the current produced by the solar cell; such a carrier is said to be collected. Alternatively, the carrier may give up its energy and once again become bound to an atom within the solar cell without being collected; this process is then called recombination since one electron and one hole recombine and thereby annihilate the associated free charge. The carriers that recombine do not contribute to the generation of electrical current.

Quantum efficiency refers to the percentage of photons that are converted to electric current (i.e., collected carriers) when the cell is operated under short circuit conditions. External quantum efficiency (EQE) is the fraction of incident photons that are converted to electrical current, while internal quantum efficiency (IQE) is the fraction of absorbed photons that are converted to electrical current. Mathematically, internal quantum efficiency is related to external quantum efficiency by the reflectance (R) and the transmittance (T) of the solar cell by IQE = EQE / (1 − R − T). Please note that for a thick bulk Si

Page 27: Project Solar Street Light

solar cell T is approximately zero and is therefore in practical cases often neglected.

Quantum efficiency should not be confused with energy conversion efficiency, as it does not convey information about the fraction of power that is converted by the solar cell. Furthermore, quantum efficiency is most usefully expressed as a spectral measurement (that is, as a function of photon wavelength or energy). Since some wavelengths are absorbed more effectively than others in most semiconductors, spectral measurements of quantum efficiency can yield valuable information about the quality of the semiconductor bulk and surfaces.

Maximum-power point

A solar cell may operate over a wide range of voltages (V) and currents (I). By increasing the resistive load on an irradiated cell continuously from zero (a short circuit) to a very high value (an open circuit) one can determine the maximum-power point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation. (The output power is zero in both the short circuit and open circuit extremes).

A high quality, monocrystalline silicon solar cell, at 25 °C cell temperature, may produce 0.60 volts open-circuit (VOC). The cell temperature in full sunlight, even with 25 °C air temperature, will probably be close to 45 °C, reducing the open-circuit voltage to 0.55 volts per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached (Isc).

Page 28: Project Solar Street Light

Maximum power (with 45 °C cell temperature) is typically produced with 75% to 80% of the open-circuit voltage (0.43 volts in this case) and 90% of the short-circuit current. This output can be up to 70% of the VOC x ISC product. The short-circuit current (Isc) from a cell is nearly proportional to the illumination, while the open-circuit voltage (VOC) may drop only 10% with a 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2 VOC at 1/2 ISC. The usable power output could thus drop from 70% of the VOC x ISC product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as VOC x ISC, without giving load curves, can be seriously distorting their actual performance.

The maximum power point of a photovoltaic varies with incident illumination. For systems large enough to justify the extra expense, a maximum power point tracker tracks the instantaneous power by continually measuring the voltage and current (and hence, power transfer), and uses this information to dynamically adjust the load so the maximum power is always transferred, regardless of the variation in lighting.

Page 29: Project Solar Street Light

SOLAR CELLS & ENERGY PAYBACK

In the 1990s, when silicon cells were twice as thick, efficiencies were much lower than today and lifetimes were shorter, it may well have cost more energy to make a cell than it could generate in a lifetime. In the meantime, the technology has progressed significantly, and the energy payback time, defined as the recovery time required for generating the energy spent for manufacturing of the respective technical energy systems, of a modern photovoltaic module is typically from 1 to 4 years depending on the module type and location. Generally, thin-film technologies - despite having comparatively low conversion efficiencies - achieve significantly shorter energy payback times than conventional systems (often < 1 year). With a typical lifetime of 20 to 30 years, this means that modern solar cells are net energy producers, i.e. they generate significantly more energy over their lifetime than the energy expended in producing them.

High-efficiency cells

High-efficiency solar cells are a class of solar cell that can generate more electricity per incident solar power unit (watt/watt). Much of the industry is focused on the most cost efficient technologies in terms of cost per generated power. The two main strategies to bring down the cost of photovoltaic electricity are increasing the efficiency of the cells and decreasing their cost per unit area. However, increasing the efficiency of a solar cell without decreasing the total cost per

Page 30: Project Solar Street Light

kilowatt-hour is not more economical, since sunlight is free. Thus, whether or not "efficiency" matters depends on whether "cost" is defined as cost per unit of sunlight falling on the cell, per unit area, per unit weight of the cell, or per unit energy produced by the cell. In situations where much of the cost of a solar system scales with its area (so that one is effectively "paying" for sunlight), the challenge of increasing the photovoltaic efficiency is thus of great interest, both from the academic and economic points of view. Many groups have published papers claiming possibility of high efficiencies after conducting optical measurements under many hypothetical conditions. The efficiency should be measured under real conditions and the basic parameters that need to be evaluated are the short circuit current, open circuit voltage

Thin-film solar cells

In 2002, the highest reported efficiency for thin film solar cells based on CdTe is 18%, which was achieved by research at Sheffield Hallam University, although this has not been confirmed by an external test laboratory.

The US national renewable energy research facility NREL achieved an efficiency of 19.9% for the solar cells based on copper indium gallium selenide thin films, also known as CIGS (also see CIGS solar cells).

