Top Banner
Probabilistic Constrained Optimization on Flow Net- works Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster FAU Erlangen-Nürnberg, TU Darmstadt 18.02.2020
53

Probabilistic Constrained Optimization on Flow Networks

May 15, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Probabilistic Constrained Optimization on Flow Networks

Probabilistic Constrained Optimization on Flow Net-works

Martin Gugat, Jens Lang, Elisa Strauch, Michael SchusterFAU Erlangen-Nürnberg, TU Darmstadt18.02.2020

Page 2: Probabilistic Constrained Optimization on Flow Networks

Motivation

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 2

Page 3: Probabilistic Constrained Optimization on Flow Networks

Motivation

Consider the optimization problem

min f (x , ξ)

s.t. P(g(x , ξ) ≤ 0) ≥ α

with objective function f , constraint g, decision vector x , random variable ξ (withprobability distribution and density function) and probability level α.

How to compute this probability?

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 3

Page 4: Probabilistic Constrained Optimization on Flow Networks

Motivation

Consider the optimization problem

min f (x , ξ)

s.t. P(g(x , ξ) ≤ 0) ≥ α

with objective function f , constraint g, decision vector x , random variable ξ (withprobability distribution and density function) and probability level α.

How to compute this probability?

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 4

Page 5: Probabilistic Constrained Optimization on Flow Networks

Spheric Radial Decomposition

Theorem: Spheric radial decomposition (SRD)

Let ξ ∼ N (0,R) be the n-dimensional standardGaussian distribution with zero mean andpositive definite correlation matrix R. Then, forany Borel measurable subset M ⊆ Rn it holdsthat

P(ξ ∈ M) =

∫Sn−1

µχr ≥ 0|rLv ∈ Mdµη(v),

where Sn−1 is the (n − 1)-dimensional sphere inRn, µη is the uniform distribution on Sn−1, µχdenotes the χ-distribution with n degrees offreedom and L is such that R = LLT .

[e.g. Van Ackooij, Henrion: Gradient formulae for nonlinear probabilistic constraints with Gaussian andGaussian-like distributions, SIAM J. Optim. (2014)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 5

Page 6: Probabilistic Constrained Optimization on Flow Networks

Kernel Density Estimator

Definition: Kernel density estimator (KDE)

Let Y = y1, · · · , yN be independent andidentically distributed samples of the randomvariable Y , which has a absolutely continuousdistribution function with probability densityfunction %. Let K be a kernel function. Then, thekernel density estimator %N corresponding to thebandwidth h ∈ (0,∞) is defined as

%N(z) =1

Nh

N∑i=1

K(z − yi

h

).

[e.g. Parzen: On Estimation of a Probability Density Function and Mode, Ann. Math. Stat. (1962)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 6

Page 7: Probabilistic Constrained Optimization on Flow Networks

Kernel Density Estimator

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 7

Page 8: Probabilistic Constrained Optimization on Flow Networks

Outline

1) A stationary setting: Gas transport

1.1) A single pipe1.2) Necessary optimality conditions

2) A dynamic setting: Contamination of water

2.1) Dynamic probabilistic constraints2.2) A single pipe2.3) Necessary optimality conditions

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 8

Page 9: Probabilistic Constrained Optimization on Flow Networks

A stationary setting: Gas transport

1) A stationary setting: Gas transport

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 9

Page 10: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe

For x ∈ [0, L], consider the stationary, semilinear, isothermal Euler equations

qx = 0

c2px = − λ

2D(RST )2 |q|q

p

with pressure p(x), flow q(x), sound speed in the gas c ∈ R, pipe friction coefficientλ ∈ R+ and pipe diameter D ∈ R+.

