Top Banner
Gas Dynamics, Lecture 6 (Waves & shocks) see: www.astro.ru.nl/~achterb/ Prof. dr. A. Achterberg, Astronomical Dept. , IMAPP, Radboud Universiteit
66

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Mar 28, 2015

Download

Documents

Porter Shere
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Gas Dynamics, Lecture 6(Waves & shocks)see: www.astro.ru.nl/~achterb/

Prof. dr. A. Achterberg, Astronomical Dept. , IMAPP, Radboud Universiteit

Page 2: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 3: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 4: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Phase- and group velocity

Central concepts:

Phase velocity: velocity with which surfaces of constant phase move

Group velocity: velocity with which slow modulations of the wave amplitude move

Page 5: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 6: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Phase velocity

Definition phase S

Page 7: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Phase velocity

Definition phase S

Definition phase-velocity

Page 8: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Phase velocity

Definition phase S

Definition phase-velocity

Page 9: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group velocity: the case of a “narrow” wave packet

Fourier phase factoramplitude

Fourier integral

d( , ) ( ) exp( - )

kx t k ikx i t

A

Page 10: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group velocity: the case of a “narrow” wave packet

0

0

0 0

Narrow packet with :

( )k

k k

k k k kk

Page 11: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group velocity: the case of a “narrow” wave packet (cntd)

0

0

0 0

0 0 0

Same for wave phase :

( )

= ( )

k

k

S kx t

SS k S k k k

k

k x k t k k x tk

This should vanishfor constructiveinterference!

Page 12: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group Velocity

Wave-packet, Fourier Integral

Page 13: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group Velocity

Wave-packet, Fourier Integral

Phase factor x effective amplitude

Page 14: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Group Velocity

Wave-packet, Fourier Integral

Phase factor x effective amplitude

Constructiveinterference in integral when

Page 15: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Summary and example: sound waves in a moving fluid

Page 16: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Summary and example: sound waves

Page 17: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Summary and example: sound waves

Page 18: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 19: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Application: Kelvin Ship Waves

Page 20: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 21: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Waves in a lake of constant depth

Page 22: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Fundamental equations:

1. Incompressible, constant density fluid (like water!)

2. Constant gravitational acceleration in z-direction;

3. Fluid at rest without waves

constant, =0 Ñ V

d

Pg

t

ÑVz

Page 23: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Unperturbed state without waves:

atm( )

ˆ0, constant (!)

P z P g H z

P g

ÑV z =

Page 24: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Small perturbations:

, 0 0t t

x x

Ñ Ñ Ñ xV V V

atm( )

ˆ0, constant (!)

P z P g H z

P g

ÑV z =

Page 25: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Equation of motion small perturbations:

0 Ñ x

t

x

V V

2

2

d

P Pg

t t

Ñ x ÑVz

SAME as for SOUND WAVES!

Page 26: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Solve for pressure perturbation first!

2 2 2

2 2 0

P P P

t t

x Ñ x ÑÑ

t

x

V V

0 Ñ x

Page 27: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Solution for pressure perturbation:

t

x

V V

0 Ñ x

2

plane wave part

0 , try: ( , , ) ( ) exp( ) .P P x z t P z ikx i t cc

22

2

d0 ( ) e + e

dkz kzP

k P P z P Pz

Page 28: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Solve equation of motion:

( ) e + ekz kzP z P P

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

2

2 & , , ( ) exp( )

Px z t z ikx i t cc

t

x Ñ

x a

Page 29: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Solve equation of motion:

2

2

e + e

de e

d

kz kzx

kz kzz

a ik P P

Pa k P P

z

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P P

Page 30: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

There are boundary conditions: #1

2

2

e + e

e e

kz kzx

kz kzz

a ik P P

a k P P

1. At bottom (z=0) we must have az = 0:

P P

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P P

Page 31: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

There are boundary conditions: #2

2. At water’s surface we must have P = Patm :

d0

dz

PP P

z H

2

2

e + e

e e

kz kzx

kz kzz

a ikP

a kP

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P

Page 32: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

There are boundary conditions: #2

2

2

e + e

e e

kz kzx

kz kzz

a ikP

a kP

2. At water’s surface we must have P = Patm :

( )P z g H H

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P

Page 33: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Dispersion relation from boundary conditions:

2( ) e e e + ek k k k

z

kgPga P

H H H HH

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P

Page 34: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Dispersion relation from boundary conditions:

2( ) e e e + ek k k k

z

kgPga P

H H H HH

2 e etanh( )

e + e

k k

k kkg kg k

H H

H H H

plane wave part

( , , ) ( ) exp( ) .P x z t P z ikx i t cc

( ) e + ekz kzP z P

( )z H H

Page 35: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Limits of SHALLOW and DEEP lake

2 tanh( )kg k H

1: tanh ,

1: tanh 1 ,

k k k k g

k k kg

H H H H

H H

Shallow lake:

Deep lake:

Page 36: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Universal form using dimensionless variables for frequency and wavenumber:

1/2tanh/g

k

H

H

shallow lake

deep lake

Page 37: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Finally: ship waves

Situation in rest frame ship: quasi-stationary

Page 38: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Case of a deep lake

w wˆ ˆcos sin

kg

k k

k x y

wave frequency:

wave vector:

Ship moves in x-direction with velocity U

1: Wave frequency should vanish in ship’s rest frame:

wcos 0kg kU k U =Doppler:

Page 39: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Case of a deep lake (2)

w wˆ ˆcos sin

kg

k k

k x y

wave frequency:

wave vector:

Ship moves in x-direction with velocity U

2: Wave phase should be stationary for different wavelengthsin ship’s rest frame:

ships rest frame

( ', , )0

S x y k

k

Page 40: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Case of a deep lake (3)

w w w

vanishes due to"Doppler condition" 0

( , , ) '

cos ' sin cos

x y x yS x y t k x k y t k x Ut k y t

k x k y k U t

Ship moves in x-direction with velocity U

w cos 0kU

k U

=

Page 41: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Case of a deep lake (4)

w w

w w2 2w

( ', , ) cos ' sin

= cos cos

S x y k k x k y

gkg kU k K

U

Ship moves in x-direction with velocity U

w cos 0kU

k U

=

Wave phase inship’s frame:

Wavenumber:

Page 42: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Case of a deep lake (5)

w2 2wcos

gk K

U

Ship moves in x-direction with velocity U

w cos 0kg kU

k U

=

Stationary phase condition for

w w2 2w w

d0 'cos sin 0

d cos

S gx y

k U

w w( ', , ) cos ' sin :S x y k k x k y

Page 43: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Kelvin Ship Waves

Situation in rest frame ship: quasi-stationary

Page 44: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Shocks: non-linear fluid structures

Shocks occur whenever a flow hits an obstacleat a speed larger than the sound speed

Page 45: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 46: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Shock properties

1. Shocks are sudden transitions in flow properties such as density, velocity and pressure;

2. In shocks the kinetic energy of the flow is converted

into heat, (pressure);

3. Shocks are inevitable if sound waves propagate over

long distances;

4. Shocks always occur when a flow hits an obstacle

supersonically

5. In shocks, the flow speed along the shock normal changes from supersonic to subsonic

Page 47: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

The marble-tube analogy for shocks

Page 48: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

coll

shcoll

L Dt

V

D DV V

t L D

Time between two `collisions’

`Shock speed’ = growth velocity of the stack.

Page 49: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Go to frame where the `shock’ is stationary:

Incoming marbles:

Marbles in stack:

1 sh

2 sh

LV V V V

L D

DV V V

L D

1 2

Page 50: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Flux = density x velocity

Incoming flux:

Outgoing flux:

1 1 1

2 2 2

1

1

L Vn V V

L L D L D

D Vn V V

D L D L D

F

F

1 2

Page 51: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Conclusions:1. The density increases across the shock

2. The flux of incoming marbles equals the flux of outgoing marbles in the shock rest frame:

1 2F F

Page 52: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Steepening of Sound Waves:

( 1)/2sC T

Page 53: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Effect of a sudden transition on a general conservation law (1D case)

0t x

Q F

Generic conservation law:

Page 54: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Change of theamount of Q inlayer of width 2e:

flux in - flux out

in out

d d ( ) ( )

x xt x

F

Q F F

F F

t x

Q F

Page 55: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Infinitely thin layer:

What goes in mustcome out : Fin = Fout

Page 56: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Infinitely thin layer:

What goes in mustcome out : Fin = Fout

Formal proof: use alimiting process for 0

in outd xt

Q F F

0lim d ( ) 0x x

Q

in out = F F

Page 57: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Page 58: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Simplest case: normal shock in 1D flow

Starting point: 1D ideal fluid equations in conservative form;x is the coordinate along shock normal, velocity V along x-axis!

Mass conservation

Momentumconservation

Energyconservation

2

2 2

0

( )0

02 ( 1) 2 ( 1)

Vt x

VV P

t x

V P V PV

t x

Page 59: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Flux in = flux out: three jump conditions

Mass flux

Momentum flux

Energy flux

Three equations for three unknowns: post-shockstate (2) is uniquely determined by pre-shock state (1)!

Three conservation laws means three fluxes for flux in = flux out!

1 2

2 2

1 2

2 2

1 22 ( 1) 2 ( 1)

V V

V P V P

V P V PV V

J

F

S

Page 60: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Shock strength and Mach Number

1D case: ss 1

pre-shock flow speedMach Number

pre-shock sound speed

V

C

M

Shocks can only exist if Ms>1 !

Weak shocks: Ms=1+ with << 1;

Strong shocks: Ms>> 1.

Page 61: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Weak shock:

, and are all small!V P

Page 62: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

From jump conditions:

1 11 1

21 1 1

21

1

mass conservation: 0

momentum conservation: 2 0

Energy conservation: (

VV V

V

V V V P

P V

PV V

1 1

2 1 11 1 s1

1 1

01)

0 ( 1)

P

P

P PV V C

Page 63: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Weak shock ~ strong sound wave!

2 21 s1P V C

Sound waves:

2s

PP C

P P

Ñ x

Ñ x

Page 64: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

Strong shock: P1<< 1V12

Approximate jump conditions: put P1 = 0!

1 1 2 2

2 21 1 2 2 2

2 21 2 2

2

(1)

(2)

(3)2 2 ( 1)

V V

V V P

V V P

J

Page 65: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

1 1 2 2

2 21 1 2 2 2

2 21 2 2

2

(1)

(2)

(3)2 2 ( 1)

V V

V V P

V V P

J

21 2

2 2 2 21 2 1 2 1 2

(1) (2)

2(3)

1

PV V

PVV V V V V V

J

J

21 2

2

1

VV V

Page 66: Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.

1 1 2 2

2 21 1 2 2 2

2 21 2 2

2

(1)

(2)

(3)2 2 ( 1)

V V

V V P

V V P

J

21 2

2

1

VV V

Conclusion for a strong shock:

21 12 1 2 1 2 1 1 1 2 1 1

2

1 1 2 , ,

1 1 1

VV V P V V V V

V