NREL has since developed a robot that builds and analyzes the efficiency of thin-film solar cells with the goal of increasing the efficiency by testing the cells in different situations.

These CIGS films have been grown by physical vapour deposition in a three-stage co-evaporation process. In this process In, Ga and Se are evaporated in the first step; in the second step it is followed by Cu and Se co-evaporation and in the last step terminated by In, Ga and Se evaporation again.

Thin film solar has approximately 15% marketshare; the other 85% is crystalline silicon. Most of the commercial production of thin film solar is CdTe with an efficiency of 11%.

Page 31: Project Solar Street Light

As of 28 April 2010, ZSW in Stuttgart have released a statement claiming they have created CIGS-based cells with a new record 20.1% efficiency.

Crystalline Silicon

The highest efficiencies on silicon have been achieved on monocrystalline cells. The highest commercial efficiency (22%) is produced by SunPower, which uses expensive, high-quality silicon wafers. The University of New South Wales has achieved 25% efficiency on monocrystalline silicon in the lab, technology that has been commercialized through its partnership with Suntech Power. Crystalline silicon devices are approaching the theoretical limiting efficiency of 29% and achieve an energy payback period of 1–2 years.

Light-absorbing materials

All solar cells require a light absorbing material contained within the cell structure to absorb photons and generate electrons via the photovoltaic effect. The materials used in solar cells tend to have the property of preferentially absorbing the wavelengths of solar light that reach the Earth surface. However, some solar cells are optimized for light absorption beyond Earth's atmosphere as well. Light absorbing materials can often be used in multiple physical configurations to take advantage of different light absorption and charge separation mechanisms.

Photovoltaic panels are normally made of either silicon or thin-film cells:

Many currently available solar cells are configured as bulk materials that are subsequently cut into wafers and treated in a "top-down" method of synthesis (silicon being the most prevalent bulk material).

Page 32: Project Solar Street Light

Other materials are configured as thin-films (inorganic layers, organic dyes, and organic polymers) that are deposited on supporting substrates, while a third group are configured as nanocrystals and used as quantum dots (electron-confined nanoparticles) embedded in a supporting matrix in a "bottom-up" approach. Silicon remains the only material that is well-researched in both bulk (also called wafer-based) and thin-film configurations.

CRYSTALLINE SILICON

Page 33: Project Solar Street Light

By far, the most prevalent bulk material for solar cells is crystalline silicon (abbreviated as a group as c-Si), also known as "solar grade silicon". Bulk silicon is separated into multiple categories according to crystallinity and crystal size in the resulting ingot, ribbon, or wafer.

1. monocrystalline silicon (c-Si): often made using the Czochralski process. Single-crystal wafer cells tend to be expensive, and because they are cut from cylindrical ingots, do not completely cover a square solar cell module without a substantial waste of refined silicon. Hence most c-Si panels have uncovered gaps at the four corners of the cells.

2. Poly- or multicrystalline silicon (poly-Si or mc-Si): made from cast square ingots — large blocks of molten silicon carefully cooled and solidified. Poly-Si cells are less expensive to produce than single crystal silicon cells, but are less efficient. US DOE data shows that there were a higher number of multicrystalline sales than monocrystalline silicon sales.

3. Ribbon silicon is a type of multicrystalline silicon: it is formed by drawing flat thin films from molten silicon and results in a multicrystalline structure. These cells have lower efficiencies than poly-Si, but save on production

Page 34: Project Solar Street Light

costs due to a great reduction in silicon waste, as this approach does not require sawing from ingots.

Thin films

The various thin-film technologies currently being developed reduce the amount (or mass) of light absorbing material required in creating a solar cell. This can lead to reduced processing costs from that of bulk materials (in the case of silicon thin films) but also tends to reduce energy conversion efficiency (average 7 to 10% efficiency), although many multi-layer thin films have efficiencies above those of bulk silicon wafers.

They have become popular compared to wafer silicon due to lower costs and advantages including flexibility, lighter weights, and ease of integration.

Cadmium telluride solar cell

A cadmium telluride solar cell is a solar cell based on cadmium telluride, an efficient light-absorbing material for thin-film cells. Compared to other thin-film materials, CdTe is easier to deposit and more suitable for large-scale production.

There has been much discussion of the toxicity of CdTe-based solar cells. The perception of the toxicity of CdTe is based on the toxicity of elemental cadmium, a heavy metal that is a cumulative poison. While the toxicity of CdTe is presently under debate, it has been shown that the release of cadmium to the atmosphere is impossible during normal operation of the cells and is unlikely during fires in residential roofs.[33] Furthermore, a square meter of CdTe contains approximately the same amount of Cd as a single C cell Nickel-cadmium battery, in a more stable and less soluble form.

Page 35: Project Solar Street Light

Copper-Indium Selenide

Possible combinations of (I, III, VI) elements in the periodic table that have photovoltaic effect

The materials based on CuInSe2 that are of interest for photovoltaic applications include several elements from groups I, III and VI in the periodic table. These semiconductors are especially attractive for thin film solar cell application because of their high optical absorption coefficients and versatile optical and electrical characteristics which can in principle be manipulated and tuned for a specific need in a given device.

