Top Banner

of 12

Problems Solved and Not Solved in UCG

Jun 02, 2018

Download

Documents

Vidya Sagar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Problems Solved and Not Solved in UCG

    1/12

    PROBLEMS SOLVED

    AND

    PROBLEMS NOT SOLVED I N

    UCG

    Robert

    D.

    Gunn

    Un iv er s i ty o f Wyoming and the

    Energy Research and Development Administration

    Laramie Energy -Research Center

    P. 0.

    Box 3395, Un ive r s i t y S t a t i on

    Laramie, Wyoming 82071

    I

    NTRODUCT

    ION

    Several d i f f e re n t p rocesses o f U C G (Underground Coal Gasif icat ion)

    are be ing i nves t iga t ed i n f lo r th Amer ica . O f these, t he l i nked ve r t i c a l

    w e ll proc ess, deve lop ed by th e Laramie Energy Research Center, has been

    f i e l d tes ted most ex te ns ive ly and i s c loses t to eventual commerc ia l iza tion .

    There i s , c o ns eq ue nt ly , s u b s t a n t ia l p a r t i c i p a t i o n i n f u r t h e r f i e l d

    t e s t i n g o f t h e l i n k e d v e r t i c a l w e l l p ro ce ss o r mino r v a r i a t i o ns o f

    i t .

    P a r t i a l o r c omp le te i n d u s t r i a l p a r t i c i p a t i o n i s i n vo l ve d i n th e f i e l d

    test ing programs

    o f

    th e Al be rt a Research Counci l , Texas A6M Un iv er si ty ,

    and Texas U t i l i t i e s .

    Problems, some so lv ed and

    some

    not solved, which ar e associated

    w i t h U C G are d iscussed i n th i s work . D iscussion o f these problems out l ines

    t he cu r r en t s t a t us of t he l ink ed ve r t ic a l w e l l p rocess. The purpose is

    t o prov id e per sp ect iv e concerning what has been accomplished alre ady and

    what remains y e t

    t o

    be done on the road t o commerc ia l izat ion o f UCG.

    PROBLEMS SOLVED

    1 .

    Low Gas Q u a l i t y

    An app r a i sal o f wo r ld - w ide r esea rch e f f o r t s i n

    U C G

    through

    1971

    showed

    t ha t no f i e l d exper im en ts us ing a i r i n je c t i o n had cons i s t en t l y p roduced gas

    wi th a heat ing va lue o f more than 4.7 -

    5.1

    MJ/m3 (120-130 Btu/scf).

    most cases the gas hea ti ng values averaged l es s than 3.9 tlJ/m3 100 Btu /sc f )

    I ) .

    I n co nt ra st a l l exper iments conducted a t Hanna, Wyoming, l iave r es ul te d

    i n heat ing values above

    4.7

    tlJ/m3

    120 Bt u / sc f ) . Du r ing t he bes t con t r o l l ed

    o f a l l o f th e Hanna experiment s, th e Phase I I lianna I te st , the gas

    heat ing value averaged

    6.7

    MJ/m3

    (171

    B t d s c f ) a t p r o du c ti o n r a t es ex -

    ceeding

    215 ,000

    m3/day

    8

    m i 1 1 i on sc f / day ) .

    I n

    The favorab le res u l t s a t Hanna stem f rom th ree we l l de f ined con d i t i ons :

    1 .

    Favorab le geo log ic a l cond i t ion s

    2 ,

    3). An impervious sh al e

    over l ies the Hanna No.

    1

    coal seam. The seam i s r e l a t i v e l y th i ck , 9

    m.

    I t l i e s a t s u f f i c i e n t depth,

    82-122

    in, so t ha t gas leakage t o the su rf ac e

    has not occurred.

    A

    s i n g l e a q u i f e r , o f ve ry l ow p r o d u c t i v i t y , o v e r l i e s

    th e coa l seam.

    64

  • 8/10/2019 Problems Solved and Not Solved in UCG

    2/12

    2. Subbituminous coal . Mathemat ical m d e l calc ula t io ns show th at

    t he hea t i ng va lue o f gas p roduced f rom e i t h e r l i g n i t e o r b it um inous coa l

    should be lower than the hea t ing value o f gas f rom subbi tuminous coal .

    Gases produced by car bo niz at ion o f the coal make up a su bs ta nt ia l p a r t

    of th e fuel gases produced by UCG. Subbituminous coa l has a h igh v o l a t i l e

    content ; i n add i t ion , the carbon iza t ion gases are r i c h i n methane.

    In boreholes and la rge channels, probably the most cr i t i c a l chemical

    rea ct i on i s the steam-carbon rea ct i on

    C

    +

    H20

    ->

    C O

    +

    H 2

    which requ ire s a lo ng residence t ime compared t o simple combustion. I n an

    open borehole, o r a bo reho le p a r t i a l l y f i l l e d w i t h rubb le and l a rge p ieces

    of coa l , there i s poor contac t between the so l id coa l char and the m ix ture

    o f water vapor and h ot combustion gases.

