Top Banner
DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich 1 A ATHENA - Cold antihydrogen production Production of cold antihydrogen atoms in large quantities Introduction The ATHENA experiment + New results Summary Outlook On behalf of the ATHENA collaboration C. Regenfus University of Zürich H detector Antihydrogen candidate (real data, 4- prong event) Sept. 02: > 50k cold antiatoms produced
35

Production of cold antihydrogen atoms in large quantities

Feb 04, 2016

Download

Documents

Sinead

Production of cold antihydrogen atoms in large quantities. C. Regenfus. University of Zürich. On behalf of the ATHENA collaboration. Sept. 02: > 50k cold antiatoms produced. Introduction The ATHENA experiment + New results Summary Outlook. H detector. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

1A

ATHENA - Cold antihydrogen production

Production of cold antihydrogen atoms in large quantities

• Introduction

• The ATHENA experiment +

• New results

• Summary

• Outlook

On behalf of the ATHENA collaboration

C. Regenfus

University of Zürich

H detector

Antihydrogen candidate (real data, 4-prong event)

Sept. 02: > 50k cold antiatoms produced

Page 2: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

2A

ATHENA - Cold antihydrogen production

Motivation

Antihydrogen: The simplest antimatter counterpart to matter

for testing fundamental physic principles

• CPT symmetry (Theoretical underpinning of field theories)

• Gravitational acceleration (Equivalence principle)

A very high precision can be achieved by comparing antihydrogen to hydrogen

Page 3: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

3A

ATHENA - Cold antihydrogen production

Future: high resolution laser spectroscopy

Atomic 1S - 2S transition by two-photon excitation (first order Doppler-free)

Lyman E = 10.2 eV = 2.5 x 1015 Hz = 122 nm UV 2 x 243 nm photons (mW)Lifetime of 2S state: 122 ms => precision ~10-16

Cesar et al. (1996)(Laser 3kHz, 150µK)

Need: Cold antihydrogen ( T < mK )

Capture in neutral trap

Hydrogen reference cell

243 nm LASER

Mirror

H

H spectroscopy

Gravitation: atomic fountain / interferometry

Page 4: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

4A

ATHENA - Cold antihydrogen production

Present physics menu

Plasma studies: new kind of plasma imaging

• Particle losses in trap

• (Re)combination mechanism

• Production of cold antihydrogen in larger quantities

Investigations

• Antihydrogen energy distribution (+ inner states)

• Laser spectroscopy on non trapped atoms

• Trapping H and/or creation of a H beam

Page 5: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

5A

ATHENA - Cold antihydrogen production

The ATHENA collaboration

Particle traps + control:INFN, Sez. di Genova, and Dipartimento di Fisica, Università di Genova, Italy

EP Division, CERN, Geneva, SwitzerlandDepartment of Physics, University of Tokyo, Japan

Precision lasers:Department of Physics and Astronomy, University of Aarhus, Denmark

Instituto de Fisica, Rio de Janeiro, Centro de Educação Tecnologica do Ceara, Brazil

Positron plasma:Department of Physics, University of Wales Swansea, UK

Detector + Analysis:Physik-Institut, Zürich University, Switzerland

INFN, Sez. di Pavia, and Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, ItalyDipartimento di Chimica e Fisica per l'Ingegneria e per iMateriali, Università di Brescia, Italy

Page 6: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

6A

ATHENA - Cold antihydrogen production

Experimental overview

Positron Accumulator

AntihydrogenDetector(T= 140 K)

0 1 m

0 10 cm

Na-22Source

AntiprotonCapture Trap Mixing Trap

CsI crystals

Si stripdetectors

Cryostat

e+3 T superconducting solenoid

15 K , 10-11 mbar

Main ATHENA features: Open access system (no sealed vacuum)Powerful e+ accumulation Plasma diagnosis and control High granularity imaging detector

Scint. Scint.Scint.