CIS is an abbreviation for general chalcopyrite films of copper indium selenide (CuInSe2), CIGS mentioned below is a variation of CIS. CIS films (no Ga) achieved greater than 14% efficiency. However, manufacturing costs of CIS solar cells at present are high when compared with amorphous silicon solar cells but continuing work is leading to more cost-effective production processes. The first large-scale production of CIS modules was started in 2006 in Germany by Würth Solar. Manufacturing techniques vary and include the use of Ultrasonic Nozzles for material deposition. Electro-Plating in other efficient technology to apply the CI(G)S layer.

When gallium is substituted for some of the indium in CIS, the material is referred to as CIGS, or copper indium/gallium diselenide, a solid mixture of the semiconductors CuInSe2 and CuGaSe2, often abbreviated by the chemical formula CuInxGa(1-

x)Se2. Unlike the conventional silicon based solar cell, which can be modelled as a simple p-n junction (see under semiconductor), these cells are best described by a more complex heterojunction model. The best efficiency of a thin-film solar cell as of March 2008 was 19.9% with CIGS absorber layer. Higher efficiencies (around 30%) can be obtained by using optics to concentrate the incident light or by using multi-junction tandem solar cells. The use of gallium increases the optical bandgap of the CIGS layer as compared to pure CIS,

Page 36: Project Solar Street Light

thus increasing the open-circuit voltage, but decreasing the short circuit current. In another point of view, gallium is added to replace indium due to gallium's relative availability to indium. Approximately 70% of indium currently produced is used by the flat-screen monitor industry. However, the atomic ratio for Ga in the >19% efficient CIGS solar cells is ~7%, which corresponds to a bandgap of ~1.15 eV. CIGS solar cells with higher Ga amounts have lower efficiency. For example, CGS solar cells (which have a bandgap of ~1.7 eV have a record efficiency of 9.5% for pure CGS and 10.2% for surface-modified CGS. Some investors in solar technology worry that production of CIGS cells will be limited by the availability of indium. Producing 2 GW of CIGS cells (roughly the amount of silicon cells produced in 2006) would use about 10% of the indium produced in 2004. For comparison, silicon solar cells used up 33% of the world's electronic grade silicon production in 2006.

Se allows for better uniformity across the layer and so the number of recombination sites in the film are reduced which benefits the quantum efficiency and thus the conversion efficiency.

Gallium arsenide multijunction

High-efficiency multijunction cells were originally developed for special applications such as satellites and space exploration, but at present, their use in terrestrial concentrators might be the lowest cost alternative in terms of $/kWh and $/W. These multijunction cells consist of multiple thin films produced using metalorganic vapour phase epitaxy. A triple-junction cell, for example, may consist of the semiconductors: GaAs, Ge, and GaInP2. Each type of semiconductor will have a characteristic band gap energy which, loosely speaking, causes it to absorb light most efficiently at a certain color, or more precisely, to absorb electromagnetic radiation over a portion of the spectrum. The semiconductors are carefully chosen to absorb

Page 37: Project Solar Street Light

nearly the entire solar spectrum, thus generating electricity from as much of the solar energy as possible.

GaAs based multijunction devices are the most efficient solar cells to date, reaching a record high of 40.7% efficiency under "500-sun" solar concentration and laboratory conditions.

This technology is currently being utilized in the Mars rover missions.

Tandem solar cells based on monolithic, series connected, gallium indium phosphide (GaInP), gallium arsenide GaAs, and germanium Ge pn junctions, are seeing demand rapidly rise. In just the past 12 months (12/2006 - 12/2007), the cost of 4N gallium metal has risen from about $350 per kg to $680 per kg. Additionally, germanium metal prices have risen substantially to $1000–$1200 per kg this year. Those materials include gallium (4N, 6N and 7N Ga), arsenic (4N, 6N and 7N) and germanium, pyrolitic boron nitride (pBN) crucibles for growing crystals, and boron oxide, these products are critical to the entire substrate manufacturing industry.

Triple-junction GaAs solar cells were also being used as the power source of the Dutch four-time World Solar Challenge winners Nuna in 2005 and 2007, and also by the Dutch solar cars Solutra (2005) and Twente One (2007).

The Dutch Radboud University Nijmegen set the record for thin film solar cell efficiency using a single junction GaAs to 25.8% in August 2008 using only 4 µm thick GaAs layer which can be transferred from a wafer base to glass or plastic film.