    I n con t ras t i n t he l i n ked ve r t i ca l w e l l p rocess , no open bo reho le

    ex is ts between the a i r i n j ec t i on and gas produc t ion we l l s . Ins tead gases

    permeate th rough the dr ied , p a r t i a l l y de vo la t i l i z ed coa l . Average

    pa r t i c l e si ze , a t l e as t f o r t he Hanna

    No. 1

    Seam, i s on th e or de r o f one

    mi l l im et er . Because ther e i s in t im ate contac t be tween gases and so l i d ,

    the ga s i f i c a t io n reac t io ns are more ex tens ive ; and gas hea t ing va lues,

    consequent ly, a r e h igher . B i tum inous coa l conta in s less v o l a t i l e mat ter

    and, the refo re, produces a lower hea t ing value gas. L ig ni t e has a h igh

    v o l a t i l e c on te nt , b u t on d e v o l a t i l i z a t i o n r e l a t i v e l y l i t t l e methane i s

    produced and a lower qu al i ty gas i s obtained.

    3 .

    Cont ro l o f water in f l ux . Sov ie t da ta from f i e l d te s t s and com-

    m erc ia l ope ra t i ons (4,

    51,

    mathematical model calculat ions (6,

    7, 8 ) ,

    and expe rime nta l r e s u l t s from Hanna, Wyoming, (9,

    IO)

    a l l v e r i f y t h at a

    too h i gh w ater i n f l u x can produce a m ajor de t e r i o ra t i on o f gas q ua l i t y .

    The phys ica l reasons f o r the de le t er io us e f fe c t o f water have been

    discussed elsewhere (5,

    6

    8,

    IO).

    Ejost western Te r t i a r y coa l seams ar e

    aq ui fe rs . The Hanna No. 1 coal seam, however, i s a re la t i v el y unproduct ive

    aqu i fe r . There fore , i t i s r e l a t i v e l y easy t o a d ju s t a i r i n j e c t i o n r a t es

    t o main ta in a near optimum a i r / water ra t io .

    2. Decreasing Heating Value

    In many f i e l d t es t s t he gas p roduced s ta r t ed i n i t i a l l y w i t h a

    reasonab le heat ing va lue which then d ec l ined gr adua l l y t o unacceptab le

    val ues . Two mechanisms a r e known wh ic h can cause th i s beh av io r:

    1 .

    Use o f boreholes. One method of coal g a si f ic a t i on inv olv es the

    d r i l l i n g o f b o re ho le s t o c on ne ct t h e i n j e c t i o n and t h e p r o d u c ti o n w e l l .

    The coa l i s ig n i t ed then and ga s i f ie d a long the le ngth o f the boreho le.

    I n t h i s process the coal burns ra d ia l ly outward, and the borehole increases

    i n siz e. As th e borehol e grows i n si ze , more gas by-passes th e coa l; and

    the gas heat ing va lue dete r io r a tes cor responding ly .

    65

  • 8/10/2019 Problems Solved and Not Solved in UCG

    3/12

    2 Hi gher wat er i nf l ux f or l arger burned ar eas. Si nce many coal

    beds i n t he Vest ar e aqui f ers , wat er i nf l ux t ends t o i ncrease as mor e and

    more sur f ace i s exposed by t he combust i on f r ont . I n addi t i on, f or l ar ger

    burned out ar eas subsi dence occur s est abl i shi ng communi cat i on w t h

    over l yi ng aqui f ers wi t hi n t he subsi dence zone.

    Wt h an except i on di scussed l at er i n t hi s paper, a dr ast i c decl i ne

    i n

    gas heat i ng val ue has not occur r ed du r i ng t he Hanna f i el d t est s. The

    maj or r eason i s t hat t he l i nked ver t i cal wel l pr ocess used at Hanna i s

    not a borehol e met hod but a permeat i on met hod, t hat i s, i t i s essent i al l y

    a packed bed pr ocess. Packed beds ar e wi del y used i n t he chem cal process

    i ndustr i es . A pr i nci pl e, wel l known among pr ocess chem st s and engi neer s,

    is t hat f or sat i sf act or y r esul t s channel i ng must be avoi ded in packed bed

    equi pment such as chem cal r eact ors, l i qui d- l i qui d extr acti on col umns, and

    di st i l l at i on t ower s. None

    o

    t he Hanna f i el d test s have yi el ded any

    def i ni t e evi dence t hat open channel s have been cr eat ed.

    Thermal data f r om i nst r ument ed obser vat i on wel l s 1 1 ) . f l ow r at e and

    gas composi t i on i neasurement s

    9 ,

    121 , and mat hemat i cal model i ng

    6 , 7)

    have been used ext ensi vel y

    i n

    devel opi ng t he f or egoi ng descr i pt i on of t he

    mechani cs of t he l i nked ver t i cal wel l pr ocess. A s mor e s l ear ned about

    t he pr ocess, i t becomes i ncr easi ngl y cl ear t hat l i gni t e and subbi t um nous

    coal pr opert i es ar e especi al l y amenabl e to UCG. Both t ypes of coal shr i nk

    on heat i ng, and dr yi ng al one i ncr eases t he coal permeabi l i t y by about t wo

    order s of magni t ude

    1 3 ) .

    t i s t hese pr oper t i es whi ch per m t r ever se

    combust i on l i nki ng and a permeat i on t ype gasi f i cat i on pr ocess t o be used.

    3 . Vari abi l i t y i n Gas Qual i t y and Gas Product i on Rat es

    A

    wi de var i abi l i t y i n gas qual i t y and pr oduct i on r ates has been

    observed on an hour l y or dai l y basi s

    i n

    many f i el d exper i ment s. The need

    f or a const ant gas f l ow r at e, however , pr esent s no real pr obl em t i s

    r eadi l y achi eved w th a const ant ai r i nj ect i on r at e and w t h t he use of a

    f l ow cont r ol val ve on t he pr oduct i on l i ne.

