Top Banner
Universitatea Tehnica “Gheorghe Asachi” Iasi Facultatea de Constructii Proiect la constructii metalice
67

Proiect Constructii Metalice g.

Jul 18, 2016

Download

Documents

proiect
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Proiect Constructii Metalice g.

Universitatea Tehnica “Gheorghe Asachi” Iasi Facultatea de Constructii

Proiect la constructii metalice

Student: UNGUREANU DANUT Grupa: 3502

Page 2: Proiect Constructii Metalice g.

Date personale:

- localitatea de amplasare - Radauti- LH=24 m- LT=6 m- H=8 m

Tip pod PC 32 – gr. Functionare III - incalzita STAS 800/82 - caracteristici pod rulant

A=5600 mm B=7100 mm h1=2455 mm l1=375 mm C1=750 mm b=80 mm masa neta pod Gp=32000 Kg=32000 daN QC=25 KN Lp=18 m P1=22 t.f. P2=8 t.f. P3=27 t.f. P4=10,5 t.f.

STABILIREA DIMENSIUNILOR ELEMENTELORSECTIUNII TRANSVERSALE:

stabilirea dimensiunilor grinzii cu zabrelehc=(1/7÷1/10)L=(1/7÷1/10)*30000=(4286÷3000)mmp=tg α= 590/14600=0,04 α=2,31p%=4% → hm=2660 mm hC=3150 mm α=2,31° a1=a2=a3=a4=2950 mm a5=3000 mm

stabilirea dimensiunilor luminatoruluiLl=6000 mm αl=30°÷45°tg αl=hl/(Ll/2)=hl=tg αl=Ll/2=tg (30°÷45°)6000/2=(1730÷3000)mm

stabilirea dimensiunilor stalpului hS=hgr+b+hl+ht+(300÷400) mm +hm

2

Page 3: Proiect Constructii Metalice g.

hgr=(1/8÷1/10)LT=(1/8÷1/10)*10500=(1312,5÷1050)mm hgr=1200 mm b=90 mm hl=2575 mm ht=(200÷300) mm STAS 800/82 hm=2660 mm hS=1200+90+2575+300-400=3765 mm+2660=6425 mm -rot 50 mm → hS=6500 mm

* hi=H-(hgr+b)+hi=12000-(1190+90)+1400=12210 Hi=(400÷1500) mm rot 50 mm → hi=12200 mm

Podul rulant PC 32 GF IIIA=6300 mmB=7900 mmLp=28 mQC=25 KNQp=45000 daNHS=hS+hi=12200+6500=18700 mm

- apasarea pe rotile caruciorului:P1=22,5 t.f.P2=8 t.f.P3=27 t.f.P4=10,5 t.f.

bS=(1/10÷1/20)hS=(650÷325) mmbS=(400;450;500)Lp+2C-L=0 → C=(L-Lp)/2=(30-28)/2=1000 mmL=30000 mm=30 mLp=28000 mm=28 mC≥bS/2+400+p+l1

bS≤2(C-400-p-l1)=2(1000-400-40-375)=370 mmC1=1000 mm=bS/2+400+p+C1=370/2+400+40+375=1000 mmbi≥(1/20)HS=(1/20)·18700=935 mmbi≥bS/2+C=370/2+1000=1185 mm →bi=1200 mm

3

Page 4: Proiect Constructii Metalice g.

CALCULUL SI ALCATUIREA PANEI DE ACOPERIS

LT=10,5 mm →pane cu 2 tiranti

Stabilirea incarcarilor

-incarcari pe m2 de suprafata aferenta paneiA) PERMANENTE1) greutate invelitoareginv

n=(13 ÷15)daN/m2 – pt invelitori izolate termic

ginvn=13daN/m2 ninv=1,2

ginvc=ninv* ginv

n=1,2*13=15,6 daN/m2

2) greutatea propriei pane:gpn

n=(15÷30)daN/m2

gpnn =(1,10÷1,15)(15÷30)=(16,5÷34,5)daN/m2

gpnn=25 daN/m2 np=1,1

gpnc=hp* gpn

n=1,1*25=27,5 daN/m2

-functie de LT,a → g=250÷300 daN/m2

3) greutate contra vantuiri gcv

n=(2 ÷4) daN/m2 gcvn=4 daN/m2 ncv =1,1

gcvc= hcv* gcv

n=1,1*4=4,4 daN/m2

B)CVASIPERMANENTE 1)Instalatii electrice, conducte, cabluri: gc

n=(1 ÷3) daN/m2 gcn=3 daN/m2 nc=1,2

gcc=nc* gc

n=1,2*3=3,6 daN/m2

2) Incarcari date de praf industrialgpi

n=(1 ÷25) daN/m2 gpin=5 daN/m2 npi=1,4

gpic= npi* gpi

n=1,4*5=7 daN/m2

Incarcari totale

gtn=ginv

n+gpnn+gcv

n+gcn+ gpi

n=13+25+4+3+5=50 daN/m2

gtc=ginv

c+gpnc+gc

c+ gpic+gcv

c=15.6+27.5+4.4+3.6+7=58,1 daN/m2

C) INCARCARI VARIABILE1) Incarcarea din zapada (STAS 10101/21-92) Pz

n=Ce*Czi*gz(KN/m2)

4

Page 5: Proiect Constructii Metalice g.

gz-greutatea de referinta a stratului de zapada(KN/m2) Ce-coeficient prin care se stine seama de conditiile de expunere a constructiilor Czi-coeficient prin care se tine seama de aglomerare de zapada pe suprafata constructiei expusa zapazii Vaslui gz=1,5 KN/m2- perioada de revenire 10 aniCe=0,8-pt conditii normale de expunere si acoperisuri cu profil plat sau putin inclinat Czi=1,0 0≤α≤30° -Czi=1,0 α=2,31° pz

n=Ce*Czi*gz=0.8*1.0*1.5=1.2KN/m2=120daN/m2

clasa de importanta a cladirii IIIzona Vaslui → γa=2,2 γc=1,4perioada de revenire 10 aniγFz=γa-0,4gp/(Ce*gz) ≥0,3γa

γFz=2,2-0,4*50/(0,8*150)=2,033>0,3γa>0,3*2,2=0,66pz

c=γFz*pzn=2,033*120=243,96daN/m2

γ0z=γc-0,2gp/(Ce*gz) ≥0,3*γc*γ0z=γc-0,2*gzn/(C*gz) ≥0,3 γc

γ0c=1,4-0,2*50/(0,8*150)=1,317>0,3γc=0,3 *1,4=0,42pz

a(n)= γ0z*pzn=1,317*120=158,04daN/m2

2)Incarcaridin actiunea vantului (STAS 10101/20 -90) pn

n= β *Cni*ch(z)*gv

β- coeficient de rafala Cni-coeficient aerodinamic pe suprafata i ch(z)-coeficient de variatie a presiunii dinamice de baza in raport cu inaltimea deasupra terenului liber gv-presiunea dinamica de baza stabilita la inaltimea de 10 m deasupra terenuluiObs. –se considera ca vantul produce suctiune si incarcarea prin actiunea vantului nu se ia in calcul

5

Page 6: Proiect Constructii Metalice g.

STABILIREA TIPULUI DE INVELITOARE SI A GREUTATII PROPRII

gtic=ginv

c/cos α+gpic+pz

c=15,6/cos 2,31 +7+243,96=266,67 daN/m2

gti=380Kg/m2 -3,72 KN/m2=372 daN/m2

l=2,5 m -invelitoare de tip TCP/e -grosime δ=80mm +45 mm ginv

n1=14,4Kg/m2=14,4 daN/m2

ginvc1=ninv*ginv

n1=1,2*14,4=17,28 daN/m2

STABILIREA GREUTATII PROPRII A PANEI

gtcc=ginv

c1/cos α+gpnc+gcv

c+ge1c+gpi

c+pzc=17,28/cos

2,31+27,5+4,4+3,6+7+243,96=303.75 daN/m2

LT=t=10,5 m ;a=2,95 m gtcc=303,75 daN/m2

gpnn=21,5 daN/m2

gpnc=npn*gpn

c=1,1*21,5=23,65 daN/m2

gt3c=ginv

c/cos α +gpnc+gcv

c+gc1cgpi

c+pzc=17,28/cos

2,31+23,65+4,4+3,6+7+243,96=299.90~300 daN/m2

gt3n=ginv

n/cos α+gpnn+gcv

n+ge1n+gpi

n+pzc(n)=14,4/cos

2,31+21,5+4+3+5+158,5=205,95 daN/m2

STABILIREA INCARCARILOR PE MAL DE PANA

amed=a1/2+a2/2=2950/2+2950/2=2950mm=2,95mqt

c=qt3c*amed=300*2,95=885daN/m

qtn=qt3

n*amed=205,95*2,95=607,55daN/mqx

c=qtc*cos α=885*cos 2,31=884,28daN/m

qxn=qt

n*cos α=607,55*cos 2,31=607,06 daN/mqy

c=qtc*sin α=885*sin 2,31=35,67 daN/m

qyn=qt

n*sin α=607,55*sin 2,31=24,49 daN/m

Mxc1=qx

c*LT2/11=884,28*10,52/11=8862,9 daN/m

Mxr=Mx

c=Mxcq=qx

c*LT2/16=884,28*10,52/16=6093,24 daN/m

Mxc2=qx

c*LT2/32=884,28*10,52/32=3046,62 daN/m

Myc2=qy

c*(1,3*e2)2/8=35,67*(1,3*3,5)2/8=92,31 daN/m

6

Page 7: Proiect Constructii Metalice g.

Dimensionarea si verificarea sectiunii panei de acoperisin camp curent

OL 37,2 →R=2200dan/cm2 t≤16mma) din conditia de rezistenta sect I σ=Mx/Wx+My/Wy≤1,1R/Wx

Kw=Wx/Wy Kw=7÷9 Kw=8÷10 σ=Mx+(Wx/Wy)My≤1,1R*Wx

- consideram profil Kw=9σ2=Mxc

2+Kw*Myc2≤1,1R*Wx

Wxnec≥(Mxc

2+Kw*Myc2)/1,1/R=(6093,24+9*92,31)*102/(1,1*2200)=286,12

cm2

J24-Wx=354 cm2

b)din conditia de rigiditatefx

2=0,151*(qxn*LT

n)/Jx≤fa=LT/200 Jxnec≥(0,151*qx

n*LTn)/fa

Jxnec≥(0,151*qx

n*LTn)/(LT/200)=( 0,151*607,06*10,54*10-2)/(1050/200)=

2122,3 cm4

J20-Jx=2140 cm4

-Dimensioarea rationala se face din conditia de rezistenta cu profilul J24 –alesJ24 : A=46,1 cm2 G=36,2 Kg/cm Jx=4250 cm4 Jy=221 cm4 h=240 mmWx=354 cm3 Wy=41,7 cm3 b=106 mmIx=9,59 cm Iy=2,20 cm d=8,7 mm

VERIFICARIa) verificari de rezistenta:

sect I σ=Mx/Wx+My/Wy≤1,1*R(2420 daN/cm2) σ=6093,24*102/354+92,31*102/41,7=1942,62 daN/cm2<1,1*R(2420 daN/cm2)

b) verificari de rigiditate

frez=(fx2+fy

2)1/2 ≤fa=LT/200fx= 0,151*qx

n*LTn/Jx=0,151*607,06*10-2*10,54/4250=2,62 cm

fy=5/384*qyn*l2

4/Jy=5/384*24,29*10-2*3504/(2,1*106*221)=0,10 cmfrez= = 2,622 cm <fa=LT/200=5,25 cm

verificari de zveltete

7

Page 8: Proiect Constructii Metalice g.

