Top Banner
101
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Prirucnik
Page 2: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

ESC

ESC

CONTENT

1. Introduction 2

2. Defi nition of basic concepts and calculational formulas 3

3. Cutting grades Pramet 3.1 Grades with MTCVD coating 7 3.2 Grades with PVD coating 8 3.3 Uncoated grades 9 3.4 Comparative table - MTCVD grades 10 Comparative table - PVD grades (for turning) 11 Comparative table - PVD grades (for milling) 12

4. Choice of turning tool 4.1 Tool holder choice 13 4.2 Choice of cutting insert 15 4.3 Choice of chip former 19 4.4 Choice of cutting conditions 24 Tables 25 4.5 Turning of recesses, parting, CTP system for copying and recessing turning 43 4.6 Threading 46

5. Choice of milling tool 5.1 Choice of milling cutter 53 5.2 Choice of cutting insert 56 5.3 Choice of cutting conditions 57 Tables 58 5.4 Special milling technology 70

6. Drilling 6.1 Procedure for optimum tool choice 74 6.2 Choice of cutting conditions 74 Tables 75 6.3 Drilling of holes with larger or smaller diameter than nominal drill diameter 78 6.4 Practical recommendations 82 6.5 Use of cutting fl uids at drilling with cutting inserts 83 6.6 Troubleshooting 84

7. Wear of cutting inserts 7.1 Types of wear 85 7.2 Mechanisms of wear formation 86 7.3 Some wear types and recommended measures for their removal 88

8. Classifi cation of machined materials and tables of equivalents Category of materials 92 8.1 Table of equivalents - group P 93 8.2 Table of equivalents - group M 96 8.3 Table of equivalents - group K 97 8.4 Table of equivalents - group N 98 8.5 Table of equivalents - group S 99 8.6 Table of equivalents - group H 99 8.7 Hardness conversion table 100

Content of handbook

Page 3: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

2

ESC

ESC

1. Introduction

The Handbook for machining with cemented carbide tools PRAMET is determined for workers of technologi-cal divisions, technologists, programmers, machine operators. It is instrumental towards the basic for choiceof optimum tools, working and cutting conditions for turning, milling and drilling by means of tools with indexable cutting inserts Pramet.

These tools are delivered in a wide assortment of shapes, dimensions and grades of cutting inserts, before all coatedinserts, but also uncoated ones. A condition for effective utilization of these tools, that means an achievement of maximum cutting performance for solution of concrete technological problems, are reliable basic documents which make possible to reach this objective under minimum machining costs.

At using tools in engineering practice before all we encounter a wide range of materials to be machined. The tools are also applied under various engagement conditions, i.e. beginning with fi ne machining, through fi nishing machining, up to heavy roughing. With regard to this considerable conditions variability, we believe that it is necessary to provide technologistsa systematically arranged complex of some basic pieces of knowledge concerning the machinability of engineeringmaterials and wear of cutting edges of tools with indexable cutting inserts made from cemented carbide (hereafter only Inserts).

Page 4: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

3

ESC

ESC

2. Defi nition of basic concepts and calculational formulas

Operation chart

Turning Milling Drilling

To be machined surface

Surface from which material layer is removed and changed into chips.

Cut surface

Surface being created on workpiece by main and adjoining cutting edge and creates passage between the surfaceto be machined and already machined surface.

Machined surface

New created surface originated by removal of material layer.

Cutting speed

It is a vector sum of all speeds – but because of simplicity we take as cutting speed the speed of main rotary motion which is done by workpiece at turning, by tool at milling and by workpiece or tool at drilling.

vc =π.D.n1000

vc = cutting speed [m.min-1]D = machined surface diameter [mm]n = numb. of workpiece revolutions [1.min-1]

vc = cutting speed [m.min-1]D = mill diameter [mm]n = number of tool revolutions [1.min-1]

vc = cutting speed [m.min-1]D = drill diameter [mm] (drilled hole diameter)n = number of tool [1.min-1] or workpiece revolutions

Feed

It is a motion which is made by tool or workpiece, its speed is given in mm/rev or in mm/min and also in mm/tooth.

Feed per revolution

fot =fmin

n[mm.rev-1]

fot = feed per revolution [mm.rev-1]fmin = feed per minute [mm.min-1]n = number of spindle revolutions [1.min-1]Sometimes Fmin means feed speed Vf

[m.min-1]

Page 5: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

4

ESC

ESC

Cutting depth ap (ae)

2. Defi nition of basic concepts and calculational formulas

Turning Milling Drilling

Feed per tooth

Not indicated

(fz = fot)fz = = [mm.tooth-1]

fot fmin

z n.z

fz = feed per tooth [mm.tooth-1]fot = feed per revolution [mm.rev -1]fmin = feed per minute [mm.min-1]n = number of spindle revolutions [1.min-1]z = number of teeth [1]

Infeed

is a motion by which the tool is set into working position for a certain cutting depth ap, ae respectively.

Chip cross-section

Herewith, the cross-section of removed material layer is understood; its amount is one of factors having the infl uenceon the load character of cutting edge and on the absolute intensity of cutting force.

A = fot . ap [mm2]

fot = feed per revolution [mm.rev-1]ap = cutting depth [mm]A = chip cross-section [mm2]

A = fz . ap [mm2] A = fot . ap [mm2]

fz = feed per revolution [mm.tooth-1]ap = cutting depth [mm]A = chip cross-section [mm2]

fot = feed per revolution [mm.rev-1]ap = cutting depth [mm]A = chip cross-section [mm2]

at boring into full material

or at enlargement of a holepre-bored to diameter d

ap = [mm]D2

ap = [mm]D-d2

fz = feed per tooth [mm.tooth-1]fot = feed per revolution [mm.rev -1]z = number of teeth [1]

fz =fot

z[mm.tooth-1]

Axial cutting depth ap is measuredin direction of cutter of axis of revolution

Radial cutting depth ae (width of milled surface) is measured in the surface normal to the cutter axis.

Page 6: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

5

ESC

ESC

2. Defi nition of basic concepts and calculational formulas

Medium chip thickness

Not indicatedNot indicated

Chip thickness

h = f . sin κr [mm]or for round inserts is calculated

D = insert diameter [mm]

hmax = fz [mm]ap

D

Chip thickness depends on the cuttingedge shape of insert (on the position of functional part of cutting edge, respectively).

is decisive for intensity of specifi c cutting resistance and herewith also for power stress of cutting edge; its width b, at the same feed and cutting depth, is dependent on the approach angle magnitude of the main cutting edge κr.

Roughness of machined surface

Not indicated

At the face milling, the roughness of machined surface is mostly de-pendent on mutual position (axialrun-out) of individual cutting edges of a cutter; furthermore, it is infl u-enced by the cutting edge geometry (by the used insert grade), by cutting conditions and properties of machi-ning materials.

hm = fz sin κr 57,3 ae

D.arc sinae

D

Medium roughness of machined surface Ra

Theoretical value of maximum surface unevenness

Rmax = [µm]125.fot

2

re

Ra = [µm]43,9.fot

1,88

re0,97

feed f [mm.rev-1]

0,2

0,4

0,5

0,8

1,0

1,2

1,5

1,6

2,4

0,10

2,7

1,4

1,1

0,7

0,6

-

-

-

-

0,12

3,9

2,0

1,6

1,0

0,8

0,65

-

-

-

0,16

6,7

3,4

2,7

1,8

1,4

1,2

0,95

0,9

0,6

0,20

10,1

5,2

4,2

2,6

2,1

1,8

1,4

1,35

0,9

0,25

15,4

7,9

6,3

4,0

3,2

2,7

2,2

2,0

1,4

0,30

-

11,1

8,9

5,7

4,6

3,8

3,1

2,9

1,9

0,35

-

14,8

11,9

7,6

6,0

5,1

4,1

3,9

2,6

0,40

-

-

15,3

9,7

7,8

6,6

5,3

5,2

3,4

roughness Ra [µm]

Turning Milling Drilling

The chip thickness h changes during one revolution depending on the engagement angle ϕ according to the relation hϕ = fz ⋅ sinϕ. The curve illustrated this relation is a sinusoid.

The maximum chip thickness fz is achieved in the cutter axis.

It can be calculated from equation

Page 7: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

6

ESC

ESC

With decreasing chip thickness the specifi c cutting resistance increasses!!!

Rmax = hmax =fe

2

4.D

The roughness in axial direction(in direction of axial cutter feed)is to be determined from the followingempirical relation:

2. Defi nition of basic concepts and calculational formulas

Turning Milling Drilling

fe = spacing feed (step) [mm]D = cutter diameter [mm]

fz = feed per tooth [mm]rε = radius of nose curvature [mm]

Volume of removed material

Q = ap.fot.vc [cm3.min-1]

Q = volume of removed material [cm3.min-1]ap = cutting depth [mm]fot = feed per a revolution [mm.rev-1]vc = cutting speed [m.min-1]

It is one of the leading criteria for the assessment of economy of cutting process; it can be calculated from the following equations:

Q = volume of removed material [cm3.min-1]ap = axial cutting depth [mm]ae = radial cutting depth [mm]fmin = feed per a minute [mm.min-1]

Q = volume of removed material [cm3.min-1]fmin = feed per a minute [mm.min-1]D = drill or hole diameter [mm]

Q = [cm3.min-1]ap.ae.fmin

1000πD2

4000

Needed input of machine driving motor

Pc = needed input [kW]ap = cutting depth [mm]f = feed [mm.rev-1]kc = specifi c cutting resistance [MPa]vc = cutting speed [m.min-1]η = lathe effi ciency usually 0,7-0,8x = factor for infl uence of material to be machined

It is a limit criterion for optimizing with respect to the maximum possible machine utilization. For the calculation of cuttingperformance, the sort of machined material or so called the specifi c cutting resistance plays a very important role.

To be simple we also quote formula for a rough calculation where the value of specifi c cutting resistance is not to be introduced.