Let boundary conditionsp(0) = p0

q(L) = bD

be given.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 10

Page 11: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe

Solution of the Semi-Linear IIE for Horizontal Pipes

Using the Ideal Gas-Equation pe(x) = RSTρe(x), a solution of the upper IIE is givenby:

q(x) = bD

p(x) =

√p2

0 − (RST )2 λ

a2Dq(x)|q(x)|x

Definition: Set of feasible loads

The setM := b ∈ R≥0 | p(L; b) ∈ [pmin, pmax] .

is called the set of feasible loads

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 11

Page 12: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe

Solution of the Semi-Linear IIE for Horizontal Pipes

Using the Ideal Gas-Equation pe(x) = RSTρe(x), a solution of the upper IIE is givenby:

q(x) = bD

p(x) =

√p2

0 − (RST )2 λ

a2Dq(x)|q(x)|x

Definition: Set of feasible loads

The setM := b ∈ R≥0 | p(L; b) ∈ [pmin, pmax] .

is called the set of feasible loads

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 11

Page 13: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe

Motivated by applications, the gas demand is random. For mean value µ > 0, astandard deviation σ > 0 and a suitable probability space (Ω,A,P), let a Gaussiandistributed random variable

ξb ∼ N (µ, σ)

be given. We setb := ξb(ω)

for ω ∈ Ω.

How to compute P(b ∈ M) ?

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 12

Page 14: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe

Motivated by applications, the gas demand is random. For mean value µ > 0, astandard deviation σ > 0 and a suitable probability space (Ω,A,P), let a Gaussiandistributed random variable

ξb ∼ N (µ, σ)

be given. We setb := ξb(ω)

for ω ∈ Ω.

How to compute P(b ∈ M) ?

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 12

Page 15: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (SRD)

1. Rewrite the feasible set:

b ∈ M ⇔ (pmin)2 ≤ p20 − φ | b | b ≤ (pmax)2 with φ =

λ

c2D(RST )2L.

2. Sample the sphere Sn−1 = S0 = −1, 1 and for every v ∈ Sn−1 set

bv(r ) = rσv + µ.

3. Define the regular range:

Rv ,reg := r ≥ 0 | bv(r ) ≥ 0.4. Compute the one dimensional sets

Mv = r ∈ Rv ,reg | bv(r ) ∈ M =

s⋃j=1

[av ,j , av ,j ].

5. Compute the probability

P(b ∈ M) ≈ 12

∑v∈−1,1

s∑j=1

Fχ(av ,j)−Fχ(av ,j),

where Fχ is the cumulative distribution function of the χ-distribution.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 13

Page 16: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (SRD)

1. Rewrite the feasible set:

b ∈ M ⇔ (pmin)2 ≤ p20 − φ | b | b ≤ (pmax)2 with φ =

λ

c2D(RST )2L.

2. Sample the sphere Sn−1 = S0 = −1, 1 and for every v ∈ Sn−1 set

bv(r ) = rσv + µ.

3. Define the regular range:

Rv ,reg := r ≥ 0 | bv(r ) ≥ 0.4. Compute the one dimensional sets

Mv = r ∈ Rv ,reg | bv(r ) ∈ M =

s⋃j=1

[av ,j , av ,j ].

5. Compute the probability

P(b ∈ M) ≈ 12

∑v∈−1,1

s∑j=1

Fχ(av ,j)−Fχ(av ,j),

where Fχ is the cumulative distribution function of the χ-distribution.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 13

Page 17: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (SRD)

1. Rewrite the feasible set:

b ∈ M ⇔ (pmin)2 ≤ p20 − φ | b | b ≤ (pmax)2 with φ =

λ

c2D(RST )2L.

2. Sample the sphere Sn−1 = S0 = −1, 1 and for every v ∈ Sn−1 set

bv(r ) = rσv + µ.

3. Define the regular range:

Rv ,reg := r ≥ 0 | bv(r ) ≥ 0.

4. Compute the one dimensional sets

Mv = r ∈ Rv ,reg | bv(r ) ∈ M =

s⋃j=1

[av ,j , av ,j ].

5. Compute the probability

P(b ∈ M) ≈ 12

∑v∈−1,1

s∑j=1

Fχ(av ,j)−Fχ(av ,j),

where Fχ is the cumulative distribution function of the χ-distribution.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 13

Page 18: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (SRD)

1. Rewrite the feasible set:

b ∈ M ⇔ (pmin)2 ≤ p20 − φ | b | b ≤ (pmax)2 with φ =

λ

c2D(RST )2L.