λx=lfx/ix=0,5 *LT/ix=0,5*1050/9,59=54,74λy=lfy/iy=l2/jy=(LT/3)/iy=(1050/3)/2,20=159,09λmax=max(λx, λy) λmax≤λa(=250)λmax=max(54,74;159,09)=159,09<250

c) verificari din conditii constructive

J24>J20

CALCULUL PANEI DE ACOPERIS IN CAMPUL MARGINAL:

Mxc1=qx

c*LT2/11=8862,9daN/m

Mxr=Mx

c=Mxcq=6093,24daN/m

Myc=My

c1=Mymax=92,31daN/m

DIMENSIONAREA SI VERIFICAREA PANEIDE ACOPERIS IN CAMPUL MARGINAL

1) din conditia de rezistentaσ=M/W≤Rσ=Mx/Wx+My/Wy≤1,1R/Wx= σ2Mx+Wx/Wy≤1,1RWx

K= Wx/Wy → 7÷9 U →8÷10 J

- profile I Kw=9 σ=Mx+Kw*My≤1,1RWx σ=Mx

c1+KwMy≤1,1 RWx

Wxc1nec(σ)=Wxc1

nec*h/2=400,56*24/2=4806,79 cm4

2) din conditia de rigiditatefc1~0,307*qx

n*LTn/Jxc1≤fa≤LT/200

Jxc1nec(f)≥200*0,307*qx

n*LTn/LT=200*0,307*607,06*10-

2*10,54/1050=4314,87 cm4

Jxc1nec=max(Jc1

nec(σ);Jc1nec(f))=max(40806,79;4314,84 cm4) =Jc1

nec(σ)=4806,79 cm4

Jxcmp-Jx

nec-Jx=4086,79-4250=556,79 cm4

JxU=Jx

cmp/2=556,79/2=278,4 cm4=U12 –cu Jx=364 cm4

A=17 cm2 G=13,4 Kg/m

8

Page 9: Proiect Constructii Metalice g.

h=120 mm b=55 mm d=7mmJx2=364 cm4 Jy2=43,2 cm4

Wx2=60,7 cm3 Wy2=11,1 cm3

Ix2=4,62 cm Iy2=1,59 cm l=1,60 cm

Jxc1=Jx1+2Jx2=4250+2*364=4978 cm4

Wxc1=Jx/(h/2)=4978/(24/2)=414,83 cm3

Ixc1= = =7,88 cm

Jyc1=Jy1+2*Jy2=221+2(43,2+17*(0,87/2+1,60)2)=448,2 cm4

Wyc1=Jy

c1/(bU+dI/2)=448,2/(5,5+0,87/2)=75,52 cm3

Iyc1= = =2,37 cm

Verificarea sectiunii adoptate

1) verificari de rezistentaσ=Mx

c1/Wxc1+My

c1/Wyc1≤1,1R

σ=8862,9*102/414,83+92,31*102/75,52=2258,75 daN/cm2 <1,1R(=2420 dan/cm2)

2)verificari de rigiditate frez= ≤fa=LT/200 fyc1=5/384*qy

n*l24/(G*Jy

c1)=5/384*24,49*10-2*3504/ (2,1*106*448.2)=0,05 cmfxc1=0,307*qx

n*LTn/Jx

c1=0,307*607,06*10-2*10,54/4978=4,55 cmfrez= ~4,55 cm<LT/200=5,25 cm

3) verificari de zveltete λx=lfx

c1/Jxc1=0,7*LT/Jx

c1=0,7*1050/7,88=93,27 λy=lfy

c1/Jyc1=l2/Jy

c1=1050/3/2,37=147,68 λmax ≤ λa=250 λmax=max(λx; λy)=max(93,27;147,68)=147,58<250

Stabilirea zonei de consolidarea zonei in campul marginal

4z(0,875LT-z)/(0,875LT)2*Mxc1=Mcap

q=0 z1,z2

LT=10,5 m Mx

c1=8862,9 daN/m4z(0,875LT-z)=(0,875LT)2*Mcap

2/Mxc1

9

Page 10: Proiect Constructii Metalice g.

σ=M/W ≤R→Mcap2=Wx1*R=354*2200=7788 daN/m

-4z2+3,5zLT-(0,875LT)2Mcapc1/Mx

c1=0-4z2+3,5z*10,5-(0,875*10,5)2*7788/8862,9=0-4z2+36,75z-74,17=0 →z1=2,99 ~3 m z2=6,19 ~6,2 m z1

real=z1-300=3000-300=2700mm=2,7 m z2

real=z2+300=6200+300=6500 mm=6,5 m

Calculul tirantului

fortele axiale in tirantiNmax=max(Nn-1,Nn)

Nn-1= =(n-1,5)V Nn= =(n-0,5)V/2cosβ

V=1,25qye/2=1,25*35,67*10,5/2=234,08 daNcosβ==a2/ =3/ =0,65Nn=(5-0,5)*234,08/(2*0,65)=810,29 daNNn-1=(5-1,5)*234,08=819,08 daNNmax=819,28 daNd0≥ Rt=2000 daN/cm2

d0nec≥

Calea de rulareCalculul grinzii de rulare

I Stabilirea incarcaturilor A) Incarcari permanente

1° greutatea proprie a grinzii de rulare

ggrn=(15÷30)t=(15÷30)10,5=(157,5÷315) daN/m

ggrn=300 daN/m ngr=1,1

ggrc=ngr*ggr

n=1,1*300=330 daN/m 2° greutatea de proprie a sinei de rulare gs

n=(1,10÷1,20)b2

γ02=(1,1÷1,2)*0,092*7850=(69,94÷76,30) daN/m gs

n=70 daN/m ns=1,1 gs

c=ns*gsn=1,1*70=77 daN/m

3 ° greuatea TGS

10

Page 11: Proiect Constructii Metalice g.

gTGSn=(1,10 ÷1,15)gTGS*bTGS/2=(1,1 ÷1,15)*42*1/2=(23,1 ÷24,15)

daN/m gTGS5=42 daN/m2

bTGS=bS/2-(20 ÷30)+c-b/2-L60÷100-(20 ÷40)= =370/2-(20 ÷30)+1000-90/2-(60 ÷100)-(20 ÷40) ~1000 mm=1 m gTGS

n=24 daN/m nTGS=1,1 gGTS

c=gTGSn*nTGS=24*1,1=26,4

B) Incarcari cvasipermanente gu

n150 daN/m2 *bTGS/2=150*1/2=75 daN/m nu=1,4 gu

c=gun*nu=75*1,4=105 daN/m

Total incarcari permanente +cvasipermanente

gTn=ggr

n+gsn+gTGS

n+gun=300+70+24+75=469 daN/m

gTc=ggr

c+gsc+gTGS

c+guc=330+77+26,4+105=538,4 daN/m

C) Incarcari variabile Actiunea podului rulant 1 ° lucrari verticale a)normele statice P1

n=22,5tf=22500 daN P3n=27tf=27000 daN

P2n=8tf=8000 daN P4

n=10,5tf=10500 daN A=6300 mm=6,3 m B=7900 mm=7,9 m

b) normale dinamice (Ψ) Pi

n Ψ’= Ψ’Pin

Ψ-coeficientul dinamic a fetei de grinda de functionare a P.R. GF –IV → Ψ=1,4 pt 2 P.R. Ψ’= Ψ-0,1 Ψ’=1,4-0,1=1,3 P1

n Ψ’= Ψ’P1n=1,3*22500=29250 daN

P2n Ψ’= Ψ’P2

n=1,3*8000=10400 daN P3

n Ψ’= Ψ’P3n=1,3*27000=35100 daN

P4n Ψ’= Ψ’P4

n=1,3*10500=13650 daN Pmax

nΨ=P3nΨ=P3

n* Ψ= Ψ*P3n=1,4*27000=37800 daN

de calcul dinamice Pi

n Ψ’=nV*PinΨ’ nV=1,2

P1cΨ’=nV*P1

nΨ’=1,2*29250=35100 daN P2

cΨ’=nV*P2 nΨ’=1,2*10400=12800 daN

11

Page 12: Proiect Constructii Metalice g.

P3 cΨ’=nV*P3

nΨ’=1,2*35100=37800 daN P4

cΨ’=nV*P4 nΨ’=1,2*13650=16380 daN

PmaxcΨ=P3

cΨ=nV*P3 nΨ=1,2*37800=45360 daN

2 °lucrari (actiuni) orizontale a) produse de franare P.R. -normate statice Pe

n=f*Pmaxn=f*P3

n=0,1*27000=2700 daN f=0,1 -coeficient de frecare a rotilor pe sina

-normate dinamice PC

nα=α*Pln=1,5*2700=4050 daN

α=1,5 (GF – IV ,Qc=400KN) -de calcul dinamice Pl

cα=n0*Pl nα=1,3*4050=5265 daN ;n0=1,3

α cα=2*Pl cα=2*5265=10530 daN

b)produse de franarea caruciorului -normate staticeHn=f*(Qn+Gc

n)/nrc*nrct=0,1*(45000+7000)/4*2=2600 daN

nrc-numar roti caruciornrc

t-numar roti franate Pt

n=Hn/nrp=2600/2=1300 daN nrp-numar roti PR pe aceeasi cale Pt

nα= α*Ptn=1,5*1300=1950 daN -normate dinamice

Pt cα=n0*Pt

nα=1,3*1950=2535 daN -de calcul dinamic

Stabilirea schemei statice

12

Page 13: Proiect Constructii Metalice g.