Pc = needed input [kW]ap = axial cutting depth [mm]ae = radial cutting depth [mm]fmin = feed per minute [mm.min-1]kc = specifi c cutting resistance [MPa]kγ = correction factor for effective orthogonal rake angle γ0

vc = cutting speed [m.min-1]η = cutter miller effi ciency usually 0,75x = factor for infl uence of material to be machined

Pc = needed input [kW]D = drill or hole diameter [mm]f = feed [mm.rev-1]c = index which represents the infl uence of chip thickness h (≈ feed f) on the magnitude of specifi c cutting resistancekc1 = specifi c cutting resistance at feed ≈ chip thickness h = 1 mm [MPa]vc = cutting speed [m.min-1]η = machine effi ciency usually 0,7- 0,8x = factor for infl uence of material to be machined

materialfactor x

steel48

cast iron60

Al240

materialfactor x

steel24000

cast iron30000

Al120000

materialfactor x

steel20

cast iron25

Al100

At vertical (recessing) milling, wedistinguish the roughness in the radialdirection (waviness), which depends on the spacing size (on the step) –i.e. on the cutter feed fe in radial direction. It is calculated from the following equation:

Ra = 43,9 [mm]fz

1,88

0,97

Q = fmin [cm3.min-1]

[µm]

Pc =ap.f.kc.vc

60.103. η[kW]

Pc =ap.f.vc

x[kW]

Pc =ap.ae.fmin.kc.kγ

60.106. η[kW]

Pc =ap.ae.f

x[kW]

Pc =kc1.f1-c.D.vc

24.104. η[kW]

Pc =D.f.vc

x[kW]

Page 8: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

7

ESC

ESC

3 Cutting grades Pramet

66

20

66

30

66

40

50

26

Material with the highest wear resistance from series 6000.

Suitable for fi nishing up to semi-roughing turning of cast iron, carbon and alloy steels.

It can be also (conditionally) used for fi ne and fi nishing turning of hardened and stain-less steels.

All-purpose grade for turning of steels witha wide application fi eld.

Also convenient for machining of cast iron and stainless steels.

It connects a good wear resistance with high toughness.

The toughest grade of series 6000.

Use for operations with a strong mechanical stress of cutting edge. Interrupted cut, rough skin of forgings and castings. Machiningof stainless steels. Parting, recessing and copy turning (CTP) of common and stainless steels. Furthermore, we also recommend this grade for peripheral inserts of drilling tools.

This grade is primarily intended for machiningof carbon and alloy steels and cast irons with medium and higher cutting speeds and medium feeds.

It is a grade with high wear resistance that is given by a specially developed substrate material and conceptually by a new coating sort.

3.1 Grades with MTCVD coating

Page 9: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

8

ESC

ESC

3 Cutting grades Pramet

80

16

80

26

80

30

80

40

Grade for fi ne up to semi-roughing turning of common, stainless and treated steels (HRC>55).

Furthermore, for machining of heat-resistant and creep-resistant steels. It can be also used for turning of alloys and cast irons upon the basis of Al and Cu.

In the fi eld of milling we recommend this grade for machining of both common,heat-resistant, creep-resistant steels and also alloys by lower up to medium feeds.

This grade has a predominant position for milling of stainless steels, but it can be also used for machining of common carbon steels and alloy steels and cast steels with higher and medium feeds, medium and higher speeds.

It can be used for machining of cast irons and according to the sort of insert also for milling of Al and Cu or alloys of non-ferrous metals.

Convenient both for common and copy milling.

This grade fi nds its very wide application fi eld, especially because of its high operationreliability.

It is intended for inserts for threading, parting, recessing and copy turning (CTP). It is used at machining of common and stainless steels; furthermore for fi ne and fi nishing turning of stainless and high alloy steels and superalloys.

Besides threading, one of its main applicationfi elds is drilling, where it is used both for internal and peripheral inserts.

It is the toughest grade intended for extremely interrupted cuts and bad engagement conditions.

In the fi eld of milling it can be recommended as the fi rst choice for tools which areintended for machining of carbon steels and alloy steels.

Furthermore, it fi nds its use at turning and milling of cast irons and especially at heavy machinable alloys upon the basis of Ni, Co and Fe. Machining of casting and forging skin.

3.2 Grades with PVD coating

Page 10: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

9

ESC

ESC

3 Cutting grades Pramet

HF

7H

10

S2

6S

30

S4

5

Turning of grey cast iron, malleable nodular cast iron, stainless, creep-resistant and heat resistant steels and special alloys. Turning of Al and Cu alloys and treated steels(HRC > 55).

Milling of grey cast iron, malleable cast iron, Al alloys, non-ferrous metals, woods and plastics. Machining with higher and medium speeds at light and medium milling.

Finish-milling, semi-roughing of steel and cast steel. Machining with higher andmedium speeds at light and medium milling.

Basic uncoated grade for milling of steel.

Medium milling of steels and cast steel with medium and lower cutting speeds at less favourable conditions.

Milling of steels, stainless and cast steel. Machining al low cutting speeds and heavy roughing. For roughing of workpieces with uneven cutting depth and unclean surface under more diffi cult conditions.

3.3 Uncoated grades

Page 11: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

10

ESC

ESC

3 Cutting grades Pramet

3.4 Comparative table of MTCVD-grades

Comparative table of application fi elds of foreign cutting grades with grades of the basic seriesfor turning

66306620 6640

TP05 TP10 TP15 TP20 TP25 TP30 TP35 TP40

SECO T15M TP100 TP100 TP200 TP200 TP200 TP300 TP300

TX100 TX150 TP200 TP300

GC4015

COROMANT GC3005 GC2015 GC4025 GC4025 GC4025 GC4035 GC4035 GC235

GC3015 GC3020 GC3025 GC2025 GC2025 GC2025 GC2025 GC2035

KC9010 KC9025 CM4

KENNAMETAL KC910 KC850 KC9020 KC935 KC9040 KC9045 KC250

KC990 KC950

CW2 CL4

HERTEL CP1 CPX CM2 CM3 CM5

13E CM4

GM10 GM25

HITACHI HC5000

(MG10) (MG25)

IC815 IC825 IC656 IC635

ISCAR IC428 IC805 IC9015 IC8025 IC9025

IC848 IC8048 IC835 IC3028

KYOCERA CR7015 CR600 CR7025 CA225

UC5005 U420 U625

MITSUBISHI U610 UC6010 UC6010 US735

UE6005 U510 UC6025

ON125

SAFETY OR1500 ORX OR110 OR500 OR50

OR2500

AC05 AC05A AC10

SUMITOMO AC108 AC2000 AC25 AC300

AC105 AC105G AC15

TELEDYNE NL25 MP37 MP26 MP15

Sr117 Sr127 Sr137 Gm40

TIZIT Sr17 Gm517 Gm520

Gm517 Gm527 Gm537 Gm540

T715X T803 T725X

TOSHIBA T5020 T7010 T7020 T813

T7015 T822 T7025

HK150 TN150 TN200 TN250

WIDIA TN25M TN350 HK35 TN7035

TN7005 TN7015 TN7015 TN7025

V01 SV235

VALENITE SV310 SV315 VN8 SV325 V1N

VN5 (SV200)

WTA13 WAP20 WTA43 WTA53

WALTER WTA23 WTA33 WAM20

WAP10 WAP25 WAP30 WTA51

Page 12: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

11

ESC

ESC

3 Cutting grades Pramet

80308016 8040* = uncoated

CP200 CP200 CP200

SECO CP25 CP25 CP25

CP50 CP50 CP50

GC1020 GC1020 GC1020

COROMANT GC1010 GC1010 GC1025 GC1025 GC1025

S6* S6*

KC732 KC732 KC732

KENNAMETAL KC730 KC730 KC730

KC720 KC720 KC720

KC722 KC722 KC722

HERTEL CS5 CS5 CS5

PVA* PVA*

HC843 HC843 HC843 HC843

HITACHI HC844 HC844 HC844 HC844

IC220 IC220 IC220 IC250 IC250 IC228 IC228 IC228

ISCAR IC308 IC308 IC328 IC328 IC328

IC354 IC354 IC354 IC354

PR630 PR630 PR630

KYOCERA PR660 PR660 PR660

UP20M UP20M UP20M

MITSUBISHI UTi20T* UTi20T* UTi20T*

STi40T* STi40T* STi40T*

KX15 KX15 KX15

SAFETY KX20 KX20 KX20

KX25 KX25 KX25

EH510Z

SUMITOMO EH510

A30N* A30N* A30N* A30N*

TELEDYNE TP21 TP21 TP21

TIZIT

S40T* S40T* S40T* S40T* S40T*

AH110 AH110 AH110 GH330 GH330 GH330

TOSHIBA AH120 AH120 AH120 AH120

AH740 AH740 AH740 GH340 GH340 GH340

TTX* TTX*

WIDIA TTM* TTM* TTM*

TTR* TTR* TTR* TTR*

VC927 VC927

VALENITE UC907 UC907 UC905 UC905 UC905

VC902 VC902 VC902 VC902

WXK10 WXK10 WXK10

WALTER WXM25 WXM25 WXM25 WK40* WK40*

WXM35 WXM35 WXM35 WXM35

3.4 Comparative table of PVD-grades

Comparative table of application fi elds of foreign cutting grades with grades of the basic seriesfor turning

Page 13: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

12

ESC

ESC

3 Cutting grades Pramet

80268016 8040

F20M CP25 T60M F40M

SECO CP20 F25M F30M F40M CP50

F15M F25M F30M

GC1015 GC1020 GC1020 GC1020 GC1025 GC2030

COROMANT GC1015 GC1025 GC1120

GC1020 GC2030

KC710 KC721M KC725M KC720

KENNAMETAL KC732 KC730 KC740 KCF22

KC705M KC709M KC730 KC740

CS5 CS5

HERTEL CM2

CY15 HC844 CY25 CZ250 CY250

HITACHI

HC830

IC250 IC950 IC354 IC928 IC328

ISCAR IC220 IC308 IC228

IC910 IC508 IC3028

KIENINGER

CKA128 CKC128

UP20M

MITSUBISHI M20

UP10H

P25TiAlN P25TiAlN P25TiAlN P40TiAlN P40TiAlN

POKOLM P25TiAlN

K10

OR725

SAFETY

OR820

AC325 AC330 ACZ320 K50L

SUMITOMO KC130C

EH10Z EH20Z

AH330 GH330 T260

TOSHIBA GH336

T221

TPC25 HCP25

WIDIA

VC905 VC935

VALENITE

VC901 VC929 VC928

WXM22 WXP35

WALTER

3.4 Comparative table of PVD-grades

Comparative table of application fi elds of foreign cutting grades with grades of the basic seriesfor milling

Page 14: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

13

ESC

ESC

4 Choice of turning tool

4.1 Tool holder choice

4.1.1 Tool holder choice with regard to the clamping technique

The PRAMET TOOLS offer includes tool holders, adjustable holders, turret heads and adjustable holders for externallongitudinal, facing, copy turning, and naturally also for internal turning.