2. Sample the sphere Sn−1 = S0 = −1, 1 and for every v ∈ Sn−1 set

bv(r ) = rσv + µ.

3. Define the regular range:

Rv ,reg := r ≥ 0 | bv(r ) ≥ 0.4. Compute the one dimensional sets

Mv = r ∈ Rv ,reg | bv(r ) ∈ M =

s⋃j=1

[av ,j , av ,j ].

5. Compute the probability

P(b ∈ M) ≈ 12

∑v∈−1,1

s∑j=1

Fχ(av ,j)−Fχ(av ,j),

where Fχ is the cumulative distribution function of the χ-distribution.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 13

Page 19: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (SRD)

1. Rewrite the feasible set:

b ∈ M ⇔ (pmin)2 ≤ p20 − φ | b | b ≤ (pmax)2 with φ =

λ

c2D(RST )2L.

2. Sample the sphere Sn−1 = S0 = −1, 1 and for every v ∈ Sn−1 set

bv(r ) = rσv + µ.

3. Define the regular range:

Rv ,reg := r ≥ 0 | bv(r ) ≥ 0.4. Compute the one dimensional sets

Mv = r ∈ Rv ,reg | bv(r ) ∈ M =

s⋃j=1

[av ,j , av ,j ].

5. Compute the probability

P(b ∈ M) ≈ 12

∑v∈−1,1

s∑j=1

Fχ(av ,j)−Fχ(av ,j),

where Fχ is the cumulative distribution function of the χ-distribution.Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 13

Page 20: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Let B = bS,1, · · · , bS,N ⊆ R≥0 be independent and identically distributed samplesbS,i := ξb(ωi) (i = 1, · · · ,N, ξb ∼ N (µ, σ)).

Let PB = pS,1, · · · , pS,N ⊆ R be the pressures pS,i = p(L, bS,i) at the end of thepipe for the different loads bS,i ∈ B.

With a Gaussian kernel function

K (t) =1√2π

exp

(−1

2t2)

and a bandwidth h ∈ R+, we get an approximation of the probability density functionof the pressure

%p,N(z) =1

Nh

N∑i=1

1√2π

exp

(−1

2

(z − pS,i

h

)).

It follows

P(b ∈ M) ≈∫ pmax

pmin

%p,N(z)dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 14

Page 21: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Let B = bS,1, · · · , bS,N ⊆ R≥0 be independent and identically distributed samplesbS,i := ξb(ωi) (i = 1, · · · ,N, ξb ∼ N (µ, σ)).

Let PB = pS,1, · · · , pS,N ⊆ R be the pressures pS,i = p(L, bS,i) at the end of thepipe for the different loads bS,i ∈ B.

With a Gaussian kernel function

K (t) =1√2π

exp

(−1

2t2)

and a bandwidth h ∈ R+, we get an approximation of the probability density functionof the pressure

%p,N(z) =1

Nh

N∑i=1

1√2π

exp

(−1

2

(z − pS,i

h

)).

It follows

P(b ∈ M) ≈∫ pmax

pmin

%p,N(z)dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 14

Page 22: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Let B = bS,1, · · · , bS,N ⊆ R≥0 be independent and identically distributed samplesbS,i := ξb(ωi) (i = 1, · · · ,N, ξb ∼ N (µ, σ)).

Let PB = pS,1, · · · , pS,N ⊆ R be the pressures pS,i = p(L, bS,i) at the end of thepipe for the different loads bS,i ∈ B.

With a Gaussian kernel function

K (t) =1√2π

exp

(−1

2t2)

and a bandwidth h ∈ R+, we get an approximation of the probability density functionof the pressure

%p,N(z) =1

Nh

N∑i=1

1√2π

exp

(−1

2

(z − pS,i

h

)).

It follows

P(b ∈ M) ≈∫ pmax

pmin

%p,N(z)dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 14

Page 23: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Choice of bandwidth

A good heuristic choice for the bandwidth is

h = 1.06σN5√

N.

[Gramacki: Nonparametric Kernel Density Estimation and Its Computational Aspects; Springer (2018)Turlach: Bandwidth Selection in Kernel Density Estimation: A Review ; Technical Report (1999)]

L∞-convergence

If the probability density function %p is uniformly continuous, then NadarayasTheorem guarantees

supz|%p(z)− %p,N|

N→∞−−−→ 0 P-almost surely.