Page 7: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

7A

ATHENA - Cold antihydrogen production

ATHENA Photo

Page 8: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

8A

ATHENA - Cold antihydrogen production

Penning traps

Trapped electron at B = 3 T, E = 1 eV, U ~ 10 V

• Cyclotron motion (perpendicular to B)

f = 84 GHz, r ~ 1 µm

Emission of synchrotron radiation (cooling)

t cool ~ 0.3 s

• Axial motion (along B)

f ~ 7 MHz, d ~µm … cm

• E x B drift (‘magnetron’) (cooling over coupling)

f ~ kHz, r ~ mm

Single particle <=> Plasma

Coulomb coupling parameter: Ecoul/Etherm

Electrical screening distance: Debye length

ATHENA:Multi-ring Penning trap (choose Vz as you like )

Page 9: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

9A

ATHENA - Cold antihydrogen production

Antiproton decelerator (CERN)

Page 10: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

10A

ATHENA - Cold antihydrogen production

Antiproton capture and cooling with electrons

p

5 MeV

50 cm

Antiproton Capture Trap

Solenoid (3 T)

Degrader

Degrading

Trapping

Cooling

Vacuume-

TrappingPotential

5 KV

Cold electron cloud(Cooled by Synchrotron Radiation,

τ=0.4 3 )s at T

. /Univ of Genova IT

(t=0)

(t=200 )ns

(t=20-30 )s

• Capture dynamics

• Capture trap (50 cm)

10 000 p / AD shot

Page 11: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

11A

ATHENA - Cold antihydrogen production

Positron accumulation

Coldhead

300 Gauss guiding fields

T = 6 K50 mCi 22Na

Solid neon moderator

Segmented electrodefor Rotating Wall

Beam strength:6 million e+ per second

e+

Energy loss through collisions

e+

Accumulation rate: 106 e+/s

150 million e+ / 5 min

After transfer: 75 x 106 in mixing trap

Positron plasma : r~2mm, l~32mm, n~2.5 x 108 / cm3

Lifetime: ~hours

Page 12: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

12A

ATHENA - Cold antihydrogen production

Non destructive positron plasma diagnostics

read

heat

drive

Complete model of plasma mode excitation

(based on ‘Cold Fluid Theory’ * )

PLASMA SHAPE, LENGTH, DENSITY

Plasma temperature change* D. Dubin, PRL 66, 2076 (1991)

kΔT =mzp

2

5ω2

h( )

2−ω2( )

2

[ ] 3−ωp

2α2

2ω22

d2 f(α)dα2

⎣ ⎢ ⎤

⎦ ⎥

−1

~ 30 MHz

Page 13: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

13A

ATHENA - Cold antihydrogen production

Detection principle of antihydrogen annihilations

• H atom dissociates to p and e+

by contact with the trap wall or rest gas atoms

• pN -> charged and neutral pions

• e+ e- -> 511keV photons (back to back)

Good spatial resolution (< 1 cm ) of chargedvertex ( at least 2 prong events)

Time coincidence (~ 1 µs)

High rate capability (self triggering)

511 keV opening angle

Monte Carlo

Measure 1MeV on background of 2GeV

Page 14: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

14A

ATHENA - Cold antihydrogen production

Detector development

Much effort into R&D

• Low temperature (~ 140 K)

• High magnetic field (3 T)

• Low power consumption

• Light yield of pure-CsI crystals ?

• CTE matching (Kapton, silicon, ceramics)

• Electronic components

Full detector installed: August 2001

All photodiodes replaced with APDs: Spring 2002

• Compact design (radial thickness 3 cm)

• High granularity (8K strips, 192 crystals)

• Large solid angle (>75 %)

Workshop Zürich , J. Rochet

Silicon micro strip layer

Mechanics for 77K

Page 15: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

15A

ATHENA - Cold antihydrogen production

Pure-CsI crystals + Avalanche Photo Diodes

22Na

T = 150 K

0

2000

4000

6000

8000

511 keV

back scatter

1275 keV

10000

FWHM = 18%

12000

Pulse height [keV] cos()

4000

3000

2000

1000

-1.0 -0.5 00 60 500 1000 1500 0.5 1.0

e+e−

γ(511 )keV

γ(511 )keV

• Read out close up • Crystal APD unit

• Crystal detector performance

~16 times higher light yield @ 80K

C. Amsler, et al. :Temperature dependence of pure-CsI, scintillation light yield and decay time. NIM A 480, 494–500 (2002).