Tool holders are classifi ed according to the inserts clamping system into six groups that are schematically illustratedin the following passage.

ISO P - This system serves for the clamping of negative inserts with cylindrical hole, both with chip formers and/or without them. The insert clamping is achievedas a result of an angle lever that after tightening the screw presses the insert down to the holder bed. Tool holders with this clamping system of inserts ensure a reliable and exact clamping of an insert. They perform the best and also the most frequent use at external turning operations, namely both fi nishing and roughing ones. Alternatively this typeof clamping can be also used for holders intended for internal turning of holes with larger diameters.

ISO M – This system is used for the clamping of cutting inserts of the same type as that of the system ISO P. In this case an insert is set onto a strong pin to which it is pressed by a clamp that is also fi xing at the same time the top of insert. This clamping system is suitable mainly for holders with supposed enhanced dynamic load. These holders are used almost exclusively for the external turning.

ISO C - This system serves for the clamping of both negative and positive inserts without holes, namely with both chip formers (pre-pressed, ground and side-pressed ones) and without them. The insert is fi xed in the bed of a tool holder by a screw-held clamp, under which there is still embedded a side-pressed chip former at some insert types. Holders with this clamping system are used for both the external and internal surface machining. At present the clamping system C loses its importance. Especially at tools for internal turning it is replaced by the system S with benefi t.

ISO S - This clamping system is mainly used for small cross-section tools, designedfor both external and internal turning (drilling). In this case a special screw, going throughan insert cone hole, achieves the clamping. By tightening this screw an insert is fi xed in the tool bed. This solution is especially convenient because there is no obstaclefor chip fl ow.

ISO X – This marking identifies tools with so called special clamping system(i.e. it is different at individual tool manufacturers and suppliers). In our case we have identifi ed under this marking tool holders that use the cutting resistance to clampan insert into the self-locking bed. This clamping system is used for tools intendedfor parting and recessing.

ISO G – This clamping system is used at tools for recess turning and at tools for copy turning (system CTP). The insert is pushed into the holder bed by a clamp from the top. The contact surface in the holder, in the clamp and also in the insert is shaped in sucha way that it hinders the insert displacing by a feeding component of cutting speed.

Page 15: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

14

ESC

ESC

4 Choice of turning tool

The choice of tool holder cross-section is given in most cases by possibilities of the machine tool; but in case whereit is possible to carry out an optimum choice of the tool holder cross-section, we bring the following nomogram whichmakes possible to do an optimum choice of a tool holder cross-section with regard to used cutting conditions (feed andcutting depth) and holder overhang.

An example for using the nomogram:

In the fi rst step we connect the selected (or maximum) cutting depth ap (Point A) with selected (or again with maximum used) feed f (Point B). From the intersection of the central line and the connection of these two points (Point C), we draw an abscissa into the point that indicates the holder overhang (Point D). At the other axis from the right we read the conve-nient cross-section of tool holder (Point E).

Cutting depth ap

[mm]Feed f

[mm.rev-1]Holder overhang

[mm]Holder cross-section

[mm]

4.1.2 Cross-section (square) choice of tool holder

Page 16: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

15

ESC

ESC

4 Choice of turning tool

4.2 Choice of indexable cutting insert

4.2.2 Choice of size of indexable cutting insert

The maximum allowable cutting depth ap max depends on the one hand on the main dimension of an indexable insert andalso on the approach angle κ r under which the insert is clamped in a tool holder; naturally, it also depends on the functionalcharacteristics of the pre-formed chip former.

The maximum values of cutting depths ap max for turning with round inserts depending on the diameter d are mentioned in the following Table.

Ø d = I.C. ap max

06 2,5

08 3,0

Shape and size 10 3,5

of inserts 12 5,0

RP, RC..., RN.. 13 5,5

15 6,5

16 7,0

19 8,0

20 8,5

25 10,5

32 16,0

4.2.1 Choice of basic shape of indexable cutting insert

Page 17: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

16

ESC

ESC

4 Choice of turning tool

In the following Table the maximum allowable values apmax for various shapes of cutting inserts and various angles κ r

at turning are given.

Shape and size

of insert

Maximum allowable cutting

edge length in engagementapmax [mm]

Lmax [mm]Kr = 90° Kr = 75° Kr = 60° Kr = 45°

= 105° = 120° = 135°VC 11

0,25L

2,8 2,8 2,7 2,4 -16 4,2 4,2 4,0 3,7 -

VN 11 2,8 2,8 - - -16 4,1 4,1 - - -

DC 07

0,25L

2,0 2,0 1,9 1,7 -11 2,9 2,9 2,8 2,5 -

DN 11 2,9 2,9 2,8 2,5 -15 3,9 3,9 3,8 3,4 -

KN 16 4,7 4,7 - 3,9 -19 4,7 4,7 - 3,9 -

TC 11

0,33L

3,6 3,6 - - -16 5,5 5,5 - - -

TN 11 3,6 3,6 - - -16 5,5 5,5 - 4,8 -22 7,3 7,3 - 6,4 -

27 9,1 9,1 - 7,9 -

CC 06

0,66L

4,2 4,2 4,1 - 3,009 6,4 6,4 6,2 - -12 8,5 8,5 8,2 - -

CN 12 8,5 8,5 8,2 - -16 10,6 10,6 10,5 - -

εr = 80° 19 12,7 12,7 12,3 - -25 16,5 16,5 16,0 - -

CN 12

0,66L

8,5 - 8,2 - -16 10,6 - 10,3 - -

εr = 100° 19 12,7 - 12,3 - -25 16,5 - 16,0 - -

WC 060,5L

3,3 3,3 - - -08 4,4 4,4 - - -

WN 060,5L

3,3 3,3 - - -08 4,4 4,4 - - -

SC 090,66L

6,3 6,1 - 4,512 8,4 8,1 - 6,0

SN 12

0,66L

8,4 8,1 - 6,015 10,4 10,0 - 7,119 12,6 12,2 - 8,925 16,8 16,3 - 12,0

Page 18: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

17

ESC

ESC

4 Choice of turning tool

For determination of the thickness of a cutting indexable insert we again use a simple nomogram. For a selected combination of the feed and cutting depth we determine the insert thickness from the intersection at the central (inclined) axisfor the interrupted or uninterrupted cut. We choose an insert with the nearest higher thickness.

4.2.2.1 Choice of optimum thickness of cutting indexable insert

Page 19: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

18

ESC

ESC

4 Choice of turning tool

4.2.2.2 Choice of insert tip radius

The insert tip radius rε (the last group of two digits in the insert code according to ISO) should be chosen as largeas possible. Its size, together with the insert tip angle ε r, is given by the basic insert shape and has infl uence on the resistanceof the cutting edge to plastic deformation of the tip. The larger the tip radius rε is, the bigger is the resistance to the plasticdeformation – to a total tip destruction as a result of an exceeding the thermal stability limit of the insert material. The largervalue of rε enables the use of larger feeds, but it also requires a higher stiffness of the system machine-tool-workpiece.At less stiff workpiece there is a danger of vibrations generation by using inserts with larger tip radius rε.

For the fi rst choice of the insert tip radius the following nomogram can be used:

Example for using the nomogram:

For the selected or for the highest feed at which the given insert will operate (Point A), and for the selected cutting depth ap (Point B) (we select again the highest one), we subtract the size of tip radius on central axes, namely with respectto the fact if it is a case of interrupted or continuous cut (Point C).

Page 20: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

19

ESC

ESC

4 Choice of turning tool

At the choice of cutting depth it must be paid attention to the fact that the smallest used depth is the sameor preferably larger than the radius of selected cutting insert.

With the tip radius increase, the roughness of machined surface goes down.

The maximum acceptable feed values f from the point of possibility of origin the cutting edge deformation dependingon the radius rε for various indexable inserts with various shapes are mentioned in the following Table.

Insert

shape

Maximum acceptable feed f [mm.rev-1]

rε = 0,2 rε = 0,4 rε = 0,5 rε = 0,8 rε = 1,0 rε = 1,2 rε = 1,5 rε = 1,6 rε = 2,4

VC 0,07 0,14 - 0,28 - 0,42 - 0,56 -

DC, DN 0,09 0,18 - 0,36 - 0,54 - 0,72 -

KN - - 0,23 - 0,45 - 0,68 - -

TC.. TN 0,10 0,20 - 0,40 - 0,60 - 0,80 -

CC.. TNε r = 80°

0,15 0,30 - 0,60 - 0,90 - 1,20 -

WC, WN 0,15 0,30 - 0,60 - 0,90 - 1,20 -

SC, SN 0,17 0,34 - 0,68 - 1,02 - 1,34 2,04

CC, CNε r = 100°

0,18 0,36 - 0,72 - 1,08 - 1,44 -

4.3 Choice of chip former

The shape of removed chip depends on many factors. It is a case of characteristics of the material to be machined,of its strength, toughness and microstructure, characteristics of cutting material, especially its frictional characteristics (at face), static and dynamic characteristics of machine tool, cutting fl uid, cutting edge geometry, cutting conditionsand the sort of chip former, thus practically of all factors of the cutting process which are decisive in their combinationfor generation of either short split transportable chip or continuous or bundled chip which quickly fi lls up the workspace of the machine and becomes an obstruction which practically hinders the machine work.

A certain type of chip former forms and breaks the chip only in a certain feed and cutting depth range. The minimum feed at which the chip former starts to operate, depends before all on the width of stabilization facet x and its angle γx. The maximum feed at which the chip former function ends, depends at grooved chip former on the distance between the outgoing edge of a groove and cutting edge b and on the groove depth h.

The thickness of the removed layer a (at approach angle κ r = 90° matches the feed) is distinctly smaller than the facet width x ; then it comesto the chip contact only at facet.The chip cannot enter the chip former;henc e i t c anno t be fo r med seeschematic drawing).