[Nadaraya: On Non-Parametric Estimates of Density Functions and Regression Curves; Theory Probab.Appl. (1965)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 15

Page 24: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Choice of bandwidth

A good heuristic choice for the bandwidth is

h = 1.06σN5√

N.

[Gramacki: Nonparametric Kernel Density Estimation and Its Computational Aspects; Springer (2018)Turlach: Bandwidth Selection in Kernel Density Estimation: A Review ; Technical Report (1999)]

L∞-convergence

If the probability density function %p is uniformly continuous, then NadarayasTheorem guarantees

supz|%p(z)− %p,N|

N→∞−−−→ 0 P-almost surely.

[Nadaraya: On Non-Parametric Estimates of Density Functions and Regression Curves; Theory Probab.Appl. (1965)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 15

Page 25: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

L1-convergence

If the distribution of the pressure is absolute continuous with probability densityfunction %p, then

‖%p − %p,N‖L1N→∞−−−→ 0 P-almost surely.

[Devroye, Gyorfi: Nonparametric density estimation: the L1 view ; Wiley Ser. Probab. Stat. (1985)]

L1-convergence II

If the distribution of the pressure is absolute continuous with probability densityfunction %p, then from Scheffé’s lemma it follows

|P(b ∈ M)− PN(b ∈ M)| ≤ 12‖%p − %p,N‖L1

N→∞−−−→ 0 P-almost surely.

[Devroye, Gyorfi: Nonparametric density estimation: the L1 view ; Wiley Ser. Probab. Stat. (1985)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 16

Page 26: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

L1-convergence

If the distribution of the pressure is absolute continuous with probability densityfunction %p, then

‖%p − %p,N‖L1N→∞−−−→ 0 P-almost surely.

[Devroye, Gyorfi: Nonparametric density estimation: the L1 view ; Wiley Ser. Probab. Stat. (1985)]

L1-convergence II

If the distribution of the pressure is absolute continuous with probability densityfunction %p, then from Scheffé’s lemma it follows

|P(b ∈ M)− PN(b ∈ M)| ≤ 12‖%p − %p,N‖L1

N→∞−−−→ 0 P-almost surely.

[Devroye, Gyorfi: Nonparametric density estimation: the L1 view ; Wiley Ser. Probab. Stat. (1985)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 16

Page 27: Probabilistic Constrained Optimization on Flow Networks

Gas transport in a single pipe (KDE)

Example: We choose the following values:

p0 pmin pmax µ σ φ

60 40 60 4 0.5 100Table: Values for the example with one edge.

⇒ M = [0,√

20]

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8MC 82.99% 82.88% 82.83% 82.95% 83.09% 82.77% 82.83% 82.58%

KDE 82.83% 82.75% 82.69% 82.74% 82.91% 82.58% 82.70% 82.43%

SRD 82.75%

Table: Results for the example with one edge.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 17

Page 28: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

Let B = bS,1, · · · , bS,N ⊆ Rn≥0 be independent and identically distributed samples

bS,i := ξb(ωi) (i = 1, · · · ,N, ξb ∼ N (µ,Σ)).

Let PB = pS,1, · · · , pS,N ⊆ Rn be the pressures with pS,ij = pj(L, bS,i), where

pj(L, bS,i) is the pressure at the end of pipe j (j = 1, · · · , n) for the load bS,i ∈ B.

