Top Banner
Probabilistic QPF Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma
37

Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Jan 15, 2016

Download

Documents

Ilene Burke
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Probabilistic QPFProbabilistic QPF

Steve Amburn, SOO

WFO Tulsa, Oklahoma

Page 2: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Preview

• Product review– Graphic and text

• Forecaster involvement

• Examples of rainfall distributions

• Theory and Definitions

• Comparisons– To previous work– To real events

Page 3: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

How do we distribute PQPF information?

Page 4: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Bar Chart – Osage County Average

Page 5: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Distribute of text information

6-hr PoP = 70%

6-hr QPF = 0.82

Probability to exceed 0.10” = 67%Probability to exceed 0.50” = 46%Probability to exceed 1.00” = 30%Probability to exceed 2.00” = 12%

Page 6: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Premise

1. Rainfall events are typically characterized by a distribution or variety of rainfall amounts.

2. Every distribution has a mean.

3. Data indicates most rainfall events have exponential or gamma distributions.

4. Forecast the mean, and you forecast the distribution.

5. That forecast distribution lets us calculate exceedance probabilities (POEs), i.e., the probabilistic QPF.

Page 7: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Characteristics of POE Method for Probabilistic QPF (exponential distributions)

• As mean increases POE increases

Probability to Exceed rainfall amounts for a mean value Mu

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Rainfall (tenths of inches)

Pro

ba

bil

ity Mu=.1

Mu=.2

Mu=.5

Mu=1

Page 8: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Forecaster Involvement

• No additional workload– No extra grids to edit– No extra time to create the products

• Forecasters simply issue their QPF, given the more specific definition.

• New QPF definition ~ Old QPF definition

Page 9: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distribution

• “There are a variety of continuous distributions that are bounded on the left by zero and positively skewed. One commonly used choice, used especially often for representing precipitation data, is the gamma distribution. ...”

D.S. Wilks (1995), Statistical Methods in the Atmospheric Sciences, Academic Press, pp. 467.

Page 10: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distributions

blue line => α =1

red line => α =2 black line => α =3

exponential distribution (special case of gamma)

Page 11: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Individual Spring Events Spring Precip Frequencies Data

81 rainfall events

0

500

1000

1500

2000

2500

3000

0.05 inch bins

Freq

uenc

y pe

r bin

Page 12: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Individual Summer EventsSummer Precip Frequencies Data

122 rainfall events

0200

400600

8001000

12001400

16001800

0.05 inch bins

Freq

uenc

y pe

r bin

Page 13: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Individual Autumn Events

Autumn Precip Frequencies Data92 rainfall events

0

500

1000

1500

2000

2500

3000

0.05 inch bins

Freq

uenc

y pe

r bin

Page 14: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Individual Winter EventsWinter Precip Frequencies Data

81 rainfall events

0

500

1000

1500

2000

2500

3000

3500

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

0.05 inch bin categories

Freq

uenc

y

Page 15: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distribution? YesUsually, the Exponential Distribution

• Over time at a point (TUL, FSM...)• For individual events (nearly 700)

• Virtually all were exponential distributions• A few were other forms of gamma distribution

• Let’s look at the math...

Page 16: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Function

 

The gamma function is defined by: 

Г(α) = ∫ x (α-1) e-x dx

,for α > 0 , for 0 → ∞.

Page 17: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distributions

blue line => α =1

red line => α =2 black line => α =3

exponential distribution (special case of gamma)

Page 18: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Function for α = 1

 

1)Г(α) = ∫ x (α-1) e-x dx ,for α > 0 , for 0 → ∞.

  

So, for α = 1,  

Г(1) = ∫ X(1-1) e-x dx

= ∫ e-x dx = - e-∞ - (-e-0) = 0 + 1

Г(1) = 1.

0

Page 19: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma PDF Exponential PDF

Now, for α = 1, gamma distribution PDF simplifies.  f(x) = { 1 / [ βα Γ(α) ] } • xα-1 e-x/β, (gamma density function)

So, substituting α = 1 yields:

f(x) = { 1 / [ β1 Γ(1) ] } • x1-1 e-x/β  

or,

f(x) = (1/β) • e-x/β, (exponential density function)

Page 20: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

POE for theExponential Distribution

So, to find the probability to exceed a value “x”, we integrate from x to infinity (∞).

f(x) = POE(x) = ∫ (1/β) • e-x/β , from x → ∞. = -e-∞/β - (-e-x/β ) = 0 + e-x/β

so,

POE(x) = e-x/β ,where β = mean

Page 21: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Unconditional POE

Simply multiply conditional POE by PoP,

6) uPOE(x) = PoP x (e-x/μ )

, where μ is the conditional QPF.

Consider, the NWS PoP = uPOE (0.005)

Page 22: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Individual event examples

• Data from ABRFC – 4578 HRAP grid boxes in TSA CWFA.

• Rainfall distributions created

• Means calculated

• POEs calculated from observed data

• Actual means used to calculate POEs from PDFs (formula)

Page 23: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Actual POE = computed from the observed data.

Perfect POE = computed using the exponential equation and the observed mean

Page 24: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

uPOE for 8/22/06

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

00.

15 0.3

0.45 0.

60.

75 0.9

1.05 1.

21.

35 1.5

1.65 1.

81.