    At Hanna var i at i ons i n gas heat i ng val ues on t he or der of 5 to 10

    percent have been obser ved at a si ngl e wel l on a dai l y basi s. Thi s f al l s

    w t hi n the accept abl e l i m ts f or the f i r i ng of l arge boi l ers . F o i a

    commerci al oper at i on, however , many pr oduct i on wel l s woul d be i n use

    si mul t aneousl y and the var i abi l i t y

    i n

    t he gas

    composi t i on^

    woul d tend t o

    average out . t

    i s

    al so not ed t hat gas vari abi l i t y has been mr e ext r eme

    i n the bor ehol e or st r eam ng methods of UCG.

    4. Low Thermal Col d Gas) Ef f i ci ency

    n

    t hi s work t her mal ef f i ci ency i s def i ned as t he upper heat i ng

    val ue of dr y gas and l i qui ds pr oduced di vi ded by t he heat i ng val ue of t he

    coal consumed. Consi st ent wi t h t hi s def i ni t i on, sensi bl e heat i s not

    i ncl uded nor i s t he l at ent heat of any water vapor i n t he gas.

    The i nst r ument at i on used dur i ng t he Hanna f i el d t ests per m t s a

    accur at e det er m nat i on of t he t hermal ef f i ci ency. These ef f i ci enci es

    are the hi ghest ever r ecor ded. The Phase

    I I

    Hanna

    I I

    t est achi eved an

    66

  • 8/10/2019 Problems Solved and Not Solved in UCG

    4/12

    e f f i c i en c y o f

    89

    percent f o r t he en t i r e 25 days o f t he t e s t du r ing wh ich

    2300 tonnes (2500 tons)

    o f

    coal were consumed.

    Such h ig h e f f i c i en c i es are r ea d i ly achieved under good opera t ing

    The mn y fe e t o f ear th ov er l y i ng and under ly ing the coal

    ond i t ions .

    seam prov ide exc e l le n t insu la t io n . In t h i c k coa l seams, there fore , the

    LiCG process operates nea r ly ad ia ba t i ca l l y . Most of the thermal energy

    released f rom th e combust ion o f co al

    char and a i r must be produced a t t he

    su r f ace i n t he f or m o f sens i b le and l a t en t heat and i n the heat i ng va lue

    o f th e gas produced, i.e., chemical heat. The se ns ib le hea t i s a les s

    convenient form o f energy because i t can be t rans por te d on ly over very

    shor t d is tances .

    I n the boreho le or s t reaming method o f

    U G

    a subs tan t ia l p o rt i on o f

    . t he t o t a l energy re leased appears a t the sur face i n t he f o rm o f sens ib l e

    the

    hot

    combust ion gases by-pass the coal and a consi derabl e p or t i on o f

    heat. In permeat ion processes on ly a small

    po r t io n o f th e energy goes

    i n t o sensi b le heat. The combust ion gases in t i ma te ly contac t the coal ,

    and most o f t he sensi b le heat i s used up fo r the h ig hl y endothermic

    steam-char re ac ti on which produces a comb ust ibl e gas.

    A

    number

    o f

    cond i t ions can lead t o lower thermal e f f i c i en c i es as

    we l l as lower gas he at i ng values.

    1 .

    Thin coal seams. A l a r g e r p o r t i o n o f t h e energy i s l o s t to t he

    surrounding rock format ions.

    2. Very h ig h ash coal (over 50 percent ) .

    A

    s u b s t a n t i a l p o r t i o n o f

    th e thermal energy i s taken up by the ash.

    3 . Low a i r in je c t io n ra tes . Gas res idence t i m e underground i s

    longer, and a l a rger por t io n o f t he energy i s l o s t to the surroundings .

    Very low a i r f l ow ra tes a ls o r es u l t i n lower reac t i on zone tempera tures.

    4. Gas channeling . Th is r es ul ts i n poor co nt ac t between gases and

    coa l .

    5. Too hi gh water in f l ux . Vapo r iza t ion o f the water uses up much

    o f th e av ai la bl e thermal energy.

    6 .

    Gas leakage.

    The mathematical model mentioned

    i n

    t h i s paper can be used t o qu an t i fy

    i nd i v idua l e f f e c t s l i s t e d above.

    syne r g i s t i c i n f l uence o f two o r more o f t hese e f f ec t s ac t i ng s im ul t aneous ly .

    More de t a i l e d d i scuss ions o f t he d i s t r i bu t i on o f ene rgy du r ing t he U G

    process have been repo rte d f o r t he Hanna f i e l d te st s (5, 6,

    7,

    10).

    5. Low Resource Recovery

    It

    can a l so be used t o qua nt i f y th e

    I n the borehol e or streamin g method o f UC6, th e combust ion f r o n t tends

    t o t ra ve l down the boreho le ra ther rap id ly and t o b reak th rough to th e pro-

    duc t i on we l l .

    below acceptable levels . Cnder these c i rcumstances, a larg e po r t io n o f the

    Once th i s occurs the gas qu a l i t y de ter i o ra tes very rap i d l y

    67

  • 8/10/2019 Problems Solved and Not Solved in UCG

    5/12

    coa l

    i s

    l i k e l y t o be by-passed, and energy recovery i s low.

    I n

    a l l t es ts o f

    th e l i nk ed ve r t i c a l we l l process a t Hanna, Wyoming, th e combustion zone

    advanced along a broad f ro nt , and m s t o f the coa l i n p lace was consumed.