If it is used a higher feed f (bigger thickness of removed layer a), when x < a,(f) the chip enters the chip former and is formed byit-incurved under a certain radius R (see drawing).

x << a (see drawing); fi rst it comes to too hard (excessive) forming (crushing) and by further increasein feed the chip already passes by the chip former without any infl uenceon its shape (there is no forming).

Page 21: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

20

ESC

ESC

The function of a certain type of the chip former is restricted only to a certain range of cutting conditions. For this reason the respective chip formers are outlined into complex series which enable the coverage of the range for most frequently used combinations cutting depth-feed (see the following Figure), and at the same time it is accepted that the functional ranges of respective members of this series overlap.

4 Choice of turning tool

Page 22: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

21

ESC

ESC

4 Choice of turning tool

The overview of chip formers system Pramet:

Page 23: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

22

ESC

ESC

4 Choice of turning tool

The overview of chip formers system Pramet:

Page 24: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

23

ESC

ESC

4 Choice of turning tool

The overview of chip formers system Pramet:

Page 25: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

24

ESC

ESC

4.4 Choice of cutting conditions

In the following passage we try to facilitate the choice of a convenient tool and choice of starting (initial cutting conditions).

1. In the fi rst step we classify the material to be machined into one of the six groups according to the ISO 513 (pages 92 – 99).

2. We classify the given operation according to its character into a group (fi ne and fi nishing turning, semi-roughing, rouging or heavy roughing) (page 29).

3. In the fi rst Table for the given group of materials to be machined we choose a combination material-chip former for an insert being chosen ahead (pages 25 – 42).

4. Then in the following Tables we choose the starting cutting speed and possible corrections (for machine condition, hardness of machined material ……..) (pages 25 – 42).

Values of cutting speeds specifi ed in the Tables are valid for machining without application of cutting fl uids.

The basic values of cutting speeds mentioned in the Tables for fi ne, fi nishing, semi-roughing and roughing turning are specifi edfor the cutting edge life T= 15 min (for heavy roughing there is cutting edge life T = 45 min). If a diverse value of tool lifeis required, T < 15 min or T > 15 min, the tabular value vc is multiplied by a coeffi cient kvT according to the Correction Tables which are quoted in the Tables for respective machinability groups.

If the hardness HB of workpiece differs from the basic hardness mentioned in the Table caption, the value v15 is multiplied by a factor kvHB.

The following product then gives the resulting cutting speed:

vT = vTtab.kvX.kvT.kvHB.(kvM)

4 Choice of turning tool

Page 26: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 ÷ 0,2 [mm.rev-1]ap = 0,2 ÷ 2,0 [mm]

f = 0,2 ÷ 0,4 [mm.rev-1]ap = 1,5 ÷ 4,0 [mm]

f = 0,4 ÷ 0,8 [mm.rev-1]ap = 4,0 ÷ 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

P

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

I8016

FI

6630F

I6620

MI

6630M

I6620

RI

6630R

I6630HR

I8040HR

I I I

II6620

FII

8016F

II8016

FII

6620R

II6640

MII

6620R

II6640HR

II6640HR

II II II

III III8030

FIII

6630NR

III6630NR

III6630NR

III8040HR

III III8040

SR, XRIII III III

..X KNUX

I I I662072

I663072

I662074

I I I I I I

II II II662073

II664074

II663074

II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

I8016UM

I6630UM

I6620UR

I6630UR

I I I I I I I

II6620UM

II8016UM

II662047

II663047

II II II II II II II

III III8030UM

III6630UR

III8030UR

III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

I801649

I663046

I662047

I663047

I I I I I I I

II662049

II663047

II663047, 48

II664047, 48

II II II II II II II

III III664046, 47

III III803047, 48

III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

I 8030 I 8030 I 6640 I 6640 I I I I I 6640 I 8030 I

II - II 6640 II 8030 II 8030 II II II II II 8030 II 6640 II

TN11... TN16... TN22 I I I I I I I I I I I 8030

25

ES

C

ES

C

4C

hoice of turning tool

Page 27: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

26

ES

C

ES

C

4C

hoice of turning tool

Grade6620 6630 6640

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 355 335 315 390 - - - - 250 235 220 275

III 0,20 320 300 280 350 290 275 255 320 210 195 185 230

Semi-roughingturning

I 0,20

2,5

305 285 270 335 275 260 240 300 195 185 170 215

II 0,30 245 230 215 270 235 220 205 260 170 160 150 185

III 0,40 215 200 190 235 210 195 185 230 155 145 135 170

Roughingturning

I 0,40

5,0

200 190 175 220 195 185 170 215 145 135 130 160

II 0,60 165 155 145 180 165 155 - 180 125 120 - 140

III 0,80 145 135 130 160 145 135 - 160 115 110 - 125

Heavyroughingturning

I 0,80

12

- - - - 110 105 - - 90 85 - -V45

[m.min-1]II 1,00 - - - - 100 95 - - 80 75 - -

III 1,30 - - - - 90 85 - - 75 70 - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - -

V15

[m.min-1]

0,15 - - - - - - - - - - -

0,20 - - - - - - - - - - -

0,30 - - - - - - - - - - -

Faceand internal

recesses

0,10 - - - - - - - - - - -

0,15 - - - - - - - - - - -

0,20 - - - - - - - - - - -

0,30 - - - - - - - - - - -

Threading

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

PHB = 180

14b 9b ÷ 16bCORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

HB kvHB HB kvHB

120 1,18 220 0,90

140 1,12 240 0,86

160 1,05 260 0,82

180 1,00 280 0,80

200 0,95 300 0,77

Page 28: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

27

ES

C

ES

C

4C

hoice of turning tool

Grade8016 8030 8040

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

375 350 330 410 250 235 220 275 - - - -

V15

[m.min-1]

II 0,10 - - - - 240 225 210 265 - - - -

III 0,20 - - - - 230 215 200 250 - - - -

Semi-roughingturning

I 0,20

2,5

- - - - 225 210 200 245 165 155 135 180

II 0,30 - - - - 190 180 165 210 130 120 115 145

III 0,40 - - - - 170 160 150 185 110 105 95 120

Roughingturning

I 0,40

5,0

- - - - 155 145 135 170 105 100 90 115

II 0,60 - - - - 135 125 120 150 80 75 - 90

III 0,80 - - - - 120 115 105 130 70 65 - 75

Heavyroughingturning

I 0,80

12

- - - - 85 80 - - 45 40 - -V45

[m.min-1]II 1,00 - - - - 75 70 - - 40 35 - -

III 1,30 - - - - 70 65 - - 35 30 - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - 180 - - - - -

V15

[m.min-1]

0,15 - - - - - - 165 - - - - -

0,20 - - - - - - 155 - - - - -

0,30 - - - - - - 140 - - - - -

Faceand internal

recesses

0,10 - - - - - - 110 - - - - -

0,15 - - - - - - 105 - - - - -

0,20 - - - - - - 100 - - - - -

0,30 - - - - - - 90 - - - - -

Threading

- - - - - 165 - - - - - -

- - - - - 155 - - - - - -

- - - - - 135 - - - - - -

PHB = 180

14b 9b ÷ 16bCORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

15 1,00 45 0,76

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

HB kvHB HB kvHB

120 1,18 220 0,90

140 1,12 240 0,86

160 1,05 260 0,82

180 1,00 280 0,80

200 0,95 300 0,77

Page 29: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

28

ES

C

ES

C

4C

hoice of turning tool

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 ÷ 0,2 [mm.rev-1]ap = 0,2 ÷ 2,0 [mm]

f = 0,2 ÷ 0,4 [mm.rev1]ap = 1,5 ÷ 4,0 [mm]

f = 0,4 ÷ 0,8 [mm.rev-1]ap = 4,0 ÷ 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

M

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

I8016

FI

6640F

I6630

MI

6630M

I6630NR

I8030NR

I8030HR

I8040HR

I I I

II II8030

FII

8030M

II8030NR

II6630DR

II6630DR

II6630HR

II6640HR

II II II

III III III6630NR

III6640NR

III6630

RIII

8030R

III III8040

SR, XRIII III III

..X KNUX

I I I663073

I663073

I663074

I I I I I I

II II II663074

II663074

II II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

I8016UM

I6630UM

I6630UR

I8030UR

I I I I I I I

II II8030UM

II8030UR

II6630UR

II II II II II II II

III III8030UR

III663047

III663047

III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

I801649

I663046

I663047

I663047

I I I I I I I

II II663047

II663048

II664047, 48

II II II II II II II

III III664046, 47

III III803047, 48

III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

I 8030 I 8030 I 6640 I 6640 I I I I I 6640 I 8030 I

II - II 6640 II 8030 II 8030 II II II II II 8030 II 6640 II

TN11... TN16... TN22 I I I I I I I I I I I 8030

Page 30: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

29

ES

C

ES

C

4C

hoice of turning tool

Grade

6620 6630 6640

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - 280 265 265 -

V15

[m.min-1]

II 0,10 - - - - 205 195 180 225

III 0,20 205 195 180 225 155 145 135 170

Semi-roughingturning

I 0,20

2,5

190 180 165 210 150 140 130 165

II 0,30 160 150 140 175 110 105 95 120

III 0,40 145 135 130 160 85 80 75 95

Roughingturning

I 0,40

5,0

135 125 120 150 80 75 70 90

II 0,60 115 110 - 125 60 55 50 65

III 0,80 100 95 - 110 50 45 40 55

Heavyroughingturning

I 0,80

12

55 50 - - 25 20 - -V45

[m.min-1]II 1,00 50 45 - - 20 15 - -

III 1,30 45 40 - - 15 10 - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - 110 -

V15

[m.min-1]

0,15 - - - - - - - - - - 102 -

0,20 - - - - - - - - - - 96 -

0,30 - - - - - - - - - - 87 -

Faceand internal

recesses

0,10 - - - - - - - - - - 75 -

0,15 - - - - - - - - - - 70 -

0,20 - - - - - - - - - - 68 -

0,30 - - - - - - - - - - 60 -

Threading

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

MHB = 180 ÷ 210

8b 5b ÷ 11bCORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

HB kvHB HB kvHB

<150 1,40 270-300 0,72

150-180 1,18 300-330 0,68

180-210 1,00 330-360 0,66

210-240 0,87 360-390 0,62

240-270 0,79

Page 31: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

30

ES

C

ES

C

4C

hoice of turning tool

Grade8016 8030 8040

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,05

1,0

140 130 125 155 125 120 110 140 - - - -

V15

[m.min-1]