-grinda simplu rezemata a)actiuni permanente +cvasipermanente P+CVP A=6,3 m B=7,9 m

b)actiuni variabile produse de PR 1)verticale -cazuri posibile

A+B-A+A=6,3+7,9-6,3+6,3=14,2>t →3 forte

=0 →P1(1,6*9,5)+P3*7,9=R*x=35100(1,6+9,5)+37800*7,9 =145800 R=P3+2P1+P3=37800+2*35100+37800=145800 →x=4,72 m d=7,9-4,72=3,18 m P1=P1

cΨ’=35100 daN P3=P3

cΨ’=37800 daN

=0 →VF*10,5-P1(10,5-2,06)-P3(10,5-2,06-1,6)-P10,54=0 VF=1/10,5(35100*8,44+37800*6,84+35100*0,54) VF=54642,86 daN =0 →VA*10,5-P1(10,5-0,54)-P3(10,5-0,54-6,3)-P1*2,06=0 VA=1/10,5(35100*9,96+37800*3,66+35100*2,06) → VA=53357,14 daN

η2/ η1=(10,5-1,6)/10,5) → η2=0,848η3

/ η1=(10,5-1,6-6,3)/10,5 → η3=0,248η4/ η1=(10,5-1,6-6,3-1,6)/10,5 → η4=0,093Tmax max

cΨ’= =P3 cΨ’* η1+P1

cΨ’* η2+P3 cΨ’* η3+P1

cΨ’* η4

=37800(1+0,248)+35100*(0,848+0,095) =80273,7 daNMmax max

pq=Mmax maxp cΨ’+Mmax

qtc=143832,87+7419,86=151252,73 daN/mTmax max

pq=Tmax max cΨ+Tmax

qtc=80273,7+2826,6=83100,3 daNMmax max

ptcα=Mmax max cΨ’* / =

143832,7*3*2535/(2*35100+37800)=10128,23 daN/m

II Stabilirea dimensiunilor sectiunii transversale cu verificarea sectiunii

13

Page 14: Proiect Constructii Metalice g.

stabilirea dimensiunilor inimii a)inaltimea inimii -conditii constructive 1)h=(1/8 ÷ 1/10)t=(1/8 ÷ 1/10)*10,5=(1,31 ÷1,05) m -conditia de rigiditate 2)nmin=5/24 *R*t2/(E*fa*nv)=5/24*2200*10502/(2,1*1061,75*1,2) nmin=114,58 cm R=2200 daN/cm2

t=10,5 m E=2,1*106 daN/cm2

ta=t/600=1050/600=1,75 ;nv=1,2

3)conditii de rezistenta hopt=1,15 Wx

nec ≥Mmax maxpq/Rred=151252,73*102/1980=7639 cm3

Rred ~(0,85 ÷0,95)R=(0,85 ÷0,95)*2200=(1870 ÷2090) daN/cm2

hmin=114,58 ~115 cm ;t>6 mm

ti(cm) 0,6 0,7 0,8 0,9 1,0 1,2hiopt(cm) 139 128 120 114 108 98λ=hi/ti 231 183 150 127 108 82

hiopt=1,23*hopt=1,10* =1,15* h1opt=113,24 cm h2opt=120,34 cmhi-rot 50 mm<1000 mm hi=120 cm=1200 mm 100 mm<1000 mm ti=0,9 cm=9 mm

4)gosimea inimii a)conditii constructive ti ≥6 mm b)conditii de rezistenta ti ≥1,185 Tmax max

pq/(hi*Rf)=83100,3/(120*1300)=0,599 cm=5,99 mm

14

Page 15: Proiect Constructii Metalice g.

Rf=1300 daN/cm2

c)conditii de apasare a rotilor

z=50+2(hs+t)=50+2*(90+20)=270 mm=27 cm σl=P3

cΨ/(z*ti) ≤R →ti ≥P3 cΨ/(z*R)=45360/(27*2200)=0,76 cm

t=0,8 cm (tabel) Stabilirea dimensiunilor talpilor a)conditia de stabilitate locala b’/t ≤k1 → b’ ≤k1*t k1=15 (OL37) bi’ ≤2*b’=2ki*t Anec ≥2,73* Wx

nec=7639 cm3 λet=1200/9=133 Anec ≥2,73* =207,45 cm2 →Anec=210 cm2

Anec=Ai+Ata’pi

Ai=hi*ti=120*0,9=108 cm2 →Ata’pi=210-108=102 cm2

A1t=Ata’pi/2=102/2=51 cm2

A1t=t*bi=t*2*k1*t=2*k1*t2 →t= = =1,30 cm=13 mm

t>6 mm t=13 mm=1,3 cm bi ≤2*b’=2k1*t=15*13=195 mm →b’=200 mm=20 cm b’ ≤k1t bi ≤2b’=2k1t=2*20=40 cm Ata’pi=2*bi*t=2*40*1,3=104 cm2

Ai=bi*ti=120*0,9=108 cm2

a)b3

b2=b3net+2d=bi+2d=400+2*20=440 mm =44 cm

b3net=bi=400 mm=40 cm

O=20 mm =2 cm b)b3 ≥hs+2*(bc+(20 ÷40)+(10 ÷15)) =90+2*(80+(20 ÷40)+(10 ÷15))=(310 ÷360) mm bc=80 mm- α 80*80*8 hs=90 mm

Calculul grinzii de rulare

15

Page 16: Proiect Constructii Metalice g.

Stabilirea incarcaturilor a)Permanente -greutate tabla striata gTGS

n=gTGS*l/2=51/2=25,5 daN/m gTGS

c=gTGSn*n=25,5*1,1=28,1 daN/m n=1,1

-greutate profil U16 ggf

n=18,8 Kg/m =18,8 daN/m n=1,1 ggf

c=ggfn*n=18,8*1,1=20,7 daN/m

b)cvasipermanente -incarcare utila gu

n=150....200 daN/m*l/2=200/2=100 daN/m n=1,4 gu

c=gun*n=100*1,4=140daN/m

Total incarcari -gtgf

n=144,3 daN/m =gtgf

c=188,8 daN/m

Tmaxc=gtgf

c/2*l=188,8*10,5/2=991,2 daNMmax

c=gtgfc*l2/8=188,8*10,52/8=2601,9 daN/m

STABILITATEA INCARCARILOR

-din conditia de rezistenta σ=M/W ≤Rred →Wx

nec=Wmaxc/Rred

Rred=0,85R(=2200 daN/m) ≥2601,9*102/1870=139,14 cm3

U18: Wx=150 cm3

-din conditia de rigiditatefef=5/48*Mmax

n*l2/(E*Jxnec) →Jx

nec ≥Mmaxn*l2/(E*fa)*5/48

Mmaxn=ggtf

n*e2/8=144,3*10,52/8=1988,63 daN/mfa=l/250=1050/250=4,2 cmJx

nec=5/48*1988,63*102*10502/(2,1*106*4,2) →Jxnec=2589,36 cm4

U22 Jx=2690 cm4

Wx=245 cm3

Verificarea ansamblului GR-GF

16

Page 17: Proiect Constructii Metalice g.

in punctul A σA

1= σAp+ σA

L+ σAML ≤R

σA2= σA

P+ σAPt ≤bR

σAP=Mmax max

p,q/Wxnet

Wxnet=Jx

net/ymax

Jxnet=40*12263/12-2*19,55*1203/12=512170,59 cm4

Wxnet=512170,59/61,3=8355,15 cm3

Agrnet=1,3*40+120*0,9+1,3*44-2*1,3*2,1=211,74 cm2

Mmax maxpq=151252,73 daN/m

σAP=151252,73*102/8355,15=1810,29 daN/cm2

σALL cα/Agr

net=10530/211,74=49,73 daN/cm2

σAML=L cα*e/Wx

net=10530*70,3/8355,15=88,6 daN/cm2

l=hgr/2+b=1226/2+90=703 mm=70,3 m σA

1=1810,29+49,73+88,6=1948,62 daN/cm2 ≤R(=2200daN/cm2) σA

pt=Mmax maxqtcα/Wxf

A

VGF= / =((0,5*95)*57,5+37,4*117,86)/(0,5*95+1,3*44,0+37,4)JyF=(1,3*443/12+1,3*44*50,242)+(0,5*953/12+0,5*95*19,762) +(197+37,4*67,622)=379082,22 cm4

Wyft=Jy

t/xA=5415,5 cm3

Pt cα=2535 daN

Mmax maxpecα=10128,23 daN/m=10128,23*102daN/cm

σApt=101128,23*102/5415,5=187,02 daN/cm2

σA2=1810,29+187,02=1997,31 daN/cm2<1,1R=2420 daN/cm2

-in punctul C ≤Rf=1540 daN/cm2

=Tmax maxpq*Sx

1/2/(ti*Jx net) Sx

1/2=A*yG=40*1,3*(120*1,3)/2+120/2*0,9*120/2=6393,8 cm3

=83100*6393,8/(0,9*512170,59)=1152,66 daN/cm2<Rf=1540 daN/cm2

- in punctul Dσech

D= ≤mRσD

x= σDP+ σD

L+ σDML

σDP= σA

P*hi/h=1810,29*120/122,6=1771,9 daN/cm2

σDL= σA

L=49,73 daN/cm2

σDML= σA

ML*hi/h=88,6*120/122,6=86,72σD

x=1771,9+49,73+86,72=1908,35 daN/cm2

= *Sxt/Sx

1/2=1152,66*3736,04/6393,8=673,52 daN/cm2

17

Page 18: Proiect Constructii Metalice g.

Sxt=1,4*44*(120+1,3)/2=3736,04 cm3

σDe=Pmax/(z*ti)=45360/(28*0,9)=1800 daN/cm2

σDech= =219

2 daN/cm2

σDech=2192 daN/cm2<mR=1,1*2200=2420 daN/cm2

Verificarea de rigiditate fx=5/48*Mmax max

pc/nmed*l2/(E*Ixbr) ≤fa=e/600=1,75 cm

nmed=1,3 Mmax max

p cΨ=151252,73*102 daN/cm JG=(40*1,3*1,3/2+120*0,9*(120/2+1,3)+44*1,3(120+1,3+1,3/2))/ (40*1,3+120*0,9+44*1,3)=62,91 cm Jx

br=40*1,33/12+40*1,3*62,912+0,7*1203/12+0,9*120*1,612+44*1,33/12 +44*1,3*59,042

Jxbr=506277,34 cm4

tx=5/48*151252,73*102*10502/(1,3*2,1*106*506277,34)=1,26 cm<1,75 cm

Calculul imbinarii talpii superioare cu inima

3mm ≤as ≤0,7*tmin=0,7*9=6,3 mm

Verificare la stabilitate generala

l1 ≤Kg*Iyf Kg=40 Iyf= = =51,65 cm l1=1050<<40*51,65 =2066 cm -stabilitatea generala este asigurata

Verificarea la stabilitate locala a elementelor grinzii de rulare

a)stabilitatea locala a inimii hi/ti=120/0,9=133,33 →hi/ti>80* 80* =78,2 -sunt necesare rigidizari curente pe grinda

a ≤2*hi=2*120=240 cm 1050/240=4,37 -5 panouri 1050/5=210 cm br=hi/n0+40 mm=1200/30+40=80 mm br ≤(bs-ti)/2=(440-9)/2=215,5 mm

18

Page 19: Proiect Constructii Metalice g.

br ≤(bi-ti)/2=(400-9)/2=195,5 mm →br=100 mm tr ≤br/15=100/15= 6,67 mm -otet RC=1,5R=3300 daN/cm2

-rigidizarea de reazem Anec

str ≥Rmaxgr/Rc=83100/3300=2518 cm2

-br1=380 mm ≤bi →tr1=25,18/38=0,66 cm →tr1=0,7 cm tr1=7 mm = otet lat 380*7 →AR1

ef=26,6 cm2

15*ti* =15*0,7* =10,25 cm

Verificarea la strivire a rigiditatii de reazem

Astref=br1*tr1=38*0,7=26,6 cm2

σ2ef=83100/26,6=3124,06 daN/cm2 <3300 daN/cm2

Verificarea la compresiune cu flambaj

Tmax maxp,ct ≤R

Ar11=Ar1

ef+15*ti* *ti26,6+10,25*0,7=33,78 cm2 λy1=efy1/iy1=120/10,31=11,36 efy1=hi120 cm ey1=0,993 → 83100/(0,993*33,78)=2477,37<2200 daN/cm2

-consideram : 420*8=3360 mm2=33,6 cm2

Ar1’=Ar1ef+15*t1 *ti=33,6+10,25*0,8=41,8 cm2

83100/(0,993*41,8)=2002 daN/cm2≤R=2200 daN/cm2

Calculul sudurilor dintre rigidareade reazem si inima

3mm≤as1≤0,7*tmin

=Rmaxgr/(2*Rf

s*es) →as≥83100/(2*1540*120)=0,22 →as1=3 mm

Verificarea la stabilitate locala a inimii

hi/tr≥70 →120/0,8=150 →necesara verificarea ≤n=0,9

19

Page 20: Proiect Constructii Metalice g.