    For example, Fi gu re

    1

    shows th e we l l la yo ut f o r Phases and

    l l

    o f t he

    Hanna

    I I

    experiment. Wel ls 5, 6, 7, and

    8

    a r e p r o du c t io n and a i r i n j e c t i o n

    w e l l s . L e t t e r s A t o 0 i nd i ca te i ns trum en ted obse rva t i on w e l l s w i t h

    the rm coup les a t seve ra l l eve l s w i t h i n t he coa l seam. W i th t he t he rm al

    data

    i t

    i s p o s s i b l e t o t r a c k t h e pr og re ss

    o f

    t h e combustion zone. These

    data show tha t th e combust ion f r on t burned through a l l we l l s w i t h i n the

    60

    foo t square pa t t e r n except we l l

    K. I t

    i s conc luded , t he re fo re , t h a t

    t he a rea l sweep e f f i c i e nc y i s w e l l ove r

    80

    percent .

    The square w e l l p at te rn shown i n Figur e

    1

    conta ined

    4170

    tonnes

    4600

    tons) o f coa l . Mate r ia l ba lance ca lc u l a t io ns based on the carbon content

    o f produced gases show t ha t abo ut 6070 tonnes

    6690 tons) o f coa l were

    consumed 9 , 1 4 . Obviously cons iderab le bur n ing occur red outs ide th e

    square pat t e rn .

    I n

    fa ct , th e combustion zone burned through

    t o

    w e l l

    A

    b u t

    n o t t o w e l l

    N

    on t h e o p p os i t e s i d e o f t h e p a t t e r n . A t the same time cores

    o f coal taken near burned ou t reg ions have shown no re a l ev idence o f p a r t i a l

    u t i l i z a t i o n o f coa l . i .e ., cored coa l samples i nd i ca te no subs tan t i a l

    ca rbon i za t i on

    15).

    I t

    i s

    i n f e rr e d , t h e re f o re , t h a t p r a c t i c a l l y a l l co al

    contac ted by the combust ion f ro n t i s comple te ly qas i f ie d .

    A two dimens ional mathem atical model developed f o r U C G shows reasonable

    agreement w i t h f i e l d performance determined by thermal measurements and

    m ate r i a l ba lance ca l cu l a t i ons

    16).

    When work on t h i s model i s completed,

    i t w i l l

    be poss ib le to pr ed ic t the shape o f the combust ion zone

    for

    any

    g i ven w e l l pa t t e rn .

    6.

    O vera l l P rocess E f f i c i en cy

    The ove r a l l p rocess e f f i c i en cy i s de f i ned he re as t he upper hea t i ng

    va lue o f d r y gas and l i qu id s p roduced d i v i ded by t he hea t i ng va lue o f t he

    coal consumed pl us a l l energy consumed on s i t e f o r

    gas

    compression,

    u t i l i t i e s , etc.

    A l l

    t e s t s w i t h t h e l i n k e d v e r t i c a l w e l l p ro ce ss a t Hanna,

    Wyoming, have shown t h a t

    U C G

    i s an e f f i c i e n t m ethod o f ene rgy recove ry IO).

    Typ ica l l y about

    I4

    percent

    o f

    th e energy produced i s consumed f o r gas

    compression and oth er purposes. Most o f th e energy consumpt ion i s f o r

    gas compression. Th ere for e, th e

    1 4

    percent f ig ur e can be gre at l y reduced

    by o p t i mi z i n g t h e s i z e o f w e l l

    c a s i n g and s ur f a c e p i p i n g and u t i l i z i n g

    ef f i c i en t a i r compression equipment .

    f o r a w e l l spac ing o f

    18 m

    60 fee t ) , p ressure losses ar e on ly 0.7-2.0

    N/m2

    1-3 p si ) even a t a i r i n j e c t i o n r at es o f 120,000 m3/day 4.5 m i l l i o n s cf /d ay ).

    Thus, v e r y l i t t l e e ne rg y i s l o s t i n f o r c i n g a i r t hr ou gh t h e c o a l seam

    because o f t he g re a t pe r m eab i l i t y o f l i g n i t e and subbi tuminous coal a f t e r

    dry i ng and de vo la t i l i za t i on by reverse combust ion. Overa l l p rocess e f -

    f i c i en c i es range from

    65

    t o

    74

    p e rc e nt f o r t h e l i n k e d v e r t i c a l w e l l t e s t s

    cond ucted a t Hanna, Wyoming IO).

    Pressure measurements show that

    7. Control of Combustion Front

    In a permeat ion t ype method o f

    U C G

    such as t he l i nke d ve r t i c a l w e l l

    p rocess , con t ro l o f t he d i r e c t i o n and ra te o f p rog ress o f t he com bust ion

    68

  • 8/10/2019 Problems Solved and Not Solved in UCG

    6/12

    f ront

    i s ach ieved through se le c t io n o f the pa t t e r n fo r p roduc t ion and

    i n j e c t i o n w e l l s and th ro ug h c o n t r o l o f t h e a i r i n j e c t i o n r a t e . A two

    dimensional mathematical model descri bed by Jennings e t a l . IO) has been

    used to pre d i c t loca t ion and shape o f the combust ion zone w i th s a t i s fa c to ry

    accuracy. The theory requ i res f u r t he r ve r i f i ca t i on w i t h m u l t iw e l l pa t t erns .