II 0,10 135 125 120 150 115 110 100 125 110 105 95 120

III 0,20 125 115 110 140 105 100 90 115 85 80 75 95

Semi-roughingturning

I 0,20

2,5

- - - - 100 95 88 110 80 75 70 90

II 0,30 - - - - 80 75 70 90 70 65 60 75

III 0,40 - - - - 70 65 60 75 65 60 55 70

Roughingturning

I 0,40

5,0

- - - - 65 60 55 70 60 55 50 65

II 0,60 - - - - 55 50 45 60 50 45 40 55

III 0,80 - - - - 50 45 40 55 45 40 35 50

Heavyroughingturning

I 0,80

12

- - - - 35 35 - - 35 30 - -V45

[m.min-1]II 1,00 - - - - 25 25 - - 30 30 - -

III 1,30 - - - - 20 20 - - 25 25 - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - 105 - - - - -

V15

[m.min-1]

0,15 - - - - - - 95 - - - - -

0,20 - - - - - - 91 - - - - -

0,30 - - - - - - 82 - - - - -

Faceand internal

recesses

0,10 - - - - - - 75 - - - - -

0,15 - - - - - - 67 - - - - -

0,20 - - - - - - 64 - - - - -

0,30 - - - - - - 55 - - - - -

Threading

- - - - - 130 - - - - - -

- - - - - 120 - - - - - -

- - - - - 110 - - - - - -

MHB = 180 ÷ 210

8b 5b ÷ 11bCORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

HB kvHB HB kvHB

<150 1,40 270-300 0,72

150-180 1,18 300-330 0,68

180-210 1,00 330-360 0,66

210-240 0,87 360-390 0,62

240-270 0,79

Page 32: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

31

ES

C

ES

C

4C

hoice of turning tool

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 ÷ 0,2 [mm.rev-1]ap = 0,2 ÷ 2,0 [mm]

f = 0,2 ÷ 0,4 [mm.rev-1]ap = 1,5 ÷ 4,0 [mm]

f = 0,4 ÷ 0,8 [mm.rev-1]ap = 4,0 ÷ 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

K

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

I8016

FI

6630F

I6620

MI

6630M

I6620

RI

6630R

I6630HR

I6640HR

I I I

II II6640

RII 6620 II

6640R

II 6620 II6640

RII II

8040HR

II II II

III III III III III III8040HR

III III III III III

..X KNUX

I I664072

I662073

I664073

I662074

I664074

I I I I I

II II663072

II II II II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

I8016UM

I6630UM

I6630UR

I6630UR

I I I I I I I

II II 8016 II 6620 II 8016 II II II II II II II

III III III III III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

I 8016 I803047

I 8016 I803047

I I I I I I I

II662046, 47

II663047, 48

II662046, 47

II664046, 47

II II II II II II II

III III III III III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

I 8030 I 8030 I 8030 I 8030 I I I I I 8030 I 8030 I

II - II 6640 II 6640 II 6640 II II II II II 6640 II 6640 II

TN11... TN16... TN22 I I I I I I I I I I I 8030

Page 33: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

32

ES

C

ES

C

4C

hoice of turning tool

Grade6620 6630 6640

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 340 320 300 375 275 260 240 305 200 190 175 220

III 0,20 290 275 255 320 260 245 230 286 175 165 155 195

Semi-roughingturning

I 0,20

2,5

275 260 240 300 250 235 220 275 170 160 150 185

II 0,30 250 235 220 275 205 195 180 225 135 125 120 150

III 0,40 230 215 200 255 185 175 165 205 115 110 100 125

Roughingturning

I 0,40

5,0

215 200 190 235 170 160 150 185 105 100 90 115

II 0,60 195 185 170 215 145 135 130 160 85 80 75 95

III 0,80 185 175 165 205 125 120 110 140 75 70 65 80

Heavyroughingturning

I 0,80

12

- - - - 85 80 - - 45 40 - -V45

[m.min-1]II 1,00 - - - - 75 70 - - 40 35 - -

III 1,30 - - - - 70 65 - - 35 30 - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - 110 -

V15

[m.min-1]

0,15 - - - - - - - - - - 100 -

0,20 - - - - - - - - - - 90 -

0,30 - - - - - - - - - - 80 -

Faceand internal

recesses

0,10 - - - - - - - - - - 80 -

0,15 - - - - - - - - - - 70 -

0,20 - - - - - - - - - - 65 -

0,30 - - - - - - - - - - 60 -

Threading

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

KCAST IRONS

Grey, malleable, nodular, creep-resistantand special cast iron

CORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

Workpiecehardness

HB

kvHB - Sort of cast irongrey nodular creep-resist.

150-180 1,40 1,15 -

180-200 1,25 1,08 -

200-220 1,10 1,03 -

220-240 1,00 1,00 -

240-280 0,86 0,95 -

280-330 0,60 0,85 -

260-300 - - 1,25

300-360 - - 1,00

360-450 - - 0,75

MATERIAL CORRECTION

Sort of cast iron kvM

grey 1,00

nodular 0,85

malleable 0,95

creep-resistant 0,40

Page 34: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

33

ES

C

ES

C

4C

hoice of turning tool

Grade8016 8030

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,05

1,0

260 245 230 285 145 135 130 160 - - - -

V15

[m.min-1]

II 0,10 230 215 200 255 135 125 120 150 - - - -

III 0,20 - - - - - - - - - - - -

Semi-roughingturning

I 0,20

2,5

- - - - - - - - - - - -

II 0,30 - - - - - - - - - - - -

III 0,40 - - - - - - - - - - - -

Roughingturning

I 0,40

5,0

- - - - - - - - - - - -

II 0,60 - - - - - - - - - - - -

III 0,80 - - - - - - - - - - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - 100 - - - - -

V15

[m.min-1]

0,15 - - - - - - 90 - - - - -

0,20 - - - - - - 80 - - - - -

0,30 - - - - - - 70 - - - - -

Faceand internal

recesses

0,10 - - - - - - 70 - - - - -

0,15 - - - - - - 65 - - - - -

0,20 - - - - - - 60 - - - - -

0,30 - - - - - - 50 - - - - -

Threading

- - - - - 150 - - - - - -

- - - - - 130 - - - - - -

- - - - - 120 - - - - - -

KCAST IRONS

Grey, malleable, nodular, creep-resistantand special cast iron

CORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

TOOL LIFR CORRECTION FOR HEAVY ROUGHING

Tmin kvT Tmin kvT

30 1,10 60 0,93

45 1,00

CORRECTION FOR WORKPIECE HARDNESS

Workpiecehardness

HB

kvHB - Sort of cast irongrey nodular creep-resist.

150-180 1,40 1,15 -

180-200 1,25 1,08 -

200-220 1,10 1,03 -

220-240 1,00 1,00 -

240-280 0,86 0,95 -

280-330 0,60 0,85 -

260-300 - - 1,25

300-360 - - 1,00

360-450 - - 0,75

MATERIAL CORRECTION

Sort of cast iron kvM

grey 1,00

nodular 0,85

malleable 0,95

creep-resistant 0,40

Page 35: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 ÷ 0,2 [mm.rev-1]ap = 0,2 ÷ 2,0 [mm]

f = 0,2 ÷ 0,4 [mm.rev-1]ap = 1,5 ÷ 4,0 [mm]

f = 0,4 ÷ 0,8 [mm.rev-1]ap = 4,0 ÷ 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

N

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

I I PKD I PKD I PKD I I I I I I I

II II II II II II II II II II II

III III III III III III III III III III III

..X KNUX

I I I801672

I801673

I801674

I801674

I I I I I

II II IIHF773

IIHF774

IIHF774

II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

I I8016

AlI

8016Al

I8016

AlI

8016Al

I8016

AlI I I I I

II IIHF7Al

IIHF7Al

IIHF7Al

IIHF7Al

IIHF7Al

II II II II II

III III PKD III PKD III PKD III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

I I803047

I 8016 I803047

I 8016 I803047, 48

I I I I I

II II 8016 II803047

II 8016 II803047, 48

II 8016 II II II II II

III III III III III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

I 8030 I 8030 I 8030 I 8030 I I I I I 8030 I 8030 I

II II II II II II II II II II II

TN11... TN16... TN22 I I I I I I I I I I I 8030

34

ES

C

ES

C

4C

hoice of turning tool

Page 36: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

35

ES

C

ES

C

4C

hoice of turning tool

Grade Al alloys wrought, heat-treated HB = 100 Al alloys with amount Si > 12%

8016, 8030 HF7 PCDInsertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,10

1,0

900 - - - 700 - - - 850 - - -

V15

[m.min-1]

II 0,15 800 - - - 650 - - - 600 - - -

III 0,20 750 - - - 600 - - - 550 - - -

Semi-roughingturning

I 0,20

2,5

750 - - - 550 - - - 700 - - -

II 0,30 600 - - - 480 - - - 550 - - -

III 0,40 550 - - - 400 - - - 500 - - -

Roughingturning

I 0,40

5,0

450 - - - 400 - - - 500 - - -

II 0,60 400 - - - 350 - - - 450 - - -

III 0,80 300 - - - 300 - - - 400 - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - 650 - - - - - - - - -

V15

[m.min-1]

0,15 - - 550 - - - - - - - - -

0,20 - - 450 - - - - - - - - -

0,30 - - 400 - - - - - - - - -

Faceand internal

recesses

0,10 - - 500 - - - - - - - - -

0,15 - - 450 - - - - - - - - -

0,20 - - 360 - - - - - - - - -

0,30 - - 320 - - - - - - - - -

Threading

- 400 - - - - - - - - - -

- 350 - - - - - - - - - -

- 250 - - - - - - - - - -

NAl alloysCu alloys

CORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

Al alloys

Material kvN

Al alloys wrought non-hardened HB 60 2,6

Al alloys wrought hardened HB 100 1,0

Al alloys cast non-hardened HB 75 0,9

Al alloys cast hardened HB 90 0,6Al alloys cast non-hardened

HB 130 >12% Si PCD

Cu alloys

material kvN

Brass for automatic machine (>1% Pb) 1,8

Brass HB 90 0,76

Electrolytic bronze Cu 0,7

Page 37: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

36

ES

C

ES

C

4C

hoice of turning tool

Grade Cu alloys - brass HB = 100

8016, 8030 HF7Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,10

1,0

500 - - - 400 - - - - - - -

V15

[m.min-1]