→ 35100*3,6+37800*5,2=VB*10,5 → VB=30754 daN M1=42146*3,0=126438 daN/m M2=42146*4,2-35100*0,6=155953 daN/m Mmed=(M1+M2)/2=(126438+155953)/2=141196 daN/m Tcoresp=46146 daN σD=Mmed/Ws

WxD=Jx

br/ys=506277,34/60=8437,96 cm3

σD=141196*102/8437,96=1673,34 daN/cm2

=Tcoresp/(ti*hi)=46146/(0,9*120)=427,28 daN/cm2

σcr=K0*(ti/hi)2*102 (KN/cm2) σecr=K1(ti/a)2*102 (KN/cm2) =(1250+950/α2)*(ti/a)2*102 (KN/cm2) α=2100/1200=1,75 γ =c*b0/hi*(t/ti)3=2*44/120*(13/9)3=2,21 σe

D=Pmax/(z*ti)=43360/(28*0,9)=1720,6 daN/cm2

σe/ σ=1720,6/1673,34=1,02 →K0=7028,35 a/hi=1,75>0,8 → σecr=K1(ti/a’)2

σcr=7028,35*(0,9/120)2*102=39,53 KN/cm2=3950 daN/cm2

σecr=9385*(0,9/210)2*102=52,79 KN/cm2=5279 daN/cm2

=(1250+950/1,752)*(0,9/210)2*102=8,77 KN/cm2=877 daN/cm2

=0,89<0,9 (=n)

Verificarea la oboseala a grinzii de rulareσmax

pq=Mmax max/Wxnet ≤ γ*R

-intindere γ0=c/(b-a*l) a=1,55 b=0,95 c=0,95 P1=22500 daN P3=27000 daNMmax max

pnqn=Mmax maxpcqc*1/nmed

=151252,73*1/1,3=116348,25 daN/mσmax

pnqn=116348,25*102/8355,15=1392,53 daN/cm2

σmin=Mmaxqn/Wmax

net=7419,86*102/(1,3*8355,15)=68,31 daN/cm2 →ρ=0,0491γ=0,95/(0,95-1,55*0,0491)=1,09σmax1392,53< γR=1,09*2200=2391,4 daN/cm2

Calculul grinzii cu zabrele

20

Page 21: Proiect Constructii Metalice g.

Stabilirea incarcarilorNormate Coef. inc. De calcul

A)Permanente-din invelitoare (tip

TPC)ginv

n=13 daN/m2

-din panegpn

n=1,1*np*gI*t/(t*L)=1,15*10*3,62*10,5

/(10,5*105)=3,96 daN/m2

-greutate luminatorge

n=5 daN/m2

-greutate covgcov

n=4,5 daN/m2

-greutate proprie fermaL=30 mt=10,5 m

gt2=303,75 daN/m2

gfn=19,5 daN/m2

1,2

1,1

1,1

1,1

1,1

ginvc=15,6 daN/m2

gpnc=4,36 daN/m2

gec=5,5 daN/m2

gcovc=4,95 daN/m2

gfc=21,45 daN/m2

gtn=45,96 daN/m2 gt

c=51,86 daN/m2

B)cvasipermanente-greutate instalatii

gen=3 daN/m2

-din praf industrialgpi

n=5 daN/m2

1,4

1,4

gec=4,2 daN/m2

gpic=f daN/m2

C)variabile

-zapada : cf STAS 10101/21-92 Pz

n=Ce*Cz”*gz=0,8*1,1*150=120 daN/m2 -calculat la pana γpz= γa-0,4*gt

n/(Ce*gz)=2,2-0,445,96/(0,8*150)=2,047>0,3* γa=0,66 (pt SLR) γ0=2,2 γc=1,4 -pt clasa de importanta III γ0z= γc-0,2*gt

n/(Ce*gz)=1,4-0,2*45,96/(0,8*150)=1,323>0,42 (pt SLEN) Pz

c=Pzn* γFz=120*2,047=245,64 daN/m2

Pzn(q)=Pz

n* γ0z=120*1,323=158,76 daN/m2

-din actiunea vantului Pv

n=β*cvi*ch(z)*gv

H=S+300÷400+hpana+hinv

21

Page 22: Proiect Constructii Metalice g.

=18700+350+240+70=19360 mm H’=H+440+h0

=19360+440=19800 mm β=1,6 –coeficient de rafala pt. constructii din categoria C1

gv=0,41 KN/m2 –presiunea de baza stabilizata, la inaltimea de 10 m deasupra terenului

Cvi-coeficient aerodinamic pe suprafata “i”ch(z)-coef de variatie a presiunii de baza in raport cu inaltimea z

deasupra terenului liber

β=45°-cf STAS 10101/20 -90H/R=19360/30000=0,65 →Cv1=-0,62α=2,31H’/R=19800/30000=0,66 →Cv1’=0,305α=45°H/L=0,65L/l=105000/30000=3,5 →Cv3=-0,53H/L=0,65 →Cv2=-043H’/l=0,66 →Cv2’-0,432 -amplasament de tip II ch(z)=0,65*(z/10)0,44≥0,65γF1= γ0=1,2 -SLURγav= γc=1 -SLEN pt. clasa de importanta III si constructii (C1)

z1=(H’-H)/2+H=19,58 m=z2

z1’=H’+he/2=19,8+3/2=21,3=z2’ ch(z1)=0,65*(19,58/10)0,44=0,874>0,65 ch(z1’)=0,65*(21,3/10)0,44=0,907>0,65Pv1

n=β*Cv1*ch(z1)*gV=1,6*(-0,62)*0,874*42=-36,41 daN/m2

Pv1n’= β*Cv1’*ch(z1’)*gV=1,6*0,305*0,907*42=-18,59 daN/m2

Pv2n= β*Cv2*ch(z2)*gV=1,6*(-0,43*0,874*42=-25,26 daN/m2

Pv2n’= β*Cv2’*ch(z2’)*gV=1,6*(=0,432)*0,907*42=-26,33 daN/m2

Pv0n= β*Cv0*chmed*gv=1,6*0,8*0,703*42=37,79 daN/m2

Pv3n= β*Cv3*chmed*gv=1,6*(=0,53)*0,703*42=-25,4 daN/m2

-valori de calculat ale incarcarilor din vant(SLUR) Pvi

c= γFv*Pviω - γFv=1,2

Pv1c=1,2*(-36,41)=-43,69 daN/m2

Pv1’c=1,2*18,59=22,31 daN/m2

22

Page 23: Proiect Constructii Metalice g.

Pv2c=1,2*(-15,16)=-30,31 daN/m2 →asupra acoperisului

Pv2’c=1,2*(-26,33)=-31,60 daN/m2

Pv0c=1,2*37,79=45,35 daN/m2

Pv3c=1,2*(-25,4)=-30,48 daN/m2 →asupra peretilor halei

-valori normate ale incarcarilor din vant (SLEN) -verificarea la rigiditatePvi

n(c1)= γov*Pvin ; γov=1 →Pvi

n(c1)=Pv1’n

-incarcari pe ferma: *permanente si cvasipermanente qp

n=(ginvn/cosα+gpana

n+gen+gcv

n+gpn+ge

n+gpin)*t

=(13/cos2,31 +3,96+5+4,5+19,5+3+5)*10,5=556,7 daN/m qp

c=(ginvc/cosα+gpana

c+gcc+gcv

c+gtc+ge

c+gpic)*t

=(15,6/cos 2,31++4,36+5,5+4,95+21,45+4,2+7)*10,5=662,8 daN/m *zapada qz

n=Pzn(c1)*t=158,76*10,5=1667 daN/m

qzc=Pz

c*t=245,64*10,5=2580 daN/m *vantqvi

n=Pvin*t qvi

c=Pvic*t

qv1n=-36,41*10,5=-328,3 daN/m qv1

c=-43,69*10,5=-458,75 daN/mqv1’

n=18,59*10,5=195,2 daN/m qv1’c=22,31*10,5=234,3 daN/m

qv2n=-25,26*10,5=-265,2 daN/m qv2

c=-30,31*10,5=-318,3 daN/mqv2’

n=-26,33*10,5=-276,5 daN/m qv2’c=-31,00*10,5=-331,8 daN/m

qv0n=37,79*10,5/2=198,4 daN/m qvo

c=45,35*10,5/2=238,1 daN/mqv3

n=-25,4*10,5/2=-133,35 daN/m qv3c=-30,48*10,5/2=-160 daN/m

Eforturi axiale in barele grinzii cu zabrele-incarcari P+CV qP+CV

n=566,7 daN/m qP+CVc=662,8 daN/m

P1=qP+CV*3/2=850 daNP2=qP+CV*(3+3)/2=1700 daNV= /2=(2*P1+9P2)/2=(2*850+1700*9)/2=8500 daN

-incarcari z qz

n=1667 daN/m P1=qz*3/2=1667*3/2=2500 daN P2=qz*(3+3)/2=1667*(3+3)/2=5000 daN

23

Page 24: Proiect Constructii Metalice g.