    8.

    Equipment Re1 i a b i 1 i y

    Equipment f a i l u re s have severely p lagued research on sur f ace coal

    ga s i f i ca t io n processes. Th is has not been t r ue w i th U C G (19). The hi gh

    leve l o f equipment dep endab i l i t y i n U C G re su l t s from two cond i t i ons , the

    g r ea t s i m p l i c i t y o f t h e su rf ac e i n s t a l l a t i o n s r e qu i re d and t he r e l a t i v e l y

    low

    temperatures o f gases produced.

    9.

    Lack o f P red i c tab i 1

    i

    y

    A f requent complaint has been that U C G i s h i g h l y u n p r e d i c t ab l e ;

    there fo re , re l i ab le eng ineer ing des ign was not poss ib le present ing a

    major obs tac le t o commerc ia l i za t ion o f

    i n

    s i t u c o a l g a s i f i c a t i o n. I n t h e

    past th is has undoubtedly been t rue , bu t th e res u l ts f rom the l a t es t te s t

    a t Hanna s t rong l y i nd i ca te t ha t t he p roblem i s c l ose t o so lu t i on .

    Although

    U C G

    i s no t ye t ready fo r commerc ia l i za t ion , tha t t ime i s

    approaching rapid ly.

    A t

    the present , unders tand ing o f the phys ica l and

    chemical mechanisms control l ing

    U C G

    i s f a r more complete than o f many

    compet ing coal gasi f icat ion processes.

    has resu l ted from three developments: ex tens i ve ins t rumenta t ion o f f i e l d

    exper iments , a v a i l a b i l i t y o f computers la rg e and small

    (20) ,

    and the

    development o f soph is t i c a ted models capab le o f p r ed ic t i ng accura te ly f i e l d

    t e s t performance.

    Th is g re at l y increased unders tanding

    IO.

    S i t e S p e c i f i c i t y

    The very fav orab le re su l ts obta in ed f rom

    U C G

    f i e l d t es t s a t H anna,

    Wyoming, have no t been du pl ic at ed anywhere e l s e

    i n

    the world.

    I t

    might

    be concluded that success i s sp ec i f i c t o the Hanna s i te . Th is i s no t the

    case, however. Most o f th e parameters ess ent ia l t o successful

    U C G

    have

    been id e nt i f i ed through the use o f mathemat ical models and o f massive

    amounts o f data acqui red du r i ng f ou r yea rs o f f i e l d t es t i ng .

    a number

    o f

    f avorab le f ac to rs have con t r i bu ted g r ea t l y t o success ful t es t s

    a t Hanna, Wyoming; sev era l o f these f a c t o r s have been discuss ed al re ad y

    ( r e f e r t o i t em 1 . Low Gas Qu al i t y) . These fa ct o rs , however, a re by no

    means unique to the Hanna coal f i e l d b ut occ ur i n many i f n o t m s t areas

    o f th e West.

    Undoubtedly

    PROBLEMS NOT SOLVED

    No

    at tempt i s made here t o d iscuss a l l research problems which remain

    unsolved because,

    even wi t h proven processes, new problems freq ue nt ly

    ar i se. Instead problems which remain unsolved ar e c la s si f i e d as one o f

    th ree types as a bas is fo r d iscuss ion.

    69

  • 8/10/2019 Problems Solved and Not Solved in UCG

    7/12

    C r i t i c a l problems. These ar e problems which,

    i f

    not reso lved favor -

    ably,

    w i l l

    have a major harmful

    impact on the c ommerc ia l i za t io n o f

    U C G .

    Only

    t w o

    problems o f t h i s type a re known, subsidence and excessive water

    i n f l u x .

    No n -c ri t i ca l problems. These ar e problems which can have a major

    economic impact, bu t whi ch

    w i l l

    no t prevent commerc ia l izat ion even

    i f

    no

    favorab le so lu t i on i s found. Uncer ta in ty concern ing maximum we l l spac ing

    i s such a problem.

    Developmental problems. These a r e problems which re qu ir e ap pl ic at io n

    o f of f - the -s hel f technology, o r are problems which may requ i re new tech-

    nology b ut w i l l no t have a major economic impact on th e process. Gas

    clean.-up i s such a problem.

    1 1.

    Subsidence

    Subsidence i s proba bly th e most important s i ng le ob sta cle t o com-

    m e r c i a l i z a t i o n o f UCG. Because o f f i s ca l l i m i t a t i on s , t he t e s t s a t Hanna

    have been l i m i t e d

    to

    two and fou r w e l l pa t t e rns w i t h

    60

    fo ot spacing. Wi th

    t h i s spacing no subsidence has been observed a t t he sur face, a l though

    subsur face cav ing o f t he

    roof has occur red d i r e c t l y over areas o f burned

    o u t c o al .

    When l a r g e r

    UCG

    pat t erns a re used, subsidence o f the sur fac e

    w i

    1 1

    occu r i nev i t ab l y . A t many l oca t i ons i n t he w es te rn s ta tes t h i s i s no t an

    insurmountable problem. Even w i t h ext ens ive subsidence, the sur fac e i s

    less d is t urbe d than

    i t

    would be by s t r i p m in ing.

    There are, however, thr ee m j o r problems associated

    w i t h

    subsidence:

    1. D i s r u p t i o n o f o v e r l y i n g a q u i f er s .

    A

    v er y s e n s i t iv e p o l i t i c a l

    i ss ue i n a r i d r e g io n s.