Light-absorbing dyes (DSSC)

Typically a ruthenium metalorganic dye (Ru-centered) is used as a monolayer of light-absorbing material. The dye-sensitized solar cell depends on a mesoporous layer of nanoparticulate titanium dioxide to greatly amplify the surface area (200–300 m2/g TiO2, as compared to approximately 10 m2/g of flat single crystal). The photo generated electrons from the light absorbing dye are passed on to the n-type TiO2, and the holes

Page 38: Project Solar Street Light

are passed to an electrolyte on the other side of the dye. The circuit is completed by a redox couple in the electrolyte, which can be liquid or solid. This type of cell allows a more flexible use of materials, and is typically manufactured by screen printing and/or use of Ultrasonic Nozzles, with the potential for lower processing costs than those used for bulk solar cells. However, the dyes in these cells also suffer from degradation under heat and UV light, and the cell casing is difficult to seal due to the solvents used in assembly. In spite of the above, this is a popular emerging technology with some commercial impact forecast within this decade. The first commercial shipment of DSSC solar modules occurred in July 2009 from G24i Innovations.

Organic/polymer solar cells

Organic solar cells and polymer solar cells are built from thin films (typically 100 nm) of organic semiconductors such as polymers and small-molecule compounds like polyphenylene vinylene, copper phthalocyanine (a blue or green organic pigment) and carbon fullerenes and fullerene derivatives such as PCBM. Energy conversion efficiencies achieved to date using conductive polymers are low compared to inorganic materials. However, it improved quickly in the last few years and the highest NREL (National Renewable Energy Laboratory) certified efficiency has reached 6.77%. In addition, these cells could be beneficial for some applications where mechanical flexibility and disposability are important.

These devices differ from inorganic semiconductor solar cells in that they do not rely on the large built-in electric field of a PN junction to separate the electrons and holes created when photons are absorbed. The active region of an organic device consists of two materials, one which acts as an electron donor and the other as an acceptor. When a photon is converted into

Page 39: Project Solar Street Light

an electron hole pair, typically in the donor material, the charges tend to remain bound in the form of an exciton, and are separated when the exciton diffuses to the donor-acceptor interface. The short exciton diffusion lengths of most polymer systems tend to limit the efficiency of such devices. Nanostructured interfaces, sometimes in the form of bulk heterojunctions, can improve performance.

Silicon thin films

Silicon thin-film cells are mainly deposited by chemical vapor deposition (typically plasma-enhanced (PE-CVD)) from silane gas and hydrogen gas. Depending on the deposition parameters, this can yield:

1. Amorphous silicon (a-Si or a-Si:H)2. Protocrystalline silicon or3. Nanocrystalline silicon (nc-Si or nc-Si:H), also called

microcrystalline silicon.

It has been found that protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open circuit voltage. These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the bandgap) as well as deformation of the valence and conduction bands (band tails). The solar cells made from these materials tend to have lower energy conversion efficiency than bulk silicon, but are also less expensive to produce. The quantum efficiency of thin film solar cells is also lower due to reduced number of collected charge carriers per incident photon.

Page 40: Project Solar Street Light

Amorphous silicon has a higher bandgap (1.7 eV) than crystalline silicon (c-Si) (1.1 eV), which means it absorbs the visible part of the solar spectrum more strongly than the infrared portion of the spectrum. As nc-Si has about the same bandgap as c-Si, the nc-Si and a-Si can advantageously be combined in thin layers, creating a layered cell called a tandem cell. The top cell in a-Si absorbs the visible light and leaves the infrared part of the spectrum for the bottom cell in nc-Si.

CONCENTRATING PHOTOVOLTAICS (CPV)

Concentrating photovoltaic systems use a large area of lenses or mirrors to focus sunlight on a small area of photovoltaic cells. High concentration means a hundred or more times direct sunlight is focused when compared with crystalline silicon panels. Most commercial producers are developing systems that concentrate between 400 and 1000 suns. All concentration systems need a one axis or more often two axis tracking system for high precision, since most systems only use direct sunlight and need to aim at the sun with errors of less than 3 degrees. The primary attraction of CPV systems is their reduced usage of semiconducting material which is expensive and currently in short supply. Additionally, increasing the concentration ratio improves the performance of high efficiency photovoltaic cells. Despite the advantages of CPV technologies their application has been limited by the costs of focusing, sun tracking and cooling equipment. On October 25, 2006, the Australian federal government and the Victorian state government together with photovoltaic technology company Solar Systems announced a project using this technology, Solar power station in Victoria, planned to come online in 2008 and be completed by 2013. This plant, at 154 MW, would be ten

Page 41: Project Solar Street Light

times larger than the largest current photovoltaic plant in the world.

Lifespan

Most commercially available solar cells are capable of producing electricity for at least twenty years without a significant decrease in efficiency. The typical warranty given by panel manufacturers is for a period of 25 – 30 years, wherein the output shall not fall below 85% of the rated capacity.

Costs

Cost is established in cost-per-watt and in cost-per-watt in 24 hours for infrared capable photovoltaic cells. Manufacturing costs are also calculated including the energy required for manufacturing of the cells and modules in a kWh basis. These figures are added to the end price for solar investors and the energy payback is calculated from the point of power plant initialization or connection to the grid. another method of calculating the payback is to use the feed in tariff mechanism in place for power plant remuneration. Solar-specific feed in tariffs vary worldwide, and even state by state within various countries. The energy payback time will vary depending on the country of application and the level of the feed in tariff.