II 0,15 450 - - - 360 - - - - - - -

III 0,20 400 - - - 300 - - - - - - -

Semi-roughingturning

I 0,20

2,5

400 - - - 350 - - - - - - -

II 0,30 350 - - - 300 - - - - - - -

III 0,40 300 - - - 250 - - - - - - -

Roughingturning

I 0,40

5,0

350 - - - 300 - - - - - - -

II 0,60 300 - - - 270 - - - - - - -

III 0,80 250 - - - 250 - - - - - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - 250 - - - - - - - - -

V15

[m.min-1]

0,15 - - 200 - - - - - - - - -

0,20 - - 150 - - - - - - - - -

0,30 - - 100 - - - - - - - - -

Faceand internal

recesses

0,10 - - 200 - - - - - - - - -

0,15 - - 180 - - - - - - - - -

0,20 - - 140 - - - - - - - - -

0,30 - - 100 - - - - - - - - -

Threading

- 300 - - - - - - - - - -

- 250 - - - - - - - - - -

- 220 - - - - - - - - - -

NAl alloysCu alloys

CORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

Al alloys

material kvN

Al alloys wrought non-hardened HB 60 2,6

Al alloys wrought hardened HB 100 1,0

Al alloys cast non-hardened HB 75 0,9

Al alloys cast hardened HB 90 0,6Al alloys cast non-hardened

HB 130 >12% Si PKD

Cu alloys

material kvN

Brass for automatic machine (>1% Pb) 1,8

Brass HB 90 0,76

Electrolytic bronze Cu 0,7

Page 38: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

37

ES

C

ES

C

4C

hoice of turning tool

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 - 0,2 [mm.rev-1]ap = 0,2 - 2,0 [mm]

f = 0,2 - 0,4 [mm.rev-1]ap = 1,5 - 4,0 [mm]

f = 0,4 - 0,8 [mm.rev-1]ap = 4,0 - 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

s

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

I I8030

FI

6640NR

I8030NR

I6640NR

I8030NR

I I I I I

II II II8030NR

II6640NR

II8030NR

II6640NR

II II II II II

III III III III III III III III III III III

..X KNUX

I I I664073

I664073

I664074

I I I I I I

II II II II II II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

I I8030UM

I8030UR

I8030UR

I I I I I I I

II II II II II II II II II II II

III III III III III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

I I663046

I803047

I803047

I I I I I I I

II II664047, 61

II664047, 61

II664047, 61

II II II II II II II

III III III III III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

I 8030 I 8030 I 8030 I 8030 I I I I I 8030 I 8030 I

II - II II II II II II II II II II

TN11... TN16... TN22 I I I I I I I I I I I 8030

Page 39: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

38

ES

C

ES

C

4C

hoice of turning tool

Grade8016 8030 8040

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V...(L...)

R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 60 56 53 65 55 50 48 60 50 45 44 55

III 0,20 50 47 45 55 45 43 40 50 40 35 33 44

Semi-roughingturning

I 0,20

2,5

45 42 40 50 40 35 33 45 35 30 28 40

II 0,30 40 38 35 45 35 30 28 40 30 28 26 33

III 0,40 30 28 25 33 30 25 23 35 25 23 20 28

Roughingturning

I 0,40

5,0

40 38 - 45 35 33 - 40 30 28 - 35

II 0,60 35 33 - 40 30 28 - 33 25 23 - 28

III 0,80 30 28 - 35 25 23 - 28 20 18 - 22

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - 30 - - - - -

V15

[m.min-1]

0,15 - - - - - - 25 - - - - -

0,20 - - - - - - 20 - - - - -

0,30 - - - - - - 20 - - - - -

Faceand internal

recesses

0,10 - - - - - - 20 - - - - -

0,15 - - - - - - 18 - - - - -

0,20 - - - - - - 15 - - - - -

0,30 - - - - - - 15 - - - - -

Threading

- - - - - 20 - - - - - -

- - - - - 15 - - - - - -

- - - - - 10 - - - - - -

SCreep-resistant alloys on basis

of Ni, Co, Fe and TiCORRECTION FACTOR kvx

Forging and casting skin 0,70-0,80

Internal turning 0,75-0,85

Interrupted cut 0,80-0,90

Good machine condition 1,05-1,20

Bad machine condition 0,85-0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

CORRECTION FOR SORT OF ALLOY

Sort of alloy kvN Sort of alloy kvN

Ti alloy 2,30 Ni alloy 1,00

Fe alloy 1,25 Co alloy 0,70

CORRECTION FOR WORKPIECE HARDNESS

Har

dnes

sN

i [H

B]

kvHB

Har

dnes

sCo

[HB]

kvHB

Har

dnes

sFe

[HB]

kvHB

Har

dnes

sTi

[Rm]

kvHB

230 1,05 200 1,30 180 1,05 450 2,50

250 1,00 250 1,14 200 1,00 900 1,00

280 0,92 300 1,00 240 0,90 1100 0,90

320 0,84 320 0,95 280 0,83

350 0,79

Page 40: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

39

ES

C

ES

C

4C

hoice of turning tool

GradeHF7

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 45 40 - 50 - - - - - - - -

III 0,20 35 30 - 40 - - - - - - - -

Semi-roughingturning

I 0,20

2,5

30 25 - 35 - - - - - - - -

II 0,30 27 20 - 30 - - - - - - - -

III 0,40 22 20 - 25 - - - - - - - -

Roughingturning

I 0,40

5,0

25 23 - 28 - - - - - - - -

II 0,60 20 18 - 25 - - - - - - - -

III 0,80 15 10 - 18 - - - - - - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - - -

V15

[m.min-1]

0,15 - - - - - - - - - - - -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Faceand internal

recesses

0,10 - - - - - - - - - - - -

0,15 - - - - - - - - - - - -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Threading

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

SCreep-resistant alloys on basis

of Ni, Co, Fe and TiCORRECTION FACTOR kvx

Forging and casting skin 0,70-0,80

Internal turning 0,75-0,85

Interrupted cut 0,80-0,90

Good machine condition 1,05-1,20

Bad machine condition 0,85-0,95

TOOL LIFE CORRECTION kvT

Tmin kvT Tmin kvT

10 1,10 30 0,84

15 1,00 45 0,76

20 0,93 60 0,71

CORRECTION FOR SORT OF ALLOY

Sort of alloy kvN Sort of alloy kvN

Ti alloy 2,30 Ni alloy 1,00

Fe alloy 1,25 Co alloy 0,70

CORRECTION FOR WORKPIECE HARDNESS

Har

dnes

sN

i [H

B]

kvHB

Har

dnes

sCo

[HB]

kvHB

Har

dnes

sFe

[HB]

kvHB

Har

dnes

sTi

[Rm]

kvHB

230 1,05 200 1,30 180 1,05 450 2,50

250 1,00 250 1,14 200 1,00 900 1,00

280 0,92 300 1,00 240 0,90 1100 0,90

320 0,84 320 0,95 280 0,83

350 0,79

Page 41: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

40

ES

C

ES

C

4C

hoice of turning tool

Mac

hine

d m

ater

ial

mai

n gr

oup

ISO

INDEXABLE INSERT TYPEACCORDING ISO

WORKING CONDITIONS TURNING

WO

RKP

IECE

MAT

ERIA

L

FINE AND FINISHINGTURNING

SEMI-ROUGHINGTURNING

ROUGHINGTURNING

HEAVY ROUGHINGTURNING

PARTINGAND RECESSING

THREADING

f = 0,05 - 0,2 [mm.rev-1]ap = 0,2 - 2,0 [mm]

f = 0,2 - 0,4 [mm.rev-1]ap = 1,5 - 4,0 [mm]

f = 0,4 - 0,8 [mm.rev-1]ap = 4,0 - 10,0 [mm]

f > 1,0 [mm.rev-1]ap > 10,0 [mm]

f = 0,05 ÷ 0,3 [mm.rev-1] -

mac

hine

d su

rfac

eun

inte

rrup

ted

cut

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

mac

hine

d su

rfac

ero

lled

prod

uct

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

unin

terr

upte

d cu

t

cast

ing,

forg

ing

inte

rrup

ted

cut

perip

hera

l rec

esse

san

d pa

rtin

g

face

rec

esse

san

d pa

rtin

g

-

H

..A

..M

..G

..U

..N

CNMA CNMM CNMGDNMA DNMM DNMGDNMU SNMA SNMMSNMG SNMX TNMATNMM TNMG VNMURNMA RNMM RNMG

WNMA WNMM WNMG

TREATEDSTEELS

55 - 60 HRC

I 6620 I8030

MI I I I I I I I I

II8016

FII 8030 II II II II II II II II II

IIIPKBNPB0

IIIPKBNPB2

III III III III III III III III III

HARDENED CAST IRON

400 - 500 HBI

PKBNPB0

IPKBNPB2

I I I I I I I I I

HARDENED CAST IRON

> 500 HBI 6620 I 8030 I I I I I I I I I

..X KNUXI I I I I I I I I I I

II II II II II II II II II II II

..W

..T

CCMW CCMT SCMWSCMT DCMW DCMTTCMW TCMT VCMWVCMT WCMW WCMTRCMW RCMT RCMX

TREATEDSTEELS

55 - 60 HRC

I 6620 I8030UM

I I I I I I I I I

II 8016 II8030UR

II II II II II II II II II

III6620UM

III III III III III III III III III III

..R

..N

SPMR SPGR SPUNSPGN TPMR TPGR

TPUN TPGN

TREATEDSTEELS

55 - 60 HRC

I662047

I803047

I I I I I I I I I

II 8016 II 8016 II II II II II II II II II

III 6620 III III III III III III III III III III

..XLFMX, LFUX, LCMX

TN16E

TREATED STEELS55 - 60 HRC

I 8030 I 8030 I I I I I I I 8030 I 8030 I

HARDENED CAST IRON> 500 HB II 8030 II 8030 II II II II II II II 8030 II 8030 II

TN11... TN16... TN22

TREATED STEELS55 - 60 HRC

I I I I I I I I I I I 8030

HARDENED CAST IRON> 500 HB I I I I I I I I I I I 8030

Page 42: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

41

ES

C

ES

C

4C

hoice of turning tool

Grade6620 8016 8030

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 60 56 - 70 60 56 - 70 55 52 - 60