    2.

    Estab l i shment o f communicat ion w i th ov er ly in g a qu i f e rs th rough

    subsidence and consequent f lo od in g o f th e combustion zone.

    3. Gas leakage t o aqu i fe rs and pos sib ly

    to

    the sur face.

    O nl y f u t u r e f i e l d t e s t s w i t h l a r g e p a t t e r n s c an d e te rm in e t o what

    ex tent the fo rego ing harmfu l e f fec ts can be m in im ized.

    O f

    course, i f t h e e f f e c t s o f subsidence shou ld prove in to le ra b l e i n

    a g i ve n s i t u a t i o n ,

    i t

    c o u l d be a vo id ed e n t i r e l y b y u t i l i z i n g sm a ll i s o l a t e d

    burn pa t t e rns . Th i s w ou ld be p ra c t i ca l o n l y

    i f

    the roc k overburden had

    s u f f i c i e n t s t r u c t u r a l s t r e ng t h as

    i t

    does a t Hanna.

    i n

    an unf or tu nat e red uct i on i n the amount o f recoverab le coa l .

    I t w ou ld re su l t a l so

    12. Excessive Water In f l u x

    V i rg in c oa l i n the Hanna No. 1 seam has low per me ab i l i t y and i s a very

    unproduct i ve aqu i fe r . For t h i s reason,

    i t

    i s p o s s ib l e t o m a i nt a in a n e a rl y

    optimum w a te r /a i r r a t i o

    (moles water produced from th e co al seam/moles a i r

    70

  • 8/10/2019 Problems Solved and Not Solved in UCG

    8/12

    i n j ec ted ) a t r easonab le a i r i n j e c t i o n ra tes . Th i s was t r ue f o r Phases

    I

    and

    I I

    o f th e Hanna

    I I

    experimen t. B o th o f t hese t es t s i nvo l ved on l y two w e l l s

    spaced 16

    m

    apa rt f o r Phase

    I

    and

    18 m

    ap ar t f o r Phase

    I I

    Both

    the heat i ng va lue o f gas produced and the thermal e f f i c i en cy o f

    th e pro cess were much lower f o r Phase

    l l

    t han f o r t he prev ious

    tw

    t e s t s .

    F i e l d d at a 9, IO) and ca lc u l a t io ns w i t h the mathemat ica l model 8) b o t h

    con f irm ed tha t t h e de te r i o r a t i ng res u l t s ob ta i ned i n t he Phase

    l l

    t e s t

    r e s u l t e d fr om an e x ce s si ve i n f l u x o f w at e r. P h y s i ca l l i m i t a t i o n s o f t h e

    a i r i n j e c t i o n system p re v en t ed a d ju s tm e nt o f t h e w a t e r / a i r r a t i o .

    Phase

    I l l

    i nvo lv ed a fou r we l l t e s t pa t te r n . Thus, the reac t io n zone

    was exposed t o a much

    la rg er area o f water drainage f rom th e coal seam.

    Als o the lar ger burn area may have promoted gre at er c avi ng of th e roof and

    communication w i th an ov er ly in g aq ui f er .

    E xcess ive w a ter i n f l ux can be con t ro l l e d

    i n

    four ways:

    1 . Use of dewater ing wel ls .

    2. Carefu l p ressure con t ro l .

    3.

    Adj us tmen t o f t h e a i r i n j e c t i o n r a t e .

    4.

    G a s i f i c a t i o n i n an up d i p d i r e c t i o n .

    The degree o f success t h a t can be achieved wi t h these c o nt ro l measures can

    o n l y b e p ro ve n w i t h t h e u se o f l a r g e w e l l p a t t e r n s i n f u t u r e t e s t s .

    13.

    Maximum Wel l Spa cing and Depth

    Fact ors a f f e c t i n g maximum we1

    1

    spacing and depth a re l a r ge l y con jec tu ra l

    and have not been i nv est iga ted i n f i e l d te sts . Maximum depth a t which the

    process i s workable i s an impor tant in d i ca to r o f t he amount o f coa l t h a t may

    b e s u i t a b l e f o r UCG. Maximum we l l spacing i s impor tant because the dr i l l i n g

    and com p let i on o f w e l l s

    i s a m aj or c o s t i t e m i n t h e o p e r a t i o n

    o f

    a

    U C G

    pro j ec t . Ne i ther i s a c r i t i c a l prob lem, however. There ar e vas t depos i ts

    o f c o al a v a i l a b l e a t d ep th s a l r e a dy t e s t e d s u c c e s s f u l l y w i t h U C G . Economic

    s t u d i es i n d i c a t e t h a t

    U C G

    even wi t h t he cl os e spac ing used a t Hanna, Wyoming,

    may be compet i t i ve a l re ady w i t h some in t r as ta te natura l gas pr i c es 21).

    14.

    Bituminous Coal

    I t has been emphasized ea r l i e r t h a t t he l i nk ed ve r t i ca l w e l l p rocess i s

    a permeat ion method and t ha t t h i s fa ct has been res pon sib le f o r much o f the

    success o f the Hanna tes ts. L i g n i t e and subbi tuminous coal sh r in k on

    dry i ng and carbon iza t io n . Th is perm i ts the use o f reverse combustion

    l ink ing, and the es tab l i shment o f a permeat ion process dur ing fo rward ga s i f i -

    c a t i o n . A t t h i s t i m e i t i s n o t c e r t a i n t h a t t h e l i n k e d v e r t i c a l w e l l p ro ce ss

    can be used succes s fu l l y i n eas tern b i tum inous coa l wh ich swel l s on heat ing .