Low-cost solar cell

Dye-sensitized solar cell, and luminescent solar concentrators are considered low-cost solar cells.

This cell is extremely promising because it is made of low-cost materials and does not need elaborate apparatus to manufacture, so it can be made in a DIY way allowing more players to produce it than any other type of solar cell. In bulk it should be significantly less expensive than older solid-state cell designs. It can be engineered into flexible sheets. Although its conversion efficiency is less than the best thin film cells, its price/performance ratio should be high enough to allow it to compete with fossil fuel electrical generation.

Page 42: Project Solar Street Light

HARDWARE INVOLVED

1)Main Circuit-Inverter cum charge controller circuit-IC LM324N-IC NE555P

2)PV Panel

3) Battery

4) CFL

The solar street light system comprise of

• 75 Wp Solar PV Module

• 12 V, 75 Ah VRLA Battery (c/10 Discharge rate)

• Charge Controller cum inverter

• 11 Watt CFL Lamp  

The SPV modules are reported to have a service life of 15-20 years. VRLA Batteries provided with the solar street lighting system require lower maintenance; have longer life and give better performance as compared to pasted plate batteries used

Page 43: Project Solar Street Light

earlier.

The systems electronic provide for over-charge and over-discharge cut-off essential for preventing battery and luminaries damages.

OP-AMP LM324N

These circuits consist of four independent, high gain, internally frequency-compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Features

■ Wide gain bandwidth: 1.3 MHz

■ Large voltage gain: 100 dB

■ Wide power supply range:

Page 44: Project Solar Street Light

– Single supply: +3 V to +30 V

■ Dual supplies: ±1.5 V to ±15 V

BATTERY USEDLead Acid Valve Regulated Battery (VRLA)

Advantages:

• The battery can be mounted in any position.

• There is no need to check the level of electrolyte or to top up water lost due to electrolysis, reducing inspection and maintenance.

We used 12 v battery with c/10 discharge rate

Page 45: Project Solar Street Light

COMPACT FLUOROCENT LIGHT (CFL)

Compared to incandescent lamps, compact fluorescent lamps, when used properly have the following advantages:

Last up to 10 times longer

Use about one-fourth the energy

Produce 90% less heat, while producing more light per watt

We used 11 watt CFL (indo asian)

Page 46: Project Solar Street Light

555 timer IC

NE555 from Signetics in dual-in-line package

Internal block diagram

The 555 Timer IC is an integrated circuit (chip) implementing a variety of timer and multivibrator applications. The IC was designed by Hans R. Camenzind in 1970 and brought to market in 1971 by Signetics (later acquired by Philips). The original name was the SE555 (metal can)/NE555 (plastic DIP) and the part was described as "The IC Time Machine".It has been claimed that the 555 gets its name from the three 5 kΩ resistors used in typical early implementations, but Hans Camenzind has stated that the number was arbitrary. The

Page 47: Project Solar Street Light

part is still in wide use, thanks to its ease of use, low price and good stability. As of 2003, it is estimated that 1 billion units are manufactured every year.

Depending on the manufacturer, the standard 555 package includes over 20 transistors, 2 diodes and 15 resistors on a silicon chip installed in an 8-pin mini dual-in-line package (DIP-8). Variants available include the 556 (a 14-pin DIP combining two 555s on one chip), and the 558 (a 16-pin DIP combining four slightly modified 555s with DIS & THR connected internally, and TR falling edge sensitive instead of level sensitive).

Ultra-low power versions of the 555 are also available, such as the 7555 and TLC555. The 7555 requires slightly different wiring using fewer external components and less power.

The 555 has three operating modes:

Monostable mode: in this mode, the 555 functions as a "one-shot". Applications include timers, missing pulse detection, bouncefree switches, touch switches,

frequency divider, capacitance measurement, pulse-width modulation (PWM) etc

Astable - free running mode: the 555 can operate as an oscillator. Uses include LED and lamp flashers, pulse generation, logic clocks, tone generation, security alarms, pulse position modulation, etc.

Bistable mode or Schmitt trigger: the 555 can operate as a flip-flop, if the DIS pin is not connected and no capacitor is used. Uses include bounce free latched switches, etc.

Page 48: Project Solar Street Light

Usage

Pinout diagram

The connection of the pins is as follows:

Pin

Name Purpose

1 GND Ground, low level (0 V)

2 TRIGOUT rises, and interval starts, when this input falls below 1/3 VCC.

3 OUT This output is driven to +VCC or GND.

4 RESETA timing interval may be interrupted by driving this input to GND.

5 CTRL"Control" access to the internal voltage divider (by default, 2/3 VCC).

6 THRThe interval ends when the voltage at THR is greater than at CTRL.

7 DISOpen collector output; may discharge a capacitor between intervals.

8V+, VCC

Positive supply voltage is usually between 3 and 15 V.