V=(2*P1+9*P2)/2=(2*2500+9*5000)/2=25000 daN -incarcarea =100 daN –la mijlocul deschiderii V= /2=100/2=50 daN -incarcarea 1=100 daN -in reazeme

Calculul static al cadrului transversal

Incarcari P+CV din reactiunea grinzii cu zabrele Rgz

P+CV(n)=qP+CVn*α/2=566,7*30/2=8500 daN

RgzP+CV(c)=qP+CV

c*α/2=662,8*30/2=9942 daN din greutate stalp gs

s=(100.....150)=125 daN/m Gs

n*hs=125*6,5=812,5 daN Gsc=812,5*1,1=893,75 daN

gsi=(200....250)=225 daN/m

Gin=gs

i*hi=225*12,2=2745 daN Gic=2745*1,1=3019,5 daN

Schema statica

l=bi/2-bs/2=1200/2-370/2=415 mm din greutate pereti: gp

n~ginvn=13 daN/m2*t/2=13*10,5/2=68,25 daN/m

gpc=gp

n*1,1=68,25*1,1=75,1 daN/m Gp

s(n)=gpn*hs=68,25*6,5=443,6 daN

Gps(c)=gp

c*hs=75,1*6,5=488,15daN →partea superioara Gp

i(n)=gpn*hi=68,25*12,5=832,65 daN

Gpi(c)=gp

c*hi=75,1*12,5=916,22 daN →partea inferioara

- calculul reactiunii la nivelul consolei inferioare din incarcari P+CVRP+CV

n=RgzP+CV(n)+Gs

(n)+Gps(n)=8500+812,5+443,6=9756,1 daN

RP+CVc=Rgz

P+CV(s)+Gs(c)+Gp

s(c)=9942+893,75+488,15=11324 daN nP+CV=11324/9756,1=1,16Mmax

n(P+CV)=Rn*e=9756,1*0,415=4048,78 daNmMmax

c(P+CV)=Rc*e=11324*0,415=4700 daNm incarcari variabile

din reactiunea grinzii cu zabrele provenite din incarcarea din zapadaVgz

z(n)=qzn*L/2=1167*30/2=25005 daN

Vgzz(c)=qz

c*L/2=2580*30/2=38700 daNnz=38700/25005=1,55

calculul reactiunii din nivelul consolei inferioare din zapada

24

Page 25: Proiect Constructii Metalice g.

Rz(n)=Vgzz(n)=25005 daN

Mmaxz(n)=Rz(n)*e=25005*0,415=10377 daNm

Rz(c)=Vgzz(c)=38700 daN

Mmaxz(c)=Rz(c)*e=38700*0,415=16060,4 daNm

din actiunea podurilor rulantea)verticale -reactiuni maxime si minime

η1=1η2=1/10500*4200=0,4η3=1/10500*(6300+2600)=0,848η4=1/10500*2600=0,248Rmax=P1(η2+ η3)+P3(η1+ η4)Rmin=P2(η2+ η3)+P4(η1+ η4) -valori normate P1

nΨ=29250 daN P3nΨ=35100 daN

P2nΨ=10400 daN P4

nΨ=13650 daNRmax

n=29500*(0,4+0,848)+35100*(1+0,248)=80308,8 daNRmin

n=10400*(0,4+0,848)+13650*(1+0,248)=30014,4 daN -valori de calcul P1

cΨ=35100 daN P3cΨ=37800 daN

P2cΨ=12800 daN Pc

cΨ=16380 daNRmax

c=35100*(0,4+0,848)+37800*(1+0,248)=90979,2 daNRmin

c=12800*(0,4+0,848)+16380*(1+0,248)=36416,6 daN nprV=90979,2/80308,8=1,1-calculul momentelor maxime si minime la nivelul consolei inferioare provenite din excentritatea grinzii pe stalp

l’=c-l=1000-415=585 mm=0,585 m-normate Mmax

n=Rmaxn*l’=80308,8*0,585=46980 daNm

Mminn=Rmin

n*l’=30014,4*0,585=17558 daNm-de calcul Mmax

c=Rmaxc*l’=90979,2*0,585=53223 daNm

Mminc=Rmin

c*l’=36416,6*0,585=21304 daNm

b)orizontale

Rmaxpt=Pt*Σηi

Ptn=1950 daN

Ptc=2535 daN

RmaxPt(n)=1950*(1+0,4+0,848+0,248)=4867,2 daN

25

Page 26: Proiect Constructii Metalice g.

RmaxPt(c)=2535*(1+0,4+0,848+0,248)=6327,36 daN

npro=6327,36/4867,2=1,3

x=hs-hgr=6500-1226=5274 mm=5,274 m din actiune vantului

α=2,31β=45°

-normateR1=qV1*l1=382,3*11,815=4516,87 daN R1

V=4516,87*cosα=4513,2 daN R1

O=4516,87*sinα=182,1 daNl1= =11815 mm=11,815 mR1’=qV1’*e1=195,2+4,24=827,65 daN R1

o’=827,65*sinβ=585,24 daN R1

V’=827,65*cosβ=585,24 daNl1’= =4,24 mR2’=qV2’*l2’=276,5*4,24=1172,36 daN R2

O’=3133,34*sinβ=828,98 daN R2

V’=1172,36*cosβ=828,98 daNR2=qV2*l2=265,2*11,815=3133,34 daN R2

o=3133,34*sinα=126,3 daN R2

V=3133,34*cosα=3190,8 daN

Calculul reactiunilor transmise de grinda cu zabrele stalpului, provenite di actiunea de vant

ΣMA=0 → VB*30-R2V*24,1-R2

V’*16,5+R1V’*13,5-R1

V*5,9- (R1o-R2

o) *0,295+(R1

o’+R2o’)*1,795=0 → VB=3511,18 daN

ΣMB=0 →VA*30-R1V*24,1+R1

V’*16,5+R2V’*13,5-R2

V*5,9+(R1o-R2

o)*0,295 (R1

o’-R2o’)*1.795=0 →VA=4376,56 daN

ΣPx →HH=R1o’+R2

o’+R2o+R1

o=1358,42 daN

RV=4376,56 daN qVo=198,4 daN/mMV=4376,56*0,415=1816,27 daN/m qV3=135,33 daN/m

Calculul static al cadrului transversal tinandcont de influenta conlucrarii spatiale

I1/I2=1/5÷1/10=1/7

26

Page 27: Proiect Constructii Metalice g.

I2=7*I1 n=I2/I1=7a=hs=6500 mmH=18700 mm λ=a/H=6500/18700=0,348α1=((n-1)* λ+1)/n=((7-1)*0,348+1)/7=0,441α2=((n-1)* λ2+1)/n=((7-1)*0,3482+1)/7=0,247α3=((n-1)* λ3+1)/n=((7-1)*0,3483+1)/7=0,179α4=((n-1)* λ4+1)/n=((7-1)*0,3484+1)/7=0,155

Incarcari permanente + cvasipermanente

MP+CV=4048,78 daN m Ψ*H=6,5 → Ψ= λ=M/H*3/(2* α3)*( α2- Ψ2)=4048,78/18,7*3/(2*0,179)*(0,247-0,3482)

=228,42 daNMA= *H-M=228,42*18,7-4048,78=222,67 daN m

ZAPADA

Mmaxz(n)=10377 daN m

z=M/H*3/(2* α3)*(0,247-0,3482)=585,44 daNMA= *H-M=585,44*18,7-10377=570,68 daN m

PODURI RULANTEa)verticaleMmax=46980 daN mMmin=17668 daN m

PRV=3*(α2-λ2)/(H*2*α3*2)*(Mmax+Mmin)=3*(0,247-0,3482)/ (2*18,7*2*0,179)*(46980+17558)=3641,02 daN/2=1820,51 daN

b)orizontaleΨ*H=x →Ψ=x/H=5,274/18,7=0,282Rmax

Pt=4867,2 daNpro=Rmax

Pt*[1-Ψ/(2*α3)*(3*α2-Ψ2)] =4867,2*[1-0,282/(2*0,179)*(3*0,247-0,2822)]=2331,14 daN

A=H( pro-RmaxPt*(1-Ψ))=18,7*(2331,14-4867,2*(1-0,282))= -

2157,63daNm

VANT -asupra acoperisuluiMV=1816,27 daN mHa=1358,42 daN

27

Page 28: Proiect Constructii Metalice g.

Va=Ha/2+M/H*3/(2*α3)*( α2-λ2) =1358,42/2+1816,27/18,7*3/(2*0,179)*(0,247-0,3482)=781,68 daN

-asupra paretilorqVo=198,4 daN/m qVs=135,33 daN/m

Vp=3*H/16*α4/α3*(qVo-qVs)=191,49 daN

in barele grinzilor cu zabrele cosiderand gr de cadruzapada in. din act. vantului inc. din poduri rulante

asupra acoperisului

asupra peretilor

act. verticale act. orizontale

element

bara + - + - + - + - + -

1 2 13 14 15 16 17 18 19 20 21 22Ts 1-2 174

83- 23370 - - 5708 - 108811 69661 -

2-3 18281

- 24437,5 - - 5969 - 119781 72844 -

3-4 38025

- 50830 - - 12415 - 236665 151515

-

4-5 38306

- 51205 - - 12507 - 238413 152264

-

5-6 44279

- 59190 - - 14457 - 275587 176433

-

Ti 7-8 - 28928 - 38670 9445 - 180047

- - 115268

8-9 - 41526 - 55510 13558 - 258456

- - 165466

9-10 - 41734 - 55788 13625 - 259749

- - 166294

Δ 1-7 - 22616 - 30232 7384 - 140761

- - 90116

3-7 15962

- 21337 - - 5211 - 99345 63601 -

5-8 5692

- 7609 - - 1584 - 35427 22681 -

3-8 - 12256 - 16383 4001 - 76279 - - 48834

5-10 - 2867 - 3832 936 - 17841 - - 11422

M 2-7 1240

- 1658 - - 405 - 7719 4942 -

4-8 1152

- 154` - - 376 - 7173 4592 -

5-9 - 1199 - 1603 392 - 7564 - - 47796-10 989 - 1322 - - 323 - 6153 3939 -

eforturi axiale in barele gr. cu gr. simplu rezemata efortuei axiale

28

Page 29: Proiect Constructii Metalice g.

zabreleperm.+cvasiperm zapada inc. conc.

unit. in reazem

inc.conc. unit. in mijlocul

desc.

perm. cvasiperm.

elment

bara

+ - + - + - + - + -

1 2 3 4 5 6 7 8 9 10 11 12Ts 1-2 - 106

55- 25719 - 2988,

5- 2946 6814 -

2-3 - 11109

- 26787 - 3125 - 3086 7125 -

3-4 - 23235

- 55882 - 6500 - 6558 14820 -

4-5 - 23422

- 56339 - 6548 - 6609 14929 -

5-6 - 26969

- 64781 - 7569 - 7716 17257 -

Ti 7-8 18341

- 44325

- 4945 - 5034 - - 11275

8-9 25724

- 61846

- 7098,5

- 7298 - - 16185

9-10

25841

- 62120

- 7134 - 7337 - - 16266

Δ 1-7 14311

- 34570

- 3866 - 3943 - - 8814

3-7 - 10317

- 25041 - 2728,5

- 1796 6221 -

3-8 6756

- 15930

- 2035 - 2089 - - 4777

5-8 - 3428,5

- 8193 - 973 - 1031 2218 -

5-10

1648

- 3890

- 490 - 553 - - 1117

M 2-7 - 1806

- 4895 - 212 - 215 483 -

4-8 - 1788

- 4872 - 197 - 200 449 -

29

Page 30: Proiect Constructii Metalice g.