    Because

    of

    t h e l a r g e p o p u l a t i on o f t h e e a s t e rn s t a t e s ,

    i t

    i s i mp or ta nt t o

    t e s t t he v i a b i l i t y o f

    U C G

    i n eas te rn coa l . However, t h i s i s no t c l assed as

    71

  • 8/10/2019 Problems Solved and Not Solved in UCG

    9/12

    a c r i t i c a l p ro bl em, t h a t i s , a pro bl em c r i t i c a l t o c om me rc ia li za ti on o f UCG.

    Regardless

    o f

    t he outcome o f eastern tes ts,

    UCG

    remains a workable process

    i n l i gn i t e and subbi tuminous coa l.

    15

    Gas Clean-up

    Gas trea tment i s c l a s s i f i e d as an unsolved problem because

    i t

    has not

    been at tempted o r demonstrated i n the f i e l d . Gas analyses, however, in di -

    c a te t h a t o n l y e x i s t i n g t ec hn ol og y i s r e q u i r e d

    for

    gas c lean-up which i s

    primari ly a developmental problem.

    Coal gas f ro m coke ovens o r Lur gi g as i f ie rs con tain s heavy t ar s and

    much pa r t i c u l a t e mat ter . Ex tens ive and r e l a t i v e l y expensive c lean-up i s

    requ i red fo r these gases, and the h ig h ly v iscous coa l ta rs tend to p lug

    valves o r ot her equipment.

    In

    contrast gas f rom U C G i s much cle ane r. The condensed l i q u i d s cause

    fewer problems tha n ty pi ca l coal t ar s because

    o f

    t he d i f f e re n c e i n t h e i r

    phys i ca l p rope r t i es . The l i qu id s f r om

    U C G

    have a l ow v i sc os i t y s im i l a r

    t o t h a t o f o i l s . None

    o f

    the mater ia l has a b o i l i n g po in t above 780

    K

    (950 F ) . A l m s t a qua r te r o f t he more t yp i ca l coa l t a r de r i ved f rom the

    lab ora tor y ca rbo niz at i on o f Hanna No. 1 co al was composed o f resid ue wi t h

    a b o i l i ng p o in t above 810

    K l O O O o F)

    (17) .

    Pa rt ic u la te conce ntra t ion s and composi tions have been re por ted as wel l

    as t race meta l ana lyses (18). Dur ing fo rward combust ion pa r t i c u l a t e load ing

    has var ied f rom

    0.05

    t o

    0.90

    gm/m3. About

    1/2

    to

    2 /3

    w ei gh t f r a c t i o n o f

    t h e pa r t i c u l a t e m a t te r co l l ec ted f a l l s i n t he submicron range. A na lyses

    i n d i c a t e t h a t

    i t

    cons i s t s o f p a r t i a l l y ca rbon i zed coa l ,and coa l char .

    Su l fu r i s p roduced i n ' th e fo rm o f hydrogen s u l f i d e and no su l f u r

    dioxide has been measured.

    much more eas i l y f rom th e gas than s u l f u r d i ox id e.

    Hydrogen su lf id e, o f course, can be scrubbed

    Gas p ro du ct io n temperatures u su al ly range between 510-590 K (450-600 F).

    Thus, h i gh temperature c lean-up i s not needed, and e xi s t i n g technology

    appears t o be adequate f o r gas tr eatme nt.

    SUMMARY AND CONCLUSIONS

    Fi f t ee n major techn ic a l p roblems assoc ia ted w i th

    U C G

    have been discussed.

    Ten problems have been la rg el y solved, f i v e remain unsolved. O f t h e f i v e ,

    i t

    i s be l ie ved t h a t on l y two, subsidence and excess ive water in f l ux , can

    p resen t po te n t i a l l y ma jo r obs tac les t o com merc ia l i za t i on o f UCG. The Laramie

    Energy Research Center has had v i r t u a l l y no f i e l d exper ience 'w i th e i th er

    problem because t hey become major ones onl y wi t h lar ge wel l pa tte rn s which

    have y e t t o be f i e l d t e s t ed .

    should determine wi th in the next few years i f these two problems can be

    reso lved favorab ly .

    However, proposed la rg e area f i e l d experiments

    7 2

  • 8/10/2019 Problems Solved and Not Solved in UCG

    10/12

    ACKNOWLEDGMENT

    Dennis F is ch er and Mike Boyd o f the Laramie Energy Research Center

    have reviewed th e manusc ript and pr ov id ed many he lp fu l comments.

    1 .

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    IO.

    1 1 .

    REFERENCES

    A r thu r D. L i t t l e , I n c . ,

    A

    Curren t Appr ai sal o f Underground Coal

    Gasi f icat ion, p.

    38,

    76, BuMines Rept. C-73671, 1971.

    Campbell, G .

    G . , C .

    F. Brandenburg, and R. M. Boyd, Prel iminary

    Ev al ua ti on o f Underground Coal Ga s i f ic a t i o n a t Hanna, Wyo., BuMines,

    TPR 82, Oct.,

    1974.

    Schrider, L.

    A.,

    and J.

    W.

    Jennings,

    SPE

    P r e p r i n t

    4993,

    SOC.

    Petroleum

    Eng. Annual Fa1

    1

    Mtg., Oct. 6-9, 1974.