Monostable mode

Page 49: Project Solar Street Light

Schematic of a 555 in monostable mode

The relationships of the trigger signal, the voltage on C and the pulse width in monostable mode

In the monostable mode, the 555 timer acts as a “one-shot” pulse generator. The pulse begins when the 555 timer receives a signal at the trigger input that falls below a third of the voltage supply. The width of the pulse is determined by the time constant of an RC network, which consists of a capacitor (C) and a resistor (R). The pulse ends when the charge on the C equals 2/3 of the supply voltage. The pulse width can be lengthened or shortened to the need of the specific application by adjusting the values of R and C.

Page 50: Project Solar Street Light

The pulse width of time t, which is the time it takes to charge C to 2/3 of the supply voltage, is given by

where t is in seconds, R is in ohms and C is in farads. See RC circuit for an explanation of this effect.

Bistable Mode

In bistable mode, the 555 timer acts as a basic flip-flop. The trigger and reset inputs (pins 2 and 4 respectively on a 555) are held high via pull-up resistors while the threshold input (pin 6) is simply grounded. Thus configured, pulling the trigger momentarily to ground acts as a 'set' and transitions the output pin (pin 3) to Vcc (high state). Pulling the reset input to ground acts as a 'reset' and transitions the output pin to ground (low state). No capacitors are required in a bistable configuration. Pin 8 (Vcc) is, of course, tied to Vcc while pin 1 (Gnd) is grounded. Pins 5 and 7 (control and discharge) are left floating.

Astable mode

Standard 555 Astable Circuit

In astable mode, the '555 timer ' puts out a continuous stream of rectangular pulses having a specified frequency. Resistor R1 is connected between VCC and the discharge pin (pin 7) and another resistor (R2) is connected between the

Page 51: Project Solar Street Light

discharge pin (pin 7), and the trigger (pin 2) and threshold (pin 6) pins that share a common node. Hence the capacitor is charged through R1 and R2, and discharged only through R2, since pin 7 has low impedance to ground during output low intervals of the cycle, therefore discharging the capacitor.

In the astable mode, the frequency of the pulse stream depends on the values of R1, R2 and C:

The high time from each pulse is given by

and the low time from each pulse is given by

where R1 and R2 are the values of the resistors in ohms and C is the value of the capacitor in farads.

Specifications

These specifications apply to the NE555. Other 555 timers can have better specifications depending on the grade (military, medical, etc).

Supply voltage (VCC) 4.5 to 15 V

Supply current (VCC = +5 V)

3 to 6 mA

Supply current (VCC = +15 V)

10 to 15 mA

Output current 200 mA

Page 52: Project Solar Street Light

(maximum)

Power dissipation 600 mW

Operating temperature 0 to 70 °C

Derivatives

Many pin-compatible variants, including CMOS versions, have been built by various companies. Bigger packages also exist with two or four timers on the same chip. The 555 is also known under the following type numbers:

Manufacturer Model Remark

Custom Silicon Solutions

CSS555/CSS555CCMOS from 1.2 V, IDD < 5 µA

Avago Technologies

Av-555M

ECG Philips ECG955M

Exar XR-555

Fairchild Semiconductor

NE555/KA555

Harris HA555

Page 53: Project Solar Street Light

IK Semicon ILC555CMOS from 2 V

Intersil SE555/NE555

Intersil ICM7555 CMOS

Lithic Systems LC555

Maxim ICM7555CMOS from 2 V

Motorola MC1455/MC1555

National Semiconductor

LM1455/LM555/LM555C

National Semiconductor

LMC555CMOS from 1.5 V

NTE Sylvania NTE955M

Raytheon RM555/RC555

RCA CA555/CA555C

STMicroelectronics NE555N/ K3T647

Texas Instruments SN52555/SN72555

Dual timer 556

The dual version is called 556. It features two complete 555s in a 14 pin DIL package.

Quad timer 558

The quad version is called 558 and has 16 pins. To fit four 555s into a 16 pin package the control voltage and reset

Page 54: Project Solar Street Light

lines are shared by all four modules. Also for each module the discharge and threshold are internally wired together

and called timing.

OPERATIONAL AMPLIFIER (LM324N)

Various op-amp ICs in eight-pin dual in-line packages ("DIPs")

An operational amplifier, which is often called an op-amp, is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. An op-amp produces an output voltage that is typically millions of times larger than the voltage difference between its input terminals.

Typically the op-amp's very large gain is controlled by negative feedback, which largely determines the magnitude of its output ("closed-loop") voltage gain in amplifier applications, or the transfer function required (in analog computers). Without negative feedback, and perhaps with positive feedback for regeneration, an op-amp essentially acts as a comparator. High input impedance at the input terminals (ideally infinite) and low output impedance at the

Page 55: Project Solar Street Light

output terminal(s) (ideally zero) are important typical characteristics.

Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. Many standard IC op-amps cost only a few cents in moderate production volume; however some integrated or hybrid operational amplifiers with special performance specifications may cost over $100 US in small quantities. Op-amps sometimes come in the form of macroscopic components, (see photo) or as integrated circuit cells; patterns that can be reprinted several times on one chip as part of a more complex device.