5-9 192,5

- 172 - 205 - 204 - - 467

6-10

- 1645

- 4506 - 169 - 260 385 -

Gruprarea incarcarilorNormale De calcul

Pn+CVn+ng*Σvi

n Pc+Cvc+ngΣvi

c

+ - + -

Ts 1-2 - 20318 - 258042-3 - 31861 - 404633-4 - 66548 - 845154-5 - 67449 - 856605-6 - 77143 - 97971

Ti 7-8 52922 - 67211 -8-9 73761 - 93677 -9-10 74086 - 94089 -

Δ 1-7 41273 - 52417 -3-7 - 20544 - 260903-8 18842 - 23930 -5-8 - 9757 - 123915-10 4623 - 4623 -

M 2-7 - 8968,5 - 113904-8 - 8761 - 111275-9 128 - 162 -6-10 - 5519 - 7009

x’max=x’ijP+CV+x’ij

xP+CV+0,9*(x’ijgz+x’ij

xz+x’ijXprv+x’ij

pro)

Dimensionarea barelor grinzii cu zabrele

A)Bare intinse I Talpa inferioara Nmax=94089 daN -otel OL37 R=Ri=Rc=2200 daN/cm2 →t≤16 mm1. Alcatuirea sectiunii2. Stabilirea dimensiunilor gguseului tg=f: →tg=8....10 mm →tg=10 mm3. Stabilirea dimensiunilor sectiunii a)din conditia de rezistenta

30

Page 31: Proiect Constructii Metalice g.

σ=x’/Anet≤R →Abrnec≥Nmax/R*Ks

Ks=1,1÷1,2 -coeficient de slabire Ks=1,15 Abr

nec≥94089/2200*1,15=49,18 cm2

A1necbr=Abr

nec/2=49,18/2=24,59 cm2 →L 120*120*12 L→ 2*L →

b=2*R+1=25 cm Iy= =5,35 cmIy=(Jy+A1*d2)*2=(368+27,5*3,92)*2=1572,55 cm4

d=l+tg/2=3,40+1/2=3,9 cm

4)verificarea sectiunii a)verificarea de rezistentaσmin=Nmax/Anet ≤R=94089/49,96=1883,28daN<R(=2200daN/cm2)Anet=Abr-asc=55-5,04 cm2=49,96 cm2

Asc=2*(2,1+1,2)=5,04 cm2

b)verificarea de zvelteteλx=lfx/ix ≤ λa=400 →300/3,66=81,96< λa

λy=lfy/iy ≤ λa →lfynec ≥iy* λa=5,35*400=2140

Lgr/2=3000/2=1500 →l1=1500 cm λy=1500/5,35=280,37< λa

DIAGONALA INTINSA -bara 1-7 N=52417 daNl17=3,97 m=3970 mmlfx=0,8*l1-7=0,8*3970=3176 mmlfy=l17=3970 mm

1. ALCATUIREA SECTIUNII

2. Stabilirea dimensiunilora)conditia de rezistenta Ks=1 -imbinari sudateAbr

nec ≥Nmax/R*Ks=52417/2200*1=23,89 cm2 →Abrnec=23,83/2=11,92 cm2

L70*70*10 2*L

3. VERIFICAREA SECTIUNII a)de rezistenta σmax-Nmax/Anet=52417/24,1=2175 daN/cm2<R(=2200 daN/cm2) b)de zveltete: λx=lfx/Px=317,6/2,1=151< λa=400

31

Page 32: Proiect Constructii Metalice g.

λy=lfy/Iy=39,70/3,33=191< λa

Solidarizari

l1 ≤80*i1

l1 ≤80*3,66=292,8 →293 cm -pt talpa inferioaral1<80*2,1=168 cm -pt. diagonala intinsa -Cel putin o fisura la barele intinse

B)Dimensionarea barelor comprimate Talpa superioara Nmax=N5-6=97971 daNl5-6=3000 mm →lfx=e5-6=3000 mm lfy=e5-6=3000 mm R=2200 daN/cm2

1)Alcatuirea sectiuni

2)Dimensionarea sectiunii Metoda coeficientilor de profilKx=4,6Ky=1,9 tg=12 mm → de tipul sectiunii (tabel)αx=0,3 αy=0,2

ξx=lfx* =300* =96,42ξy=lfy* =300* =61,97

→ →

emin=min(ex;ey)=0,678hnec ≥lfx/( αx* λx)=300/(0,3*77)=12,98 cmbnec ≥lfy/( αy* λy)=300/(0,2*59)=25,42 cmh1nec ≥129,8 mmb1

nec≥(bnec-tg)/2=(25,42-1,2)/2=12,1 cm=12 mm →L130*130*12

Metoda coeficientilor de flambaj impus initialφ°=0,57Anec

br≥N5-6/2=97971/0,57*2200=78,13 cm2

A1nec=78,13/2=39,07 cm2 →L150*150*14 A1

ef=40,3 cm2

Ix1=Iy1=845 cm4 Aef=2*40,3=80,6 cm2

ix1=iy1=4,58 cm →2*L Ix=2*Ix1=1690 cm4

l=4,21 cm Ix=[845+40,3*(4,21+1,2/2)2]*2=3555cm4

ix=4,58 cm

32

Page 33: Proiect Constructii Metalice g.

iy=6,64 cm

3.Verificarea sectiunii a) de rezistenta σ=N/Anet=97971/75,56=1297 daN/cm2<<R=2200 daN/cm2

Anet>φmin*As2=0,57*75,56=43,,07 cm2 –verificarea de rezistenta nu este necesarab)verificarea de stabilitate N5-6/(lmin*As2)=97971/(0,57*80,6)=2132,5 daN/cm2<R=220 daN/cm2

DIAGONALA COMPRIMATANmax=N3-7=26090daNl37=4175 mm=417,5 cmlfx=0,8*l37=334 cm=3340 mm R=2200 daN/cm2

lfy=417,5=4175 mm

1.Alcatuirea sectiunii

2.Dimensionarea sectiunii ξx=lfx= =334*

=208ξy=lfy* =417,5* =167

→ →

hnec≥lfx/(αx*λx)=334/(0,38*129)=8,63 cmbnec≥lfy/(αy*λy)=417,5/(0,2*112)=18,64 cmh1nec>8,63 cm=86,3 mmb1nec≥1864/2=932 mm →L100*100*10

φmin=min(φx; φy)=0,38Anec≥N37/(φ0*R)=26090/(0,38*2200)=31,21 cm2

A1nec≥31,21/2=15,61 cm2 →L100*100*10

L 2*L

3.Verificarea sectiunii a)de zveltete λmax=110<λa=150 pt. diagonale b)de stabilitate N34/(lmin*Aef)=26090/(0,38*34,2)=2007,5 daN/cm2<R(2200 daN/cm2)

Montantii comprimati

33

Page 34: Proiect Constructii Metalice g.

lfx=0,8*2800=2240 mmlfy=2800 mm

1. Alcatuirea sectiunii

2. Dimensionarea sectiunii →ξx=lfx* =224*

=211ξy=lfy* =280* =170

→lx=0,37 λx=127 →ly=0,46 λy=115

hnec≥lfx/(αx*λx)=224/(0,3*127)=5,88 cm=58,8 mmbnec≥lfy/(αy*λy)=2800/(0,2*115)=12,12 cm=121,2 mmb1nec=121,2/2-12/2=60 mm →L60*60

lmin=0,37Anec≥N2-7/(φ0*R)=11390/(0,37*2200)=13,99 cm2

A1nec=Anec/2=7 cm2 →L70*70*6

L70*70*6 2*L

3.Verificarea sectiunii a)de zveltete λx=lfx/ix=224/2,28=98 λy=lfy/iy=280/3,40=82 →λmax=98<λa=150 b)de stabilitate N2-7/(φmin*Aef)=11390/(0,37*15)=2052,25 daN/cm2<R(=2200 daN/cm2)

Solidarizari

l1≤40*i1

l1≤40*4,58=183 cm -pt. talpa superioaral1≤40*3,04=122 cm -pt. diagonala comprimatal1≤40*2,28=91 cm -pt. montanti

-Se vor excuta cel putin 2 tururi la barele comprimate

34

Page 35: Proiect Constructii Metalice g.

Verificarea la rigiditate a grinzii cu zabrele

fef=ΣNikn* *lik/(G*Aik) ≤fa

fa=L/300=3000/300=10 cmelement bara Nik nik lik E Aik Nik*nik*lik/(G*Aik)

Ts 1-2 -20318 -2988,5 295 80,6 0,10482-3 -31861 -3125 295 80,6 0,17353-4 -66548 -6500 295 80,6 0,75394-5 -67449 -6548 295 80,6 0,76985-6 -77143 -7569 300 80,6 1,0349

Ti 7-8 52922 4945 590 55 1,33688-9 73761 7098,5 295 2,1*106 55 1,33739-10 74086 7134 300 55 1,3728

Δ 1-7 41273 3866 397 26,2 1,15133-7 -20544 -2728,5 417,5 38,4 0,29023-8 18842 2005 414 26,2 0,29705-8 -9757 -973 435 38,4 0,05125-10 4623 490 435 26,2 0,0179

M 2-7 -8968,5 -212 280,7 16,26 0,01624-8 -8761 -197 305 16,26 0,01545-9 128 205 317,5 16,6 0,00246-10 -5519 -169 315 16,26 0,0804

Pe jumatate de grinda 8,8028Pe toata grinda 17,6056

fef=17,6 cm ≥fa

Calculul prinderii zabrelelor in noduri

Nodul 2N72=11390 daNbc=70 mmtc=6 mmtg=12 mml=1,93 cm =19,3 mm

35

Page 36: Proiect Constructii Metalice g.

l1=bc-l=70-19,3=50,7 mmimpunem 3 mm ≤as1 ≤min(0,7*tg=8,4 mm;0,85*tc=5,1 mm) →as1=4 mm 3 mm ≤as2 ≤0,7*tmin=6 mm →as2=4 mmDin conditia de rezistenta ls1 ≥N2-7*l1/(2*as1*L0c*Rf

s)=11990*5,07/(2*0,4*7*1500)=6,87 cm →ls1=70 mmRf

s=0,7*R=0,7*2100=1500 daN/cm2 -sudura de coltls2 ≥N2-7*l/(2*as2*bc*Rf

s)=11390*1,93/(2*0,4*7*1500)=2,61 cm →ls2=30 mm

*Din conditii constructive ls1,2 ≥40 mm ls1,2 ≥bc=70 mm 15*as1=6<ls1 ≤60*as1=24 15*as2=6<ls2 ≤60*as2=24 →ls1=70 mm ls2=70 mm

ls1r=ls1+2*as1=70+2*4=78 →ls1

r=80 mm ls2

r=ls2+2*as2=70+2*4=78 →ls2r=80 mm

Nodul 3 -N3-7=26090 daN -diagonala comprimata -N3-8=23930 daN -diagonala intinsa

Calculul prinderii diagonalei 3-7

N3-7=26090 daN bc=100 mm as1=6 mm tc=10 mm 3 mm ≤as1 ≤min(0,7*tg=8,4 mm; tg=12 mm 0,85*tc=8,5 mm) l=28,2 mm as2=6 mm l1=bc-l=100-28,2=71,8 mm 3 mm ≤as2 ≤0,7*tmin=8,4 mm

*Din conditia de rezistenta ls1 ≥26090*7,18/(2*0,6*10*1500)=10,41 cm →105 mm ls2 ≥26090*2,82/(2*0,6*10*1500)=4,09 cm →45 mm