Then for bandwidths hj (j = 1, · · · , n), we get an approximation of the probabilitydensity function of the pressure

%p,N(z) =1

N∏n

j=1 hj

N∑i=1

n∏j=1

1√2π

exp

(−1

2

(zj − pj(bS,i)

hj

)2)

and we can compute the probability

PN(b ∈ M) =

∫Pmaxmin

%p,N(z)dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 18

Page 29: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

∫Pmaxmin

%p,N(z)dz =

∫Pmaxmin

1N∏n

j=1 hj

N∑i=1

n∏j=1

K

(zj − pS,i

j

hj

)dz

=1

N∏n

j=1 hj

N∑i=1

∫ pmax1

pmin1

· · ·∫ pmax

n

pminn

n∏j=1

K

(zj − pS,i

j

hj

)dz1 · · · dzn

=1

N∏n

j=1 hj

N∑i=1

n∏j=1

∫ pmaxj

pminj

K

(zj − pS,i

j

hj

)dzj

=1N

N∑i=1

n∏j=1

∫ ϕi,j(pmaxj )

ϕi,j(pminj )

1√π

exp(−τ2

i ,j

)dτi ,j

=1N

12n

N∑i=1

n∏j=1

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 19

Page 30: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

∫Pmaxmin

%p,N(z)dz =

∫Pmaxmin

1N∏n

j=1 hj

N∑i=1

n∏j=1

K

(zj − pS,i

j

hj

)dz

=1

N∏n

j=1 hj

N∑i=1

∫ pmax1

pmin1

· · ·∫ pmax

n

pminn

n∏j=1

K

(zj − pS,i

j

hj

)dz1 · · · dzn

=1

N∏n

j=1 hj

N∑i=1

n∏j=1

∫ pmaxj

pminj

K

(zj − pS,i

j

hj

)dzj

=1N

N∑i=1

n∏j=1

∫ ϕi,j(pmaxj )

ϕi,j(pminj )

1√π

exp(−τ2

i ,j

)dτi ,j

=1N

12n

N∑i=1

n∏j=1

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 19

Page 31: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

∫Pmaxmin

%p,N(z)dz =

∫Pmaxmin

1N∏n

j=1 hj

N∑i=1

n∏j=1

K

(zj − pS,i

j

hj

)dz

=1

N∏n

j=1 hj

N∑i=1

∫ pmax1

pmin1

· · ·∫ pmax

n

pminn

n∏j=1

K

(zj − pS,i

j

hj

)dz1 · · · dzn

=1

N∏n

j=1 hj

N∑i=1

n∏j=1

∫ pmaxj

pminj

K

(zj − pS,i

j

hj

)dzj

=1N

N∑i=1

n∏j=1

∫ ϕi,j(pmaxj )

ϕi,j(pminj )

1√π

exp(−τ2

i ,j

)dτi ,j

=1N

12n

N∑i=1

n∏j=1

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 19

Page 32: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

∫Pmaxmin

%p,N(z)dz =

∫Pmaxmin

1N∏n

j=1 hj

N∑i=1

n∏j=1

K

(zj − pS,i

j

hj

)dz

=1

N∏n

j=1 hj

N∑i=1

∫ pmax1

pmin1

· · ·∫ pmax

n

pminn

n∏j=1

K

(zj − pS,i

j

hj

)dz1 · · · dzn

=1

N∏n

j=1 hj

N∑i=1

n∏j=1

∫ pmaxj

pminj

K

(zj − pS,i

j

hj

)dzj

=1N

N∑i=1

n∏j=1

∫ ϕi,j(pmaxj )

ϕi,j(pminj )

1√π

exp(−τ2

i ,j

)dτi ,j

=1N

12n

N∑i=1

n∏j=1

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 19

Page 33: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

Consider the optimization problem

(?)

min f (pmax)

s.t. gα(pmax) := α− P(b ∈ M(pmax)) ≤ 0.

∂gα(pmax)

∂pmaxk

= − 1N

12n

N∑i=1

n∏j = 1j 6= k

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]·√

2√πhk

exp(−ϕ2

i ,k(pmaxk ))< 0

Necessary optimality conditions

Let p∗,max ∈ Rn be a optimal solution of (?). Then there exists a multiplier µ∗ ≥ 0, s.t.

∇f (p∗,max) + µ∗∇gα = 0gα(p∗,max) ≤ 0µ∗gα(p∗,max) = 0.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 20

Page 34: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: stationary states

Consider the optimization problem

(?)

min f (pmax)

s.t. gα(pmax) := α− P(b ∈ M(pmax)) ≤ 0.