The op-amp is one type of differential amplifier. Other types of differential amplifier include the fully differential amplifier (similar to the op-amp, but with two outputs), the instrumentation amplifier (usually built from three op-amps), the isolation amplifier (similar to the instrumentation amplifier, but with tolerance to common-mode voltages that would destroy an ordinary op-amp), and negative feedback amplifier (usually built from one or more op-amps and a resistive feedback network).

Page 56: Project Solar Street Light

Circuit notation

Circuit diagram symbol for an op-amp

The circuit symbol for an op-amp is shown to the right, where:

: non-inverting input

: inverting input

: output

: positive power supply

: negative power supply

The power supply pins ( and ) can be labeled in different ways. Despite different labeling, the function remains the same — to provide additional power for amplification of the signal. Often these pins are left out of the diagram for clarity, and the power configuration is described or assumed from the circuit.

Operation

The amplifier's differential inputs consist of a input and a input, and ideally the op-amp amplifies only the difference in voltage between the two, which is called the differential input voltage. The output voltage of the op-amp is given by the equation,

Page 57: Project Solar Street Light

where is the voltage at the non-inverting terminal, is the voltage at the inverting terminal and AOL is the open-loop gain of the amplifier. (The term "open-loop" refers to the absence of a feedback loop from the output to the input.)

With no negative feedback, the op-amp acts as a comparator. The inverting input is held at ground (0 V) by the resistor, so if the Vin applied to the non-inverting input is positive, the output will be maximum positive, and if Vin is negative, the output will be maximum negative. Since there is no feedback from the output to either input, this is an open loop circuit. The circuit's gain is just the GOL of the op-amp.

Adding negative feedback via the voltage divider Rf,Rg reduces the gain. Equilibrium will be established when Vout is just sufficient to reach around and "pull" the inverting input to the same voltage as Vin. As a simple example, if Vin = 1 V and Rf = Rg, Vout will be 2 V, the amount required to keep V– at 1 V. Because of the feedback provided by Rf,Rg this is a closed loop circuit. Its over-all gain Vout / Vin is called the closed-loop gain ACL. Because the feedback is negative, in this case ACL is less than the AOL of the op-amp.

The magnitude of AOL is typically very large—seldom less than a million—and therefore even a quite small difference between and (a few microvolts or less) will result in

Page 58: Project Solar Street Light

amplifier saturation, where the output voltage goes to either the extreme maximum or minimum end of its range, which is set approximately by the power supply voltages. Additionally, the precise magnitude of AOL is not well controlled by the manufacturing process, and so it is impractical to use an operational amplifier as a stand-alone differential amplifier. If linear operation is desired, negative feedback must be used, usually achieved by applying a portion of the output voltage to the inverting input. The feedback enables the output of the amplifier to keep the inputs at or near the same voltage so that saturation does not occur. Another benefit is that if much negative feedback is used, the circuit's overall gain and other parameters become determined more by the feedback network than by the op-amp itself. If the feedback network is made of components with relatively constant, predictable, values such as resistors, capacitors and inductors, the unpredictability and inconstancy of the op-amp's parameters (typical of semiconductor devices) do not seriously affect the circuit's performance.

If no negative feedback is used, the op-amp functions as a switch or comparator.

Positive feedback may be used to introduce hysteresis or oscillation.

Ideal and real op-amps

Page 59: Project Solar Street Light

An equivalent circuit of an operational amplifier that models some resistive non-ideal parameters.

An ideal op-amp is usually considered to have the following properties, and they are considered to hold for all input voltages:

Infinite open-loop gain (when doing theoretical analysis, a limit may be taken as open loop gain AOL goes to infinity)

Infinite voltage range available at the output (vout) (in practice the voltages available from the output are limited by the supply voltages and )

Infinite bandwidth (i.e., the frequency magnitude response is considered to be flat everywhere with zero phase shift).

Infinite input impedance (so, in the diagram, , and zero current flows from to )

Zero input current (i.e., there is assumed to be no leakage or bias current into the device)

Zero input offset voltage (i.e., when the input terminals are shorted so that , the output is a virtual ground or vout = 0).

Infinite slew rate (i.e., the rate of change of the output voltage is unbounded) and power bandwidth (full output voltage and current available at all frequencies).

Page 60: Project Solar Street Light

Zero output impedance (i.e., Rout = 0, so that output voltage does not vary with output current)

Zero noise

Infinite Common-mode rejection ratio (CMRR)

Infinite Power supply rejection ratio for both power supply rails.

In practice, none of these ideals can be realized, and various shortcomings and compromises have to be accepted. Depending on the parameters of interest, a real op-amp may be modeled to take account of some of the non-infinite or non-zero parameters using equivalent resistors and capacitors in the op-amp model. The designer can then include the effects of these undesirable, but real, effects into the overall performance of the final circuit. Some parameters may turn out to have negligible effect on the final design while others represent actual limitations of the final performance that must be evaluated.

Recent trends

Recently supply voltages in analog circuits have decreased (as they have in digital logic) and low-voltage opamps have been introduced reflecting this. Supplies of ±5V and increasingly 5V are common. To maximize the signal range modern op-amps commonly have rail-to-rail inputs (the input signals can range from the lowest supply voltage to the highest) and sometimes rail-to-rail outputs.