III 0,20 45 42 - 50 45 42 - 50 40 38 - 45

Semi-roughingturning

I 0,20

2,5

45 42 - 50 45 42 - 50 40 38 - 45

II 0,30 40 38 - 45 40 38 - 45 30 28 - 35

III 0,40 - - - - - - - - - - - -

Roughingturning

I 0,40

5,0

- - - - - - - - - - - -

II 0,60 - - - - - - - - - - - -

III 0,80 - - - - - - - - - - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - 20 -

V15

[m.min-1]

0,15 - - - - - - - - - - 10 -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Faceand internal

recesses

0,10 - - - - - - - - - - 15 -

0,15 - - - - - - - - - - 8 -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Threading

- - - - - - - - - 45 - -

- - - - - - - - - 40 - -

- - - - - - - - - 30 - -

HTreated steels

Hardened cast ironCORRECTION FACTOR kvx

Forging and casting skin 0,70÷0,80

Internal turning 0,75÷0,85

Interrupted cut 0,80÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,85÷0,95

MATERIAL CORRECTION

Material Hardness 66208016, 8030 PCBN

Treated steels HRC 55-60 1 1

Hardenedcast iron

HsH 55-70 0,5 1

HsH 75-80 - 0,7

Page 43: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

42

ES

C

ES

C

4C

hoice of turning tool

GradePKBN

Insertshape

Range of feedsand cutting depth

Leve

l Feed

f[mm.rev-1]

Cuttingdepth

ap[mm]

S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V... R...S...C...W..

T...D...K..

V...(L...)

R...

Fine andfi nishingturning

I 0,05

1,0

- - - - - - - - - - - -

V15

[m.min-1]

II 0,10 110 105 95 120 - - - - - - - -

III 0,20 90 85 80 100 - - - - - - - -

Semi-roughingturning

I 0,20

2,5

90 85 80 100 - - - - - - - -

II 0,30 80 75 70 90 - - - - - - - -

III 0,40 - - - - - - - - - - - -

Roughingturning

I 0,40

5,0

- - - - - - - - - - - -

II 0,60 - - - - - - - - - - - -

III 0,80 - - - - - - - - - - - -

Heavyroughingturning

I 0,80

12

- - - - - - - - - - - -V45

[m.min-1]II 1,00 - - - - - - - - - - - -

III 1,30 - - - - - - - - - - - -

Parting,peripheralrecesses

and copying(CTP)

0,10 - - - - - - - - - - - -

V15

[m.min-1]

0,15 - - - - - - - - - - - -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Faceand internal

recesses

0,10 - - - - - - - - - - - -

0,15 - - - - - - - - - - - -

0,20 - - - - - - - - - - - -

0,30 - - - - - - - - - - - -

Threading

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

HTreated steels

Hardened cast ironCORRECTION FACTOR kvx

Forging and casting skin 0,70-0,80

Internal turning 0,75-0,85

Interrupted cut 0,80-0,90

Good machine condition 1,05-1,20

Bad machine condition 0,85-0,95

MATERIAL CORRECTION

Material Hardness 66208016, 8030 PKBN

Treated steels HRC 55-60 1 1

hardened cast iron

HsH 55-70 0,5 1

HsH 75-80 - 0,7

Page 44: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

43

ESC

ESC

4 Choice of turning tool

4.5 Turning of recesses, parting, CTP system for copying and recessing turning

4.5.1 Cutting inserts grades for recessing, parting and copying (CTP)

The tools manufacturing programme Pramet enables productive turning of shallow and deep radial and axial (face)recesses. Furthermore, recesses with round profi le with the possibility of a subsequent starting by longitudinal feed(in general copy turning - CTP system).

Technological possibilities of recessing and parting tools Pramet are schematically indicated in the following picture.

For turning of deep radial and face recesses (B: T≈1÷4, where B is recess width and T its depth), we can use cutting inserts LFMX LFMX 3.10–020 SN up to 6.35–020 SN or cutting inserts LCMX 020502TN up to 050502TN which are clamped into tool holders by a clamp from the top with fi xed radial position.

The cutting inserts LFMX 3.10–020 SN up to 6.35–020 SN or cutting inserts VBD LFUX 030802TN up to 060802TNare also intended for parting; they are clamped either in fi rm holders or in holders with blade by means of cutting forcein V-shaped bed in holder. Alternatively, these tools are also delivered with cutting insert LCMX with radially fi xed position of clamped insert that is also clamped by the cutting force.

For shallow recesses with small width (B: T≈max.1), the inserts with three edges TN16E are intended for external recessesand inserts TN16N for internal recesses. The widths of recesses are in the range of B = 1,1÷2,15 mm. These insertsare clamped into tool holders for threads turning.

Cutting inserts LCMX 030502MO up to 0605MO are used for recessing and subsequent starting (enlargement of recesses) by means of longitudinal feed.

This CTP system (Copy Turning Pramet) is in general used for copy turning.

Cutting inserts grades for turning of recesses must have before all a good toughness and suffi cient wear resistance. These requirements are maximally fulfi lled with Pramet grades 8030 and 6640. Their characteristics and application are mentionedin Chapters 3.1 and 3.2 (pages 7-8).

Page 45: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

44

ESC

ESC

4 Choice of turning tool

4.5.2 Cutting conditions for recessing and parting tools

The guide values of radial and axial feeds for turning with inserts LCMX and TN16E; N are mentioned in the following Table:

Insert width[mm]

feed f [mm.rev-1]

initial(starting)

range

min. max.

1,1 ÷ 1,6 0,05 0,02 0,08

1,85 ÷ 2,15 0,06 0,02 0,12

2 ÷ 3 0,12 0,08 0,18

3 ÷ 4 0,15 0,08 0,25

5 ÷ 6,5 0,20 0,12 0,30

The guide values of radial feeds for parting are mentioned in the following Table:

Radial and recesses (LFMX, LCMX; TN16E; N)

Parting (LFMX, LFUX, LCMX)

Insert width[mm]

feed f [mm.rev-1]

initial(starting)

rangeinitial

(starting)

range

min. max. min. max.

2,0 ÷ 2,65 0,10 0,08 0,20 0,08 0,07 0,15

3 ÷ 3,15 0,13 0,09 0,22 0,10 0,08 0,20

4 ÷ 4,15 0,15 0,10 0,25 0,13 0,08 0,23

5 ÷ 5,15 0,18 0,10 0,30 0,15 0,08 0,25

6 ÷ 6,35 0,20 0,12 0,35 0,16 0,10 0,30

Insert LFMX, LCMX, LFUX..TN LFUX..TR;TL

The initial (starting) cutting speeds for turning of external, internal and face recesses and for parting are mentioned herei-nafter in the overall Tables for turning.

These values are valid on condition that cutting liquid is applied.

Recommendations for practical turning of recesses and parting:

Because of vibration restriction of the system it is necessary to choose a tool holder with maximum cross-section and minimum overhang

The longitudinal cutting insert axis must be normal to the workpiece rotation axis (at radial recesses)

The cutting edge of the insert must be at height of the workpiece rotation with tolerance of ±0,1 mm

The cutting liquid must be fed directly to the cutting edge in a suffi cient amount in order that it is providedan effi cient cooling, but also to the holder under the cutting insert

At turning of face recesses it is before all necessary to choose a suitable tool holder for a certain range of recessdiameters. Furthermore, the longitudinal axis of tool holder must be parallel with the rotation axis. In the reversecase there is a risk of an excessive friction of tool fl ank against recess walls. If it comes to fl ank seizingat the external wall of holder, - the case A on the following page, it is necessary to shift the insert cutting edge over the workpiece axis. Provided that it comes to seizing at the internal wall of groove, the case A, it is necessaryto shift the cutting edge under the workpiece axis

Page 46: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

45

ESC

ESC

4 Choice of turning tool

At the face recessing it must be also put particular stress on the location of a tool into the axis, otherwise it can cometo the tool friction against the workpiece and to the subsequent damage.

The multiple-function system of tools CTP (Copy Turning Pramet) signifi cantly extends the programme for turning tools. These tools enable longitudinal and face turning and copy turning of surfaces with various shapes.

By one tool with tool holder of common recessing tool with a cutting insert clamped from the top it is possible to carry out the turning of parts with complicated surfaces.

The “starting” cutting speeds are mentioned in Tables being presented in one of foregoing chapters that were dedicatedto the choice of cutting speeds for turning tools.

Recommended range of radial and axial feeds and cutting depths for CTP tools with various diameter of round headsof inserts are mentioned in the following graphs.

It is very important to use cutting fl uid with a considerable cooling effect; the cutting fl uid must be fed to the cutting edge in a suffi cient amount. The abundant cooling must safeguard the temperature reduction of cutting edge, but also the temperature reduction of the bottom part of tool holder with the bed for insert.

Page 47: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

46

ESC

ESC

4 Choice of turning tool

4.6 Threading

4.6.1 Threading technique choice

TURNED THREAD

INSERT + HOLDERSENSE OF SPINDLE DIRECTION

TOOL FEED DIRECTION

EXTERNALTHREADRIGHT

TN.....ER...+ SER

EXTERNALTHREADRIGHT

TN.....ER...+ SER

EXTERNALTHREAD

LEFT

TN.....EL...+ SEL

EXTERNALTHREAD

LEFT

TN.....EL...+ SEL

INTERNALTHREADRIGHT

TN.....NR...+ SIR

INTERNALTHREAD

LEFT

TN.....NL...+ SIL

Typical threading techniques

According to the workpiece shape and lathe type the basic turning technique is chosen, i.e. the feed direction and the sense of spindle rotation to produce a right external or internal thread, or a left external or internal thread as the case may be. The choice can be carried out according to the following Table.