∂gα(pmax)

∂pmaxk

= − 1N

12n

N∑i=1

n∏j = 1j 6= k

[erf(ϕi ,j(pmax

j ))− erf(ϕi ,j(pminj ))

]·√

2√πhk

exp(−ϕ2

i ,k(pmaxk ))< 0

Necessary optimality conditions

Let p∗,max ∈ Rn be a optimal solution of (?). Then there exists a multiplier µ∗ ≥ 0, s.t.

∇f (p∗,max) + µ∗∇gα = 0gα(p∗,max) ≤ 0µ∗gα(p∗,max) = 0.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 20

Page 35: Probabilistic Constrained Optimization on Flow Networks

A dynamic setting: Contamination of water

2) A dynamic setting: Contamination of water

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 21

Page 36: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to add a time dependence to a probabilistic constraint?

P( b ∈ M(t) ∀t ∈ [0,T ] ) ≥ α

P( b ∈ M(t) ) ≥ α ∀t ∈ [0,T ]

1T

∫ T

0P( b ∈ M(t) ) dt ≥ α

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 22

Page 37: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to add a time dependence to a probabilistic constraint?

P( b ∈ M(t) ∀t ∈ [0,T ] ) ≥ α

P( b ∈ M(t) ) ≥ α ∀t ∈ [0,T ]

1T

∫ T

0P( b ∈ M(t) ) dt ≥ α

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 22

Page 38: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to add a time dependence to a probabilistic constraint?

P( b ∈ M(t) ∀t ∈ [0,T ] ) ≥ α

P( b ∈ M(t) ) ≥ α ∀t ∈ [0,T ]

1T

∫ T

0P( b ∈ M(t) ) dt ≥ α

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 23

Page 39: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to get time dependent random boundary data?

Let bD(t) ∈ L2([0,T ]) be given. Define

ψm(t) :=

√2√T

sin

((π2

+ mπ) t

T

)and a0

m :=

∫ T

0bD(t)ψm(t)dt

Then it is

bD(t) =

∞∑m=0

a0mψm(t).

Consider Gaussian distributed random variablesξam ∼ N (µ, σ). For am = ξam(ω), (ω ∈ Ω) considerthe random boundary data

b(t) =

∞∑m=0

ama0mψm(t) ∈ L2([0,T ]) P-a.s.

[Farshbaf-Shaker, Gugat, Heitsch, Henrion: Optimal Neumann Boundary Control of a Vibrating String withUncertain Initial Data and Probabilistic Terminal Constraints (submitted 2019)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 24

Page 40: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to get time dependent random boundary data?Let bD(t) ∈ L2([0,T ]) be given. Define

ψm(t) :=

√2√T

sin

((π2

+ mπ) t

T

)and a0

m :=

∫ T

0bD(t)ψm(t)dt

Then it is

bD(t) =

∞∑m=0

a0mψm(t).

Consider Gaussian distributed random variablesξam ∼ N (µ, σ). For am = ξam(ω), (ω ∈ Ω) considerthe random boundary data

b(t) =

∞∑m=0

ama0mψm(t) ∈ L2([0,T ]) P-a.s.

[Farshbaf-Shaker, Gugat, Heitsch, Henrion: Optimal Neumann Boundary Control of a Vibrating String withUncertain Initial Data and Probabilistic Terminal Constraints (submitted 2019)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 24

Page 41: Probabilistic Constrained Optimization on Flow Networks

Dynamic probabilistic constraints

How to get time dependent random boundary data?Let bD(t) ∈ L2([0,T ]) be given. Define

ψm(t) :=

√2√T

sin

((π2

+ mπ) t

T

)and a0

m :=

∫ T

0bD(t)ψm(t)dt

Then it is

bD(t) =

∞∑m=0

a0mψm(t).

Consider Gaussian distributed random variablesξam ∼ N (µ, σ). For am = ξam(ω), (ω ∈ Ω) considerthe random boundary data

b(t) =

∞∑m=0

ama0mψm(t) ∈ L2([0,T ]) P-a.s.