    Gregg, D . W., R. W. H i l l , and D.

    U.

    Olness, An Overview of t he Sov iet

    E f f o r t i n Underground G as i f i ca t i o n o f Coal , Lawrence Livermore Lab.,

    UCRL-52004, Jan. 29, 1976.

    Gunn,

    R.

    D., D.

    W.

    Gregg, and

    D.

    L. Whitman, A Theore t i ca l A na l ys i s

    o f Soviet In S i t u Coal Ga si f i ca t i on F i e l d Tests, Second Annual

    Underground Coal G a s i f i c a t i o n Symp., Morgantown, W. Va., Aug.

    10-12,

    1976.

    Gunn, R. D. , and D. L. Whitman, An I n S i t u Coal Gas if ic at io n Model

    (Forward Mode) f o r F e a s i b i l i t y Studi es and Design, LERC/RI-76/2,

    U.

    S.

    E.R.D.A.,

    Feb.. 1976.

    Gunn,

    R.

    D., D . D. Fischer, and D . L. Whitman, The Ph ys ic al Beha vio r

    o f Forward Combustion i n the Underground Ga si f i ca t i on o f Coal , SPE

    P repr i n t 6149,

    SOC.

    Petr ole um Eng. Annual F a l l Mtg., Oct.

    3-6, 1976.

    Gunn,

    R. D., D.

    L. Whitman, and

    D. D.

    Fischer , paper presented a t

    Am.

    Nuclear SOC Mtg., Energy Mi ne ra l Recovery Research, Golden, Colo.,

    Apr. 12-14, 1977.

    Fischer , D. D., C. F. Brandenburg, S .

    B.

    King, R.

    M.

    Boyd, and

    H.

    L.

    Hutchinson, Status o f the Linked Ve rt i ca l Wel l Process i n Underground

    Coal Ga si fi ca ti on , Second Annual Underground Coal G a s if i c a t i o n Symp.,

    Morgantown, W. Va., Aug.

    10-12,

    1976.

    Fischer ,

    D. D., J.

    E. Boysen, and

    R.

    D. Gunn, An Energy Balance f o r

    t he Second Underground Coal G a s i f i c a t i o n Experiment, Hanna, Wyoming,

    presented a t the

    1977

    N at i ona l Meet ing o f

    SME

    o f AIME, At la nt a, Ga.,

    Mar. 6-8, 1977.

    Beard, S. G., and R.

    P.

    Reed, Some In si g h ts f ro m Temperature Measurements

    on Recent Underground Coal Ga si f ic at io n Experiments, Second Annual

    Underground Coal Ga s i f i c a t i o n Symp., Morgantown,

    W.

    Va., Aug. 10-12 1976.

    73

  • 8/10/2019 Problems Solved and Not Solved in UCG

    11/12

    12. Brandenburg,

    C .

    F., R.

    P.

    Reed,

    R .

    M. Boyd,

    D.

    A.

    Northrop, and

    J.

    W.

    Jennings,

    SPE

    P r e p r i n t

    5654,

    SOC Pet rol eu m Eng. Annual F a l l

    Mtg., Da ll as , Tex., Sept. 28-Oct. 1 , 1975.

    1 3 . Jennings,

    J.

    W., I n i t i a l Resu l ts - -Coal Permeabi l i t y Tes ts Hanna,

    Wyoming, EPRl Gr ant No. R P 542-1, Q u a r t e r l y Rept., Feb., 1976.

    14. Brandenburg, C . F., D. D. Fischer , D. A. Northrop, and L. A. Schr ider ,

    Results and Status o f the Second Hanna I n S i t u Coal Ga si f i ca t i on

    Experiment, Second Annual Underground Coal G a s i f i c a t i o n Symp.,

    Morgantown, W. Va., Aug. 10-12, 1976.

    15. Boyd,

    R.

    M.,

    Post Burn Ana ly sis Techniques Appl i ca bl e t o Underground

    Coal Gas

    i f

    a t o n

    ,

    i

    i d.

    16. Jenn ings , J.

    W., R. D.

    Gunn,

    C.

    F. Brandenburg, and

    D. L.

    Whitman,

    SPE Pr ep r i n t 6181, SOC Petr ole um Eng. Annual F a l l Mtg., New Orle ans ,

    La., Oct. 3-6.

    1976.

    17. King, S. B., P re l im ina ry U C G Tar Analyses, Second Annual Underground

    Coal G a s i f i c a t i o n Symp., Morgantown,

    W.

    Va., Aug. 10-12, 1976.

    18. Fischer,

    D. D.,

    Moni tor i ng o f Emiss ions f rom an I n S i t u Coal Ga s i f i -

    cat io n Exper ment ,

    i i

    d.

    19. Campbell,

    G. G.,

    T. E. Sterner, and

    A.

    E. Humphrey, Practical

    Cons iderat ions i n Des ign ing an

    U C G

    Test , ib id.

    20.

    Eastwood,

    D.

    E. ,

    D . F.

    Moore,

    S .

    6. King,

    W. J.

    Lanum, J. K. Ea st la ck ,

    and J. W. Jennings, Real Time Process Mon ito r i ng

    i n

    Underground Coal

    G a s i f i c a t i o n, i i d.

    21. Moll, A. J., The Economics o f Underground Coal Ga si fi ca ti on , ib id .

  • 8/10/2019 Problems Solved and Not Solved in UCG

    12/12

    1

    75