Pure-CsI

Page 16: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

16A

ATHENA - Cold antihydrogen production

Full GEANT Monte Carlo simulations

E&M cascades, Hadronic Showers (GEISHA) (> 10 keV)

Geometry from AutoCAD

Module-by-module (in)efficiency taken into account

Same analysis routine for MC and data

Electrode (r = 1.25 cm)

Radial vertex position

Page 17: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

17A

ATHENA - Cold antihydrogen production

Antiproton annihilations

Antiproton annihilation on the trap wall (real data, 3-prong event)

• strip hits (inner + outer layer) => p vertex

• crystals hit (matched to charged tracks)

• vertex resolution, ~ 4 mm (curvature not resolved)

Electrode position (r = 1.25 cm)

Page 18: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

18A

ATHENA - Cold antihydrogen production

Plasma imaging (antiprotons only)

-10 -5 0 5 100

10

20

30

40

50

60

70

Longitudinal Position [cm]-10 -5 0 5 10

0

10

20

30

40

50

60

70

Longitudinal Position [cm]

Antiprotons and electrons

Early times

Late times

Potential

Potential

Powerful plasma and loss diagnostics !

p vertex evolution in time

Page 19: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

19A

ATHENA - Cold antihydrogen production

Mixing trap (nested penning trap*)

In one mixing cycle (5 min) we mix ~104 antiprotons with ~108 positrons

* G. Gabrielse et al., Phys. Lett. A129, 38 (1988)

0 2 4 6 8 10 12

-50

-100

-75

-125

Length (cm)

antiprotons

108

Page 20: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

20A

ATHENA - Cold antihydrogen production

Cooling of antiprotons by 75 million positrons

• Rapid cooling (< 20 ms)• Decreasing energy of antiprotons• Increasing separation of plasmas

Page 21: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

21A

ATHENA - Cold antihydrogen production

Antiprotons in the positron plasma

Energy loss by dE/dx and thermalization

e+ cloud (108/cm3)

T = 10K ….. 10000K(by RF heating)

Incoming antiproton

1 2 3 4 5

5

10

15

20

25

30

Te=300 K

Te=30 K

Te=3000 K

ne = 2.5 108 cm

-3

Le = 3.2 cm

Antiproton kinetic energy [eV]

Page 22: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

22A

ATHENA - Cold antihydrogen production

Antihydrogen production

1. Fill positron well in mixing region with 75·106 positrons;

allow them to cool to ambient temperature (~15 K)

2. Launch 104 antiprotons into mixing region

3. Mixing time 190 s - continuous monitoring by detector (charged trigger)

4. Repeat cycle every 5 minutes (data for 165 cycles)

For comparison:

“hot” mixing = continuous RF heating of positron cloud

(suppression of antihydrogen production)

0 2 4 6 8 10 12

-50

-100

-75

-125

Length (cm)

antiprotons

Page 23: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

23A

ATHENA - Cold antihydrogen production

Antiproton annihilation rate (charged trigger rate)

Background trigger rate ~ 0.5 Hz

High initial rate ~ 100 Hz

Page 24: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

24A

ATHENA - Cold antihydrogen production

Analysis Procedure

• Reconstruct annihilation vertex (103 k)

• Search for ‘clean’ 511 keV-photons:exclude crystals hit by charged particles+ its 8 nearest neighbours

• ‘511 keV’ candidate =400… 620 keVno hits in any adjacent crystals

• Select events with two ‘511 keV’ photons

• Reconstruction efficiency ~ 0.25 % = “golden” events !

Antihydrogen candidate (real data, 4-prong event)

Event reconstruction (165 mixing cycles ~ 2 days)

Page 25: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

25A

ATHENA - Cold antihydrogen production

Antihydrogen Signal (“golden” events)

Opening angle between two 511 keV photons(seen from charged particle vertex)

-1 -0.5 0 0.5 10

20

40

60

80

100

120

140

160

180

200

Mixing with cold positrons

Mixing with hot positrons

131± 22 events

cos(Θγγ)

> 50,000 produced antiatoms (conservative estimate)

Background: mixing with hot positrons-1 -0.75 -0.5

0

20

40

60

80

100

120

140

160

180

200

cosΘγγ

Angular resolution from MC simulation( )normalised to peak height

- - 511 Back to back keV peak from antihydrogen annihilation

Comparison with Monte Carlo

M. Amoretti et al., Nature 419, 456 (2002)

Page 26: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

26A

ATHENA - Cold antihydrogen production

Background measurements

Histogram:

Antiproton-only data (99,610 vertices, 5,658 clean 2-photon events plotted).