[Farshbaf-Shaker, Gugat, Heitsch, Henrion: Optimal Neumann Boundary Control of a Vibrating String withUncertain Initial Data and Probabilistic Terminal Constraints (submitted 2019)]

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 24

Page 42: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe

For (t , x) ∈ [0,T ]× [0, L] and constants d < 0, m ≤ 0, we consider the deterministicscalar linear PDE with initial condition and boundary condition

(?)

rt(t , x) + drx(t , x) = mr (t , x),

r (0, x) = r0(x),

r (t , L) = b(t).

Assume C0-compatibility between the initial and the boundary condition. Thisequation e.g. models the flow of contamination in water along a pipe or in a network.

Solution of (?)

A solution of (?) is given by

r (t , x) =

exp(mt) r0(x − dt) if x ≤ L + dt ,exp(mx−L

d

)b(t − x−L

d ) if x > L + dt .

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 25

Page 43: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe

For (t , x) ∈ [0,T ]× [0, L] and constants d < 0, m ≤ 0, we consider the deterministicscalar linear PDE with initial condition and boundary condition

(?)

rt(t , x) + drx(t , x) = mr (t , x),

r (0, x) = r0(x),

r (t , L) = b(t).

Assume C0-compatibility between the initial and the boundary condition. Thisequation e.g. models the flow of contamination in water along a pipe or in a network.

Solution of (?)

A solution of (?) is given by

r (t , x) =

exp(mt) r0(x − dt) if x ≤ L + dt ,exp(mx−L

d

)b(t − x−L

d ) if x > L + dt .

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 25

Page 44: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe

Definition: Set of feasible loads

For t∗ ∈ [0,T ], the set

M(t∗) := b ∈ L2([0,T ]);R≥0) | r (t∗, 0) ∈ [rmin, rmax]

is called the set of feasible loads.

Our aim is to compute the probability

P( b ∈ M(t∗) ).

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 26

Page 45: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (SRD)

0. Estimate the mean µ(t) and the variance σ(t) for the random boundary data

1. Rewrite the set of feasible loads:

b ∈ M(t∗) ⇔ rmin ≤ r (t∗, 0) ≤ rmax.

2. Sample the sphere Sn−1 and set bv(r , t) = rL(t)v + mu(t).

3. Define the regular range Rv ,reg := r ≥ 0|bv(r , t) ≥ 0.

4. Compute the one dimensional sets Mv(t∗) = r ∈ Rv ,reg|bv(r , t) ∈ M(t∗).

5. Compute the probability P(b ∈ M) ≈ 12

∑v∈−1,1

∑sj=1Fχ(av ,j)−Fχ(av ,j).

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 27

Page 46: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

Let A = (a1,m)m≥0, · · · , (aN,m)m≥0 be a sampling of N independent and identicallydistributed sequences.

Let BA(t) = bS,1(t), · · · , bS,N(t) be the corresponding sampling of randomboundary functions.

Let R(t) = r (t , 0, bS,1), · · · , r (t , 0, bS,n) be the sampling of solutions at x = 0corresponding to the boundary functions in B.

With a Gaussian kernel function and a bandwidth h+ ∈ R+, we get an approximationof the probability density function of the pressure

%r ,t∗,N(z) =1

Nh

N∑i=1

K(

z − r (t∗, 0, bS,i)

h

)and we can compute the probability

P ( b ∈ M(t∗) ) ≈∫ rmax

rmin

%r ,t∗,N(z) dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 28

Page 47: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

How to compute P ( b ∈ M(t) ∀t ∈ [0,T ] )?

⇒ Minimal and Maximal value must be feasible

Define the valuesr i := min

t∈[0,T ]r (t , 0, bS,i) (i = 1, · · · ,N),

r i := maxt∈[0,T ]

r (t , 0, bS,i) (i = 1, · · · ,N).

For bandwidths h1, h2 we get an approximation of the probability density function ofthe maximal and minimal pressure

%r ,N(z) =1

Nh1h2

N∑i=1

K(

z1 − r i

h1

)K(

z2 − r i

h2

)and we can compute the probability

P ( b ∈ M(t) ∀t ∈ [0,T ] ) ≈∫[rmin,rmax]×[rmin,rmax]

%r ,N(z) dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 29

Page 48: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

How to compute P ( b ∈ M(t) ∀t ∈ [0,T ] )?