*Din conditii constructive ls1,2 ≥20 mm ls1,2 ≥bc=100 mm ls1,2=9 cm<ls1,2 ≤60*as1,2=36 cm → ls1=105 mm

36

Page 37: Proiect Constructii Metalice g.

ls2=90 mm ls1

r=l1+2*as1=105+2*6=117 mm →ls1r=120 mm

ls2r=l2+2*as2=90+2*6=102 mm →ls2

r=105 mm

Calculul prinderii diagonalei 3-8

*Din conditia de rezistenta ls1 ≥23930*4,91/(2*0,6*7*1500)=9,33 cm →ls1=95 mm ls2 ≥23930*2,09/(2*0,6*7*1500)=3,97 cm →ls2=40 mm

*Din conditii constructive ls1,2 ≥40 mm ls1,2 ≥bc=70 mm 18*as1,2=3 cm ≤ls1,2 ≤60*as1,2=36 cm →ls1=95 mm ls2=70 mm ls1

r=95+2*0,6=96,2 mm →ls1r=100 mm

ls2r=70+2*0,6=71,2 mm →ls2

r=75 mm

Nodul 8

Calculul prinderii diagonalei 8-5

as1=6 mm3 mm ≤as1 ≤min(0,7*tg;0,85*tc)=8,4 mmas2=6 mm3 mm ≤as2 ≤t min -7 mm

*Conditia de rezistenta ls1 ≥12391*7,18/(2*0,6*10*1500)=4,94 cm=49,4 mm →ls1=50 mm ls2 ≥12391*2,82/(2*0,6*10*1500)=1,94 cm =19,4 mm →ls2=20 mm

*Conditii constructive ls1,2 ≥40 mm ls1,2 ≥bc=100 mm 9 ≤ls1,2 ≤36 cm →ls1=ls2=100 mmls1

r=ls2r=100+2*0,6=101,2 mm=105 mm

Calculul montantului 4-8 N4-8=1127 daN bc=70 mm tc=6 mm tg=12 mm

37

Page 38: Proiect Constructii Metalice g.

l=1,93 cm=19,3 mm l1=70-19,3=50,7 mm as1=5 mm 3 mm≤as1 ≤min(0,7*tg;0,85*tc)=5,1 mm as2=4 mm 3 mm ≤as2 ≤0,7*tmin=4,2 mm

*Conditia de rezistenta ls1 ≥11127*5,07/(2*0,5*7*1500)=5,37 cm →ls1=55 mm ls2 ≥11127*1,93/(2*0,4*7*1500)=2,56 cm →ls2=30 mm

*Conditii constructive ls1,2 ≥40 mm ls1,2 ≥bc=70 mm 7,5 ≤ls1 ≤30 cm 6 ≤ls2 ≤24 cm →ls1=70 mm ls2=70 mm

Nodul 1Calculul prinderii barei 1-7 N1-7=52417 daN bc=70 mm tc=10 mm tg=12 mm l=20,3 mm l1=70-20,3=49,7 mm as1=6 mm 3 mm ≤as1 ≤(0,7*tg;0,85*tc)=8,4 mm as2=6 mm 3 mm ≤as2 ≤0,7*tmin=7 mm

*Din conditia de rezistenta ls1 ≥N1-7*l1/(2*as1*bc*Rf

s)=52417 daN*4,97/(2*0,6*7*1500)=20,7 cm=210 mm ls2 ≥ N1-7*l/(2*as2*bc*Rf

s)=52417*2,03/(2*0,6*7*1500)=8,44 cm=85 mm

*Din conditii constructive ls1,2 ≥40 mm ls1,2 ≥bc=70 mm 15*as1,2=9 cm ≤ls1,2 ≤60*as1=36 cm →ls1=210 mm ls2=85 mm

38

Page 39: Proiect Constructii Metalice g.

ls1r=210+2*6=222 mm →ls1

r=225 mm ls2

r=85+2*6=97 mm →ls2r=100 mm

Calculul stalpului

Incarcari Permanente

in pct. B NB=9942+(75,1+138)*5,274=11066 daN MB=245*5,274=1292,13 daN m TB=245 daN Variabile

MB=907*0,274=4784 daN m

Din reactiunea verticala a podului rulant

MB=2003*5,274=10564 daN m -din reactiunea orizontala a podului rulant -din vant asupra acoperisului -din vant asupra peretilor

Scema Partea sect. ef. sect. inc. perm. inc. zapada react. V a P.R(Rmax)

0 1 2 3 4 5 6superioara A M 0 0 0

N -9942 -38700 0T 245 907 -2003

B M 1292 4784 -10564N -11066 -38700 0T 245 907 -2003

Csup M 1592,5 5895,5 -13020N -1327 -38700 0

39

Page 40: Proiect Constructii Metalice g.

T 245 907 -2003inferiaora Cinf M -3107,5 -10164,5 40203

N -11327 -38700 -90980T 245 907 -2003

D M -118,5 900 15767N -15269 -38700 -90980T 245 907 -2003

React. H a PR Vant asupra acop.

Vant asupra pereti

gr. inc. Mmax Ncoresp=Nmax

st. dr. st. dr.7 8 9 10 11 12 13 140 0 0 0 0 0 -11207 daN m -44775 daN0 0 5252 0 -43390 -43390

3030 -3030 480 -230 2429 -363115980 -

159802215 2097 15804 -16156

0 0 5252 0 -44514 -445143030 -3030 480 1025 3684 -237611938 -

119382730 3533 12669 -11207

0 0 5252 0 -44775 -447753297 -3297 480 1317 4243 -235111938 -

119384910 3533 47312 23436 87819,5

daNm-139697 daN

0 0 5252 0 -134855

-134855

3297 -3297 480 1317 4243 -235128285 -

282855674 37312 87819,5 31249,5

0 0 5252 0 -139697

-139697

3297 -3297 480 4421 7294 700

Stabilirea dimensiunilor sectiunii transversale

P2=43390 daNP1=90980 daNIs/Ji=1/7=0,143 →Ji=7*Is

hs/hi=6,5/12,2=0,533

1°Stabilirea lungimii de flambaj a)pentru ramura inferioara a1)in planul cadrului efx=μ1*hi=1,386*12,2=16,9 mμ1= = =1,386C=(P2+P1)/P2=(43390+90980)/43390=3,097μ12=1,94μ11=1,02 f(hs/hi=0,533;Is/Ji=0,143)

40

Page 41: Proiect Constructii Metalice g.

a2)in plan perpendicular cadrului efy

i=hi=0,2 m b)pentru ramura superioara b1)in planul cadrului efx

s= μ2*hs=1,73*6,5=11,25 m μ2= μ1/C1=1,386/0,8=1,73 C1=hs/hi* =6,5/12,2* =0,8 b2)in plan transversal efy

s=hs=6,5 m

Dimensionarea ramurii superioare a cadrului

Nmax=44775 daNMmax=11207 daNm -compresiune cu flamba -incovoiere in jurul axei xti=(1/60÷1/75)*h=6,67÷5,35 mm →ti=6 mm

Kx=0,435Ky=1,4 αx=0,4....0,45=0,44αy=0,22....0,26=0,25 →functie de tipul reactiuniiξx=lfx* =11,25* =164,5ξy=lfy* =650* =170

→lxo=0,494

λxo=117

→lyo=0,464

λyo=118

bnec≥lfy/(αy* λy)=650/(0,25*118)=22,03 cmhnec ≥lfx/( αx* λx)=1125/(0,44*117)=21,85 cmlmin

o=lyo=0,464

Anec ≥Nmax/(lmino*Rredus)=44775/(0,464*1870)=51,60 cm2=5160 mm2

Rredus=0,85*R=1870 daN/cm2

Vom considera ti=6 mm b=250 mm t=10 mm

41

Page 42: Proiect Constructii Metalice g.

hi=h-2*t=380 mm A=72,8 cm2

Jx=21860 cm4

Wx=1093 cm3

Ix=17,3 cm Jy=2600 cm4

Wy=208 cm3

Iy=6 cm

Verificarea dimensiunilor i)de zveltete λx=lfx/Ix=1125/17,3=65 λy=lfy/Iy=650/6=108 → λmax=108< λa

ii)de rezistenta σ=Nmax/A+Mcoresp/Wx=44775/72,8+11207*102/1093=1640 daN/cm2<R iii)verificarea stabilitatii generale Nmax/(lmin*Aef)+Cx*Mcoresp/(lg*(1- σ/ σxcr)*Wx)≤Rφmin=f(λmax,t,OL37)λmax=108 φmin=0,576lg=f(λtr,B,OL37)λtr=γ*λy

γ=f[(l/h)2;Jr/Jy]Jr= α ‘/s*Σ(h*t3+hi*ti

3)=1,2/3*(25,13*2+38*0,63)=23,28 cm4

α’=1,2(l/h)2*Jr/Jy=(650/402)*23,28/2600=2,36 → γ=0,721-incarcarea actioneaza la axa neutra μ=1 λtr=0,721*108=77,27 →lg=0,786σ=Nmax/Aef=44775/72,8=615,04 daN/cm2

Ncr*=π2*G*Ix/lfx

2= π2*2,1*106*21860/11252=357984,4 daNσ*cr=Ncr

*/A=257984,4/72,8=4917,37 daN/cm2

Cx=0,8544775/(0,575*72,8)+0,85*11207/(*,786*)_1-615,04/4917,37)*1093)=1158,3 daN/cm2<R(2200 daN/cm2) iv)verificarea la stabilitatea locala talpi b’/t≤K1 b’=(b-ti)/2=25-0,6=12,2 cm 12,2/1=12,2<K1

-inima Ψ= (σ- σ’)/ σ

42

Page 43: Proiect Constructii Metalice g.

σ=Nmax/A+Mxcoresp/Ix*hi/2 =44775/72,8+11207*102/21860*38/2=1589,11 daN/cm2

σ’ =Nmax/A-Mx/Ix*hi/2=-359,03 daN/cm2

Ψ=(1589,11+359,03)/1589,11=1,23>0,5 →33=Ks

τ=T/A=4243/72,8=58,28 daN/cm2

β=0,07* τ/ σ*Ks=0,07*58,28/1589,11*33=0,0847h0/t=100* =14,36<38/0,6=63,3h0/t –valoarea maxima a inimii→seactiunea activa considerata C=15*ti* =15*0,6* =8,80 cm

A’=72,8-20,4*0,6=60,56 cm2

Jx’=Jx=0,6*10,22/12=21806,9 cm4

Wx’=Jx’*2/h=1147,7 cm3

Ix’= =18,98 cmJy’=Jy-10,2*0,63/12=2599,8 cm4

Wy=Jy*2/b=207,99 cm3

Iy’= =6,55 cmλx’=1125/18,98=59,27 λy’=650/6,55=99,23 φ=0,756 -verificarea de stabilitateσ=44775/(0,786*60,56)+0,85*11207*102/(0,786*(1-615,05/497,37)*1147,7)=2195 daN/cm2<R(2200 daN/cm2)h0=380 mm=38 cmh0<70*ti* =70*0,6* =41 cm → -nu sunt necesare rigidizari transversale pe inima stalpului

Dimensionarea ramurei inferioare a stalpului

Nmax=139697 daNMmax=87819,5 daNmlfx=16,9 mlfy=12,2 m

N2=N2M+N2

N

N2N=Nmax/2=139697/2=69848,4 daN

N2M=Mmax/bi=87819,5/1,2=73183 daN

N2=143031,5 daNN1

N=N1N-N1

M

43

Page 44: Proiect Constructii Metalice g.