95

0.05 in bins

UP

OE Actual POE

Climo POE

Perfect POE

Rainfall Frequency by Bin

0

100

200

300

400

500

600

700

800

900

1000

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

0.05 inch bins

# G

rid

s

Actual POE = computed from the observed data

Perfect POE = computed using the exponential equation and the observed mean

Climo POE = exp equation with climatological mean

Page 25: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Actual POE = computed from the observed data

Exponential Eq = computed using the exponential equation and the observed mean

Page 26: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Using integrated exponential distribution (gamma distribution where alpha = 1) to compute POE.

POE using integrated exponential distribution and climatological mean precipitation.

Actual POE computed from frequency data shown below.

uPOE for 9/18/06

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

00.

15 0.3

0.45 0.

60.

75 0.9

1.05 1.

21.

35 1.5

1.65 1.

81.

95

0.05 in bins

UP

OE

Actual POE

Perfect POE

Climo POE

Page 27: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

POE from exponential distribution (gamma distribution, alpha = 1).

Actual POE computed from frequency data shown below.

POE using integrated gamma distribution (alpha=3)

uPOE for 9/18/06

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

00.

15 0.3

0.45 0.

60.

75 0.9

1.05 1.

21.

35 1.5

1.65 1.

81.

95

0.05 in bins

UP

OE

Actual POE

Perfect POE

Gamma (a=3)

Climo POE

POE using integrated exponential distribution and climatological mean precipitation.

Page 28: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distribution

Gamma function is defined by: Г(α) = x (α-1) e-x dx ,for α > 0 , for 0 → ∞.

 Gamma density function is given by:

f(x) = 1

β • Γ(α)

_________ • (xα-1 • e –x/β )[ ]

Page 29: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma Distribution, A = 3

f(x) = 1

β • Γ(α)

_________ • (xα-1 • e –x/β )[ ]

Then, integrate, for α =3, from x to infinity to obtain the probability of exceedance for x.

POE(x) =(0.5)•(e –x/β)•(x2/β + 2x/β + 2)

,where β = µ/α = (qpf / 3)

Page 30: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma, where a=3

Page 31: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma, where a=3

Frequency Distribution, 4/1/2008, ending 7 pmUncond Mean QPE = 1.01", Coverage = 97%

0

50

100

150

200

250

0

0.2

0.5

0.7 1

1.2

1.5

1.7 2

2.2

2.5

2.7 3

3.2

3.5

3.7 4

4.2

4.5

4.7 5

Rainfall bins (0.05" each)

Nu

mb

er b

ins

4/1/2008

Exceedance Probabilities, 4/1/2008, ending 7 pm Uncond Mean QPE = 1.01", Coverage = 97%

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

00.

30.

60.

91.

21.

51.

82.

12.

42.

7 33.

33.

63.

94.

24.

54.

8

Rainfall bins (0.05" each)

Pro

ba

bili

ty

Actual POE

Perfect POE

Gamma (a=3)

Page 32: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma, where a=3

Frequency Distribution, 4/1/2008, ending 7 pmUncond Mean QPE = 1.01", Coverage = 97%

0

20

40

60

80

100

120

140

160

0

0.2

0.5

0.7 1

1.2

1.5

1.7 2

2.2

2.5

2.7 3

3.2

3.5

3.7 4

4.2

4.5

4.7 5

Rainfall bins (0.05" each)

Nu

mb

er b

ins

3192008

Exceedance Probabilities, 4/1/2008, ending 7 pm Uncond Mean QPE = 1.01", Coverage = 97%

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7 3

3.3

3.6

3.9

4.2

4.5

4.8

Rainfall bins (0.05" each)

Pro

bab

ilit

y

Actual POE

Perfect POE

Gamma (a=3)

Page 33: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Gamma, where a=3

Frequency Distribution, 4/1/2008, ending 7 pmUncond Mean QPE = 1.01", Coverage = 97%

0

20

40

60

80

100

120

140

160

0

0.2

0.5

0.7 1

1.2

1.5

1.7 2

2.2

2.5

2.7 3

3.2

3.5

3.7 4

4.2

4.5

4.7 5

Rainfall bins (0.05" each)

Nu

mb

er b

ins

3182008

Exceedance Probabilities, 4/1/2008, ending 7 pm Uncond Mean QPE = 1.01", Coverage = 97%

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7 3

3.3

3.6

3.9

4.2

4.5

4.8

Rainfall bins (0.05" each)

Pro

bab

ilit

y

Actual POE

Perfect POE

Gamma (a=3)

Page 34: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Error in Exceedance Calculations (419 events)

• Calculated at: 0.10, 0.25, 0.50, 1.0, 1.5”

Areal Coverage

Page 35: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Error in Exceedance Calculations (279 events)

• Calculated at: 0.10, 0.25, 0.50, 1.0, 2.0, 3.0, 4.0 inches

Areal Coverage

Page 36: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Summary1. Rainfall events have distributions

1. Typically exponential

2. Gamma for coverage > 90%

2. Each distribution has a mean. 1. Mean can be spatial for a single event

2. Mean can be at a point over a period of time

3. Forecast the mean (QPF) and you have effectively forecast the distribution.

4. So, QPF lets us calculate probabilities of exceedance, or PQPF.

Page 37: Probabilistic QPF Steve Amburn, SOO WFO Tulsa, Oklahoma.

Questions?

Steve Amburn, SOO

WFO Tulsa, Oklahoma