⇒ Minimal and Maximal value must be feasible

Define the valuesr i := min

t∈[0,T ]r (t , 0, bS,i) (i = 1, · · · ,N),

r i := maxt∈[0,T ]

r (t , 0, bS,i) (i = 1, · · · ,N).

For bandwidths h1, h2 we get an approximation of the probability density function ofthe maximal and minimal pressure

%r ,N(z) =1

Nh1h2

N∑i=1

K(

z1 − r i

h1

)K(

z2 − r i

h2

)and we can compute the probability

P ( b ∈ M(t) ∀t ∈ [0,T ] ) ≈∫[rmin,rmax]×[rmin,rmax]

%r ,N(z) dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 29

Page 49: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

How to compute P ( b ∈ M(t) ∀t ∈ [0,T ] )?

⇒ Minimal and Maximal value must be feasible

Define the valuesr i := min

t∈[0,T ]r (t , 0, bS,i) (i = 1, · · · ,N),

r i := maxt∈[0,T ]

r (t , 0, bS,i) (i = 1, · · · ,N).

For bandwidths h1, h2 we get an approximation of the probability density function ofthe maximal and minimal pressure

%r ,N(z) =1

Nh1h2

N∑i=1

K(

z1 − r i

h1

)K(

z2 − r i

h2

)and we can compute the probability

P ( b ∈ M(t) ∀t ∈ [0,T ] ) ≈∫[rmin,rmax]×[rmin,rmax]

%r ,N(z) dz.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 29

Page 50: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

Example: We choose the following values:rmin0 rmax

0 µ σ d m L T2 6 1 0.25 −5 −1 1 4

Table: Values for the dynamic example.

Further: 101 time discretization points, 30 terms in the Fourier series.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8MC 74.36% 74.42% 74.44% 74.20% 74.16% 74.41% 74.37% 74.35%

KDE 74.26% 74.31% 74.35% 74.11% 74.04% 74.32% 74.27% 74.27%

Table: Results for the dynamic example with one edge

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 30

Page 51: Probabilistic Constrained Optimization on Flow Networks

Contamination of water in a single pipe (KDE)

Example: We choose the following values:rmin0 rmax

0 µ σ d m L T2 6 1 0.25 −5 −1 1 4

Table: Values for the dynamic example.

Further: 101 time discretization points, 30 terms in the Fourier series.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8MC 74.36% 74.42% 74.44% 74.20% 74.16% 74.41% 74.37% 74.35%

KDE 74.26% 74.31% 74.35% 74.11% 74.04% 74.32% 74.27% 74.27%

Table: Results for the dynamic example with one edge

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 30

Page 52: Probabilistic Constrained Optimization on Flow Networks

Necessary optimality conditions: dynamics

Necessary optimality conditions

Let r ∗,max ∈ R be a solution of the optimization problem

min f (rmax)

s.t. gα(rmax) = α− P(b ∈ M(t) ∀t ∈ [0,T ] ) ≤ 0.

Then there exist a multiplier µ∗ ≥ 0, s.t.

f ′(r ∗,max) + µ∗g′α(r ∗,max) = 0gα(r ∗,max) ≤ 0µ∗gα(r ∗,max) = 0.

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 31

Page 53: Probabilistic Constrained Optimization on Flow Networks

References

C. Gotzes, H. Heitsch, R. Henrion, R. SchultzOn the quantification of nomination feasibility in stationary gas networks with random loadMath. Meth. Oper. Res. 84 (2016)

M. Gugat, M. SchusterStationary Gas Networks with Compressor Control and Random Loads: Optimization with ProbabilisticConstraintsMathematical Problems in Engineering (2018)

M. GugatContamination Source Determination in Water Distribution NetworksSIAM J. Appl. Math. (2012)

W. Härdle, A. Werwatz, M. Müller, S. SperlichNonparametric and Semiparametric Models; Springer (2004)

A. PrékopaStochastic Programming; Springer (1995)

Thank you for your attention!

Martin Gugat, Jens Lang, Elisa Strauch, Michael Schuster · FAU Erlangen-Nürnberg, TU Darmstadt · Probabilistic Constrained Optimization on Flow Networks 32