N1N=N2

N N1M=N2

M

N1N=-3334,5 daN

α=35°-50°l1=(hi-(a1+a2)/n)hi=12200 mma2=350 -inaltimea traversei de la baza stalpuluia1=400 -inaltimea traversei de la treapta stalpuluin=10 -nr. panouri

l1=(12200-(350+400))/10=145 mm

α=arctg 1145/1200=44 °є(35 °÷50 °)lc’=1659 mm

Dimensionarea ramurei 2)

Ky=0,48 (h>20)Kx=11 (h>30)αy=0,4αx=0,208 -lungimii de flambaj lfy=hi=12200=1220 cm lf1=l1=1145 mm=114,5 cm ξ1=lf1* =114,5* =47,1 ξy=lfy* =1220* =96,23

hnec≥lfy/( αy* λy)=1220/(0,4*80)=38,125bnec≥lf1/(α1*λ1)=114,5/(0,208*45)=12,24 →J40

Anec≥N2/(φmino*2)=143031,5/(0,694*2200)=98,68 cm2

h=40 cmb=15,5 cmd=1,44 cmA=118 cm2

Jy=29210 cm4

Wy=1460 cm3

44

Page 45: Proiect Constructii Metalice g.

iy=15,7 cmJx=1160 cm4

Wx=149 cm3

ix=3,13 cm2

sy=857 cm3

Verificarea ramurei inferioare *verificarea de zveltete λx=lfx1/ix1=114,5/3,13=36,58 λy=lfy/iy=1220/15,7=77,7 →λmax=77,7<λa=120 *de stabilitate N2/(φmin*Aef) ≤R=143031,5/(0,804*118)=1507,6 daN/cm2<R(2200 daN/cm2) φmin=f(λmax=λy=77, 7,3,OL37) →φmin=0,804

Verificarea ramurei inferioare

Aef=2*118=236 cm2

Jx=2*[Jx1+A1*(b/2)2]=2*[1160+118*(120/2)2]=851920 cm4

Jy=2*Jy1=2*29210=58420 cm4

ix= = =60,08 cmiy= = =15,75 cm

*verificarea de zveltete λy=lfy’/iy’=1220/15,75=77,46 λx=lfx’/ix=16,9*102/60,08=28,13 →<λa=120 λx= λ1

2=u*A/Ad -zabrele confectionate din cornier L60*60*6 Ad=6,91 cm2

u=7 (sistem de imprastire, α) α=44° u=π2/(sinα*cos2α)=27,46 λ1

2=27,46*236/(2*6,91)=468,88 λxtr= =35,5<αa=120

Verificarea de rezistenta Nmax/Aef+Mmax/Wx≤R

45

Page 46: Proiect Constructii Metalice g.

143031,5/236+87819,5*102/14198,67=1224,57 daN/cm2

Verificarea la stabilitatea generala Nmax/φmin*A+Cx*Mx/[(1-σ/σE)*Wx] ≤R φmin=f(λmax=λy=77,46 ;OL37,B) →φ=0,712 Cx=0,7 σE=3496 daN/cm2 (λ=77) σ=N/A=143031,5/236=606,06 daN/cm2

143031,5/(0,712*236)+0,7*87819,5*102/[(1-606,06/3496)*14198,67]=1374,97 daN/cm2≤R=2200 daN/cm2

Calculul zabrelelor Tmax

r=700 daN TC=0,012*A*R=0,012*236*2200=6230,4 daN T=Tr+TC=700+6230,4=6930,4 daN Δ=T/(2*cosα)=6930,4/(2*cos44)=4817,2 daN

lf=ld=1659 mm=165,9 cmL60*60*6 A=6,91 cm2

i=1,82 cmλ=lf/i=165,9/1,82=91,15≤ λa=150curba C -OL37 →φ=0,554 σ=4817,2/(0,554*6,91)=1258,36daN/cm2<o,7*R=1650 daN/cm2

Calculul sudurilor diagonalelor

l=1,69tc=6 mmti=21,6 cmΔ=4817,2 daN3 mm≤as1≤0,85*tc=5,1 mm → as1=3 mm3 mm≤as2≤0,7*tmin=0,7*6=4,2 mm →as2=3 mm

Din conditia de rezistenta ls1≥ Δ*l/(as1*bc*Rf

s)=4817,2*4,31/(0,3*6*1500)=7,68 cm=76,8 mm ls2 ≥ Δ*l1/(as2*bc*Rf

s)=4817,2*1,69/(0,3*6*1500)=3,02 cm=30,2 mm

Din conditii constructive15*as1=4,5 ≤ls1 ≤60*as1=18 cm →ls1=7,68 cm

46

Page 47: Proiect Constructii Metalice g.

15*as2=4,5 ≤ls2 ≤60*as2=18 cm →ls2=3,02 →ls2

r=4,5 cm=45 mm ls1

r=ls1+2*as1=7,68+2*0,3=8,28 cm=8,5 cm=85 mm

Calculul montantilor

M=T/2=6930,4/2=3465,2 daNlm~bi=1200 mmlf=lm=120 cmA=5,63 cm2

I=1,5 cml=1,45 cm-cornier L50*50*6

→ φ=0,508

Verificarea la stabilitate σ=3465,2/(0,509*6,69)=1196,46 daN/cm2<R=1750 daN/cm2

Verificarea la zveltete λa=120> λ=100

Calculul sudurii 3 mm≤as1≤0,85*tc=5,1 mm →as1=3 mm 3 mm≤as2≤0,7*tc=4,2 mm →as2=3 mmls1≥3465,2*3,55/(o,3*6*1500)=4,55+2*as1=5,16 mm →ls1

r=55 mmls2≥3465,2*1,45/(0,3*6*1500)=2,1 mm →ls2

r=45 mm

Capitelul stalpului

VGP=VpA=43390 daN

Calculul sudurilor ce transmit eforturile de la placa 1) la placa 2) 3 mm≤as1≤0,7*tmin=0,7*6=4,2 mm

as1=4 mm tmin=min(tp,t1)=6 mm τs1=VGP/(4*as1*ls1) ≤Rf

s →ls1≥VGP/(4*ls1*Rfs)

Rfs=1500 daN/cm2

47

Page 48: Proiect Constructii Metalice g.

Calculul sudurilor ce transmit eforturile de la diafragma 2) la inima stalpului

3 mm≤as2≤0,7*tmin=4,2 mm →as2=4 mm tmin=min(ti;tr)=6 mm τs2=VGP/(4*0,4*1500)=18,07+2*0,3=18,88 cm →ls2

r=19 cm =190 mm hr=ls2

r+20 mm=190+20=210 mm

Calculul treptei stalpuluiCalculul sudurii S3

3 mm≤as3≤0,7*tmin=7 →as3=6 mmτs3=N1/(as3*ls3) ≤Rf

s →ls3≥N1/(2*as3*Rfs)

N1=Ns/2+Ms/S3

Ns=Ncs=44775 daNMs=Mcs=12669 daNmN1=44775/2+12669/0,4=54060 daNls3≥54060/(2*0,6*1500)=30,03 cm+2*0,6=31,23 →ls3=32 cm

Calculul traversei

3 mm≤as4≤0,7*tmin=11,2 mmtmin=min(t=16 mm;tI40=21,6 mm)as4=10 mmN2=Ni/2+Mi/bi

N2=134885/2+47312/1,2=106854 daNNi=Nci=134855 daNMi=Mci=47312 daNmls4≥106854/(2*1*1500)=35,61+2*as4=37,61 cm →ls4

r=38 cm -sudurile S4 din interior se realizeaza constructiv -in calcul se considera doar cele din exterior

Tt=134855/2=67427,5 daNτt=Tt/A2=67427,5/76=887,2 daN/cm2<Rf

s=1500 daN/cm2

A2=38*2*1=76 cm2

Calculul bazei stalpului

ND=139697 daNMD=17819,5 daNmNS=ND/2+MD/bi=143031 daN

48

Page 49: Proiect Constructii Metalice g.

Determinarea dimensiunilor in plan a placii de baza

a)dimensiunea in plan A*B A=h2+2*(tt+C1)=400+2*(15*60)=550 mm h2=400 tt=15 C1≥ht=4*15=60 mm Anec

st≥ND/Rbc=139697/70=1995,6 cm2

Rbc=70 daN/cm2 (c10=C8/10)

Bnec≥Anecst/A=1995,6/55=36,28 cm B≥bi+2*C2=120+2*20=160 cm

bi=120 cm bI=155 mm=15,5 cm C2=200 mm C2>b2=15,5 cm

Placa tip 1)

Mmax1=Rs*C1

2/2=70*62/2=1260 daNcm

Placa tip 3)l1/l2=200/400=0,5 →α3=0,06Mmax

3= α3*Rs*l1=0,06*70*202=1680 daNcm

Placa tip 4)l1/l2=400/300=1,33 α1=0,051 α2=0,0473M1= α1*Rs*l2

2=0,051*70*302=3213 daNcmM2= α2*Rs*l1

2=0,0473*70*402

Mmax4=5297,6 daNcm

Mmax=max(Mmax1,Mmax

3,Mmax4)=5297,6 daNcm

Wp=tp2/6 →Mmax/Wp ≤R

tp ≥ = =3,8 cm=38 mm →tp=38 mm

Determinarea inaltimii traversei

3 mm ≤as6 ≤0,7*tmin=7 mm tmin=min(tt1=10 mm,tI40=21,6 mm) as6=7 mm τs6=Ns/(4*as6*ls6) ≤Rf

s →ls3 ≥Ns/(4*as3*Rfs)

ls6 ≥143031/(4*0,7*1500)=34,06 cm+2*as3=35,5 cm

49

Page 50: Proiect Constructii Metalice g.

ls6r=36 cm

MI-I=Rs*A/2*lI2=70*55/2*6,92=91649 daNcm

II-I=Rs*A/2*l2=70*55/2*6,9=13282,5 daNτ=II-I/At=13282,5/1,36=368,96 daN/cm2<Rf

s=1500 daN/cm2

σ=MI-I/Wt=91469/259,2=352,89 daN/cm2<R=2200 daN/cm2

Wt=tt*ht2/6=1,2*362/6=259,2 cm3

Verificarea sudurii S7

τs7=N3/(as7*Σls7) ≤Rf

s

3 mm<as7 ≤0,7*tmin=7 mm tmin=min(tp=38 mm, tt=10 mm)=10 mm →as7=5 mm Σls7=2*b-2*as7=2*1600-1*5=3190 mm =319 cm τs7143031/(0,5*319)=896,5 daN/cm2≤Rf

s=1500 daN/cm2

50