Dots:

Antiproton + cold positrons, but analyzed using an energy window displaced upward so as not to include the 511 keV photo-peak

-1 -0.5 0 0.5 10

20

40

60

80

100

120

140

160

180

200

Antiprotons only

Cold mixing (displaced E window)γ

(cos Θγγ)

Opening angle between two 511 keV photons (seen from charged particle vertex)

M. Amoretti et al., Nature 419, 456 (2002)

Can antiproton annihilations on electrode fake back-to-back signal?

No !

1) Secondary e+ within 10 mm ~ 0.1 %

2) Monte Carlo - no peak

3) Measurement - no peak

Page 27: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

27A

ATHENA - Cold antihydrogen production

Antihydrogen = main source of annihilations

Hot

Time distribution of golden events and all annihilations Cold

X-Y vertex distribution

Page 28: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

28A

ATHENA - Cold antihydrogen production

Physics of antihydrogen production

ANTIHYDROGEN VERSUS BACKGROUND

ABSOLUTE PRODUCTION RATES

DEPENDENCE ON TEMPERATURE

ANGULAR DISTRIBUTION

PRELIMINARY

Page 29: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

29A

ATHENA - Cold antihydrogen production

Opening angle fit

Fit result: ~ 2/3 of the events are antihydrogen

Fit ResultFit Input MC

Hbar

Background

cos(γγ)

cos(γγ)

Data

Fit

Background

PRELIMINARY

Page 30: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

30A

ATHENA - Cold antihydrogen production

Vertex spatial distribution fit

=>

Antihydrogen on trap electrode Antihydrogen on trapped ions or rest gas Compare to cold mix data

Average fraction of antihydrogen65 ± 10 % during mixing !

In 2002, ATHENA produced0.7 ±± 0.3 Million antihydrogen atomsPRELIMINARY

Page 31: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

31A

ATHENA - Cold antihydrogen production

Rate of antihydrogen production

High Initial Rate (> 100 Hz)

High S/B (~ 10:1) in first seconds

Analysis:

• 65 ± 10 % antihydrogen

• ~ 50 % vertex / annihilation

PRELIMINARY

Page 32: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

32A

ATHENA - Cold antihydrogen production

Pulsed antihydrogen production

Mixing time

secsec

Ver

tex

Z p

osi

tio

n

Heat OnHeat On

Ver

tex

Co

un

ts

Mixing time ->

Heat OnHeat On

Switch positron heating Off/On resp. On / Off We observe:

Annihilation rate

Vertex distribution along z

Rise time ~ 0.4 s(Positron cooling time)

PRELIMINARY

Page 33: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

33A

ATHENA - Cold antihydrogen production

Antihydrogen Production - T dependence

Radiative Three-body

(T) dependence T-0.5 T-4.5

Final state n < 10 n >> 100

Stability (re-ionization) high low

Expected rates ~ Hz ?

Page 34: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

34A

ATHENA - Cold antihydrogen production

Summary

First production and detection of cold antihydrogen

- high positron accumulation rate = fast duty cycle

- sensitive detector = observe clear signals

High rate production

- initial rate > 100 Hz, average rate ~ 10 Hz

Antihydrogen dominates annihilation signal (~ 2/3)

Pulsed antihydrogen production

Temperature dependence measured

Antihydrogen production at room temperature

Page 35: Production of cold antihydrogen atoms in large quantities

DPG Frühjahrstagung Aachen 13.03.03 C. Regenfus Uni-Zürich

35A

ATHENA - Cold antihydrogen production

Outlook

More …

Increase formation rate

More antiprotons

Laser induced recombination

Trapping and cooling ...Anti-Hydrogen at E < 0.05 meV ?

Dense plasmas in magnetic multipole fields ?

Laser cooling? Collisions with ultra-cold hydrogen atoms?

Spectroscopy

High precision comparison 1S-2S

Hyperfine structure

Gravitational effectsE ~ 0.000 1 meV

Atom interferometry

Study …

Formation process

Next steps - technology Next steps - physics