Classification

Page 61: Project Solar Street Light

Op-amps may be classified by their construction:

discrete (built from individual transistors or tubes/valves)

IC (fabricated in an Integrated circuit) - most common

hybrid

IC op-amps may be classified in many ways, including:

Military, Industrial, or Commercial grade (for example: the LM301 is the commercial grade version of the LM101, the LM201 is the industrial version). This may define operating temperature ranges and other environmental or quality factors.

Classification by package type may also affect environmental hardiness, as well as manufacturing options; DIP, and other through-hole packages are tending to be replaced by Surface-mount devices.

Classification by internal compensation: op-amps may suffer from high frequency instability in some negative feedback circuits unless a small compensation capacitor modifies the phase- and frequency- responses; op-amps with capacitor built in are termed "compensated", or perhaps compensated for closed-loop gains down to (say) 5, others: uncompensated.

Single, dual and quad versions of many commercial op-amp IC are available, meaning 1, 2 or 4 operational amplifiers are included in the same package.

Rail-to-rail input (and/or output) op-amps can work with input (and/or output) signals very close to the power supply rails.

CMOS op-amps (such as the CA3140E) provide extremely high input resistances, higher than JFET-input op-amps, which are normally higher than bipolar-input op-amps.

Page 62: Project Solar Street Light

other varieties of op-amp include programmable op-amps (simply meaning the quiescent current, gain, bandwidth and so on can be adjusted slightly by an external resistor).

manufacturers often tabulate their op-amps according to purpose, such as low-noise pre-amplifiers, wide bandwidth amplifiers, and so on.

Applications

Use in electronics system design

The use of op-amps as circuit blocks is much easier and clearer than specifying all their individual circuit elements (transistors, resistors, etc.), whether the amplifiers used are integrated or discrete. In the first approximation op-amps can be used as if they were ideal differential gain blocks; at a later stage limits can be placed on the acceptable range of parameters for each op-amp.

Circuit design follows the same lines for all electronic circuits. A specification is drawn up governing what the circuit is required to do, with allowable limits. For example, the gain may be required to be 100 times, with a tolerance of 5% but drift of less than 1% in a specified temperature range; the input impedance not less than one megohm; etc.

Page 63: Project Solar Street Light

A basic circuit is designed, often with the help of circuit modeling (on a computer). Specific commercially available op-amps and other components are then chosen that meet the design criteria within the specified tolerances at acceptable cost. If not all criteria can be met, the specification may need to be modified.

A prototype is then built and tested; changes to meet or improve the specification, alter functionality, or reduce the cost, may be made.

Basic single stage amplifiers

Non-inverting amplifier

An op-amp connected in the non-inverting amplifier configuration

In a non-inverting amplifier, the output voltage changes in the same direction as the input voltage.

The gain equation for the op-amp is:

However, in this circuit V– is a function of Vout because of the negative feedback through the R1R2 network. R1 and R2 form a voltage divider, and as V– is a high-impedance input, it does not load it appreciably. Consequently:

Page 64: Project Solar Street Light

Where

Substituting this into the gain equation, we obtain:

Solving for Vout:

If AOL is very large, this simplifies to

.

Inverting amplifier

An op-amp connected in the inverting amplifier configuration

In an inverting amplifier, the output voltage changes in an opposite direction to the input voltage.

As for the non-inverting amplifier, we start with the gain equation of the op-amp:

This time, V– is a function of both Vout and Vin due to the voltage divider formed by Rf and Rin. Again, the op-amp input does not apply an appreciable load, so:

Page 65: Project Solar Street Light

Substituting this into the gain equation and solving for Vout:

If AOL is very large, this simplifies to

.

A resistor is often inserted between the non-inverting input and ground (so both inputs "see" similar resistances), reducing the input offset voltage due to different voltage drops due to bias current, and may reduce distortion in some op-amps.

A DC-blocking capacitor may be inserted in series with the input resistor when a frequency response down to DC is not needed and any DC voltage on the input is unwanted. That is, the capacitive component of the input impedance inserts a DC zero and a low-frequency pole that gives the circuit a bandpass or high-pass characteristic.

Positive feedback configurations

Another typical configuration of op-amps is the positive feedback, which takes a fraction of the output signal back to the non-inverting input. An important application of it is the comparator with hysteresis (i.e., the Schmitt trigger).

Other applications

audio- and video-frequency pre-amplifiers and buffers

voltage comparators

Page 66: Project Solar Street Light

differential amplifiers

differentiators and integrators

filters

precision rectifiers

precision peak detectors

voltage and current regulators

analog calculators

analog-to-digital converters

digital-to-analog converter

voltage clamps

oscillators and waveform generators

Most single, dual and quad op-amps available have a standardized pin-out which permits one type to be substituted for another without wiring changes. A specific op-amp may be chosen for its open loop gain, bandwidth, noise performance, input impedance, power consumption, or a compromise between any of these factors.