Page 48: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

47

ESC

ESC

4 Choice of turning tool

TURNED THREAD

INSERT + HOLDERSENSE OF SPINDLE DIRECTION

TOOL FEED DIRECTION

EXTERNALTHREADRIGHT

TN.....EL...+ SEL

EXTERNALTHREADRIGHT

TN.....EL...+ SEL

EXTERNALTHREAD

LEFT

TN.....ER...+ SER

EXTERNALTHREAD

LEFT

TN.....ER...+ SER

INTERNALTHREADRIGHT

TN.....NL...+ SIL

INTERNALTHREAD

LEFT

TN.....NL...+ SIR

Complementary threading techniques

Page 49: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

48

ESC

ESC

4 Choice of turning tool

4.6.2 Choice of angle of inclination of indexable insert λ and reduction shim

All holders of threading tools PRAMET TOOLS have a constant angle of inclination (insert tilt) λ = 1,5°. For the achievementof a necessary angle of inclination λ which is close to the helix angle ω given by the thread diameter and its thread pitch,it is necessary to embed under the cutting insert a special reduction shim, whereby the necessary insert angle of inclina-tion λ is achieved. Its adherence is a condition for distortionless thread profi le and also for uniform wear of both insert cutting edges. The following graph serves for the choice of a convenient shim under thread cutting insert for threadingthe thread with diameter of d and thread pitch p.

Technique for shim choice:

1. In accordance with the thread diameter on the horizontal axis of graph and thread pitch on the vertical axis, the required angle of inclination of cutting insert λ is determined.

2. In accordance with the required angle of inclination the reduction shim for respective tool holder is chosen according to the following Table.

EXAMPLEThread turning d = 80 mm and thread pitch p = 4 mm by means of cutting insert being clamped in the holder SER 22.

1. In the graph we determine the required angle of inclination λ = 0,5° (the intersection of both values lies in the fi eld marked by λ = 0,5°).

2. In the Table we determine the reduction shim PE 22 + 0,5 for required angle of inclination λ = 0,5° and tool holder SER 22.

In the Table there are mentioned shims with negative inclination angle λ. These shims enable using e.g. the right hand tool holder also for turning the left thread on condition of the opposite feed direction of a tool.

Angle of inclination λ

Positive Negative For partinginserts

(TN16.. ... ZZ)4,5° 3,5° 2,5° 1,5° 0,5° -0,5° -1,5°

Threading tool Shim

SER .... .16 SIL .... .16 PE16+4,5 PE16+3,5 PE16+2,5 PE16+1,5* PE16+0,5 PE16-0,5 PE16-1,5 PE16ZZ

SEL .... .16 SIR .... .16 PI16+4,5 PI16+3,5 PI16+2,5 PI16+1,5* PI16+0,5 PI16-0,5 PI16-1,5 PI16ZZ

SER .... .22 SIL .... .22 PE22+4,5 PE22+3,5 PE22+2,5 PE22+1,5* PE22+0,5 PE22-0,5 PE22-1,5 -

SEL .... .22 SIR .... .22 PI22+4,5 PI22+3,5 PI22+2,5 PI22+1,5* PI22+0,5 PI22-0,5 PI22-1,5 -

SER-S .... .16 SIL .... .16 PE16S+4,5 PE16S+3,5 PE16S+2,5 PE16S+1,5* PE16S+0,5 PE16S-0,5 PE16S-1,5 -

SEL-S .... .16 SIR .... .16 PI16S+4,5 PI16S+3,5 PI16S+2,5 PI16S+1,5* PI16S+0,5 PI16S-0,5 PI16S-1,5 -

SER-S .... .22 SIL .... .22 PE22S+4,5 PE22S+3,5 PE22S+2,5 PE22S+1,5* PE22S+0,5 PE22S-0,5 PE22S-1,5 -

SEL-S .... .22 SIR .... .22 PI22S+4,5 PI22S+3,5 PI22S+2,5 PI22S+1,5* PI22S+0,5 PI22S-0,5 PI22S-1,5 -

Note: All holders have the angle of inclination λ = 0,5º. The angle of inclination can be changed by means of a removable shim, see the Table and graph

Page 50: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

49

ESC

ESC

4 Choice of turning tool

Infeed range and number of engagements – it depend on the thread pitch. For various types of threads it is possibleto choose them using the next presented Tables. These values should be seen as guide-starting ones that can be modifi ed according to concrete experience.

4.6.3 Choice of cutting insert grade

4.6.4 Choice of cutting speed

4.6.5 Chip parting, methods and infeed rate

Cutting inserts for threading are made of an universal grade 8030 with PVD coating whose properties enable a productive thread manufacturing in all material groups P, M, K, N, S, H.

In accordance with the group of machined material (material groups P, M, K, N, S, H), a starting cutting speed according to the foregoing Tables is chosen.

For removal rate of the whole thread profi le, there are four various infeed techniques, namely radial infeed –Figure a, side infeed - Figure b, side infeed with inclination of 3-5° - Figure c and alternating radial and side infeed – Figure d.

The choice of respective infeed technique depends on the lathe type, sort of material to be machined and thread pitch.

Radial infeed – is the simplest and most frequently used threading technique. The infeed is perpendicular to the workpiece rotation axis – the material is removed on both sides of the profi le. With this technique the chip formation is favourableand cutting edge wear is even. It is convenient for threads with small pitch (p <1,5 mm). With higher feeds this technique can produce vibrations. The radial infeed is convenient for materials giving during machining short chips and materials that tend to harden in cold state – e.g. austenitic stainless steels and low-carbon steels.

Side infeed – reduces the insert nose heat load and consequently the wear. It improves the chip shape and chip disposal. It is used for threads with pitch p >1,5 mm for producing of trapeze threads. Its disadvantage is that the right hand cutting edge touches the right fl ank profi le which causes uneven wear and quality deterioration of machined surface of the right fl ank profi le.

Side infeed with inclination 3-5° – it eliminates the side friction caused by the side infeed.

Alternating radial and side infeed – it is recommended with large pitch and materials that tend to generate long and fi rm chips. Its advantage is more uniform removal distribution to both sides and consequently, more uniform wear of insert’s edge. It sets higher requirements to programming of machine tool.

Page 51: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

50

ESC

ESC

4 Choice of turning tool

No. ofinfeed pitch [mm] 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,50 3,00 3,50 4,00 4,50 5,00 5,50 6,0

1 0,11 0,17 0,19 0,20 0,22 0,22 0,25 0,27 0,28 0,32 0,33 0,36 0,41 0,41 0,44

2 0,09 0,14 0,16 0,17 0,21 0,21 0,23 0,25 0,26 0,30 0,31 0,33 0,38 0,38 0,41

3 0,07 0,10 0,11 0,13 0,15 0,15 0,17 0,18 0,20 0,23 0,24 0,27 0,30 0,32 0,35

4 0,07 0,07 0,09 0,10 0,13 0,13 0,14 0,15 0,16 0,19 0,21 0,23 0,25 0,26 0,28

5 0,34 0,48 0,08 0,09 0,11 0,10 0,12 0,13 0,14 0,17 0,18 0,21 0,22 0,22 0,24

6 0,63 0,08 0,08 0,09 0,11 0,12 0,13 0,15 0,15 0,19 0,20 0,20 0,22

7 0,77 0,90 0,09 0,10 0,11 0,12 0,14 0,14 0,16 0,17 0,18 0,20

8 0,08 0,08 0,10 0,11 0,13 0,13 0,15 0,16 0,17 0,19

9 1,07 1,20 0,10 0,10 0,12 0,12 0,14 0,15 0,16 0,18

10 0,08 0,10 0,11 0,12 0,13 0,15 0,15 0,16

11 1,49 0,09 0,10 0,11 0,12 0,14 0,14 0,15

12 0,08 0,08 0,10 0,12 0,14 0,14 0,15

13 1,77 2,04 0,10 0,11 0,12 0,13 0,14

14 0,08 0,10 0,10 0,12 0,13

15 2,32 2,62 2,89 0,12 0,12

16 0,10 0,10

3,20 3,46

reduce cutting speed proportionally to increasing the thread pitch

ISO thread - metric - internal

No. ofinfeed pitch [mm] 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,50 3,00 3,50 4,00 4,50 5,00 5,50 6,0

1 0,11 0,17 0,19 0,20 0,22 0,22 0,25 0,27 0,28 0,34 0,34 0,37 0,41 0,43 0,46

2 0,09 0,15 0,16 0,17 0,21 0,21 0,24 0,25 0,26 0,31 0,32 0,34 0,39 0,40 0,43

3 0,07 0,11 0,13 0,14 0,17 0,17 0,18 0,19 0,21 0,25 0,25 0,28 0,32 0,32 0,35

4 0,07 0,07 0,11 0,11 0,14 0,14 0,16 0,17 0,18 0,21 0,22 0,24 0,27 0,27 0,30

5 0,34 0,48 0,08 0,10 0,12 0,12 0,14 0,15 0,16 0,18 0,19 0,22 0,24 0,24 0,27

6 0,67 0,08 0,08 0,10 0,12 0,13 0,14 0,17 0,17 0,20 0,22 0,22 0,24

7 0,80 0,94 0,10 0,11 0,12 0,13 0,15 0,16 0,18 0,20 0,20 0,22

8 0,08 0,08 0,11 0,12 0,14 0,15 0,17 0,19 0,19 0,21

9 1,14 1,28 0,11 0,12 0,14 0,14 0,16 0,18 0,18 0,20

10 0,08 0,11 0,12 0,13 0,15 0,17 0,17 0,19

11 1,58 0,10 0,11 0,12 0,14 0,16 0,16 0,18

12 0,08 0,08 0,12 0,13 0,15 0,15 0,16

13 1,89 2,20 0,11 0,12 0,12 0,13 0,15

14 0,08 0,10 0,10 0,13 0,14

15 2,50 2,80 3,12 0,12 0,12

16 0,10 0,10

3,41 3,72

reduce cutting speed proportionally to increasing the thread pitch

ISO thread - metric - external

Table a

Table b

Radial infeed [mm]

Radial infeed [mm]

Page 52: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

51

ESC

ESC

4 Choice of turning tool

No. ofinfeed pitch

[threads/inch] 32 28 24 20 18 16 14 13 12 11 10 9 8 7 6 5 4,5 4

1 0,17 0,17 0,18 0,20 0,23 0,22 0,23 0,25 0,27 0,27 0,27 0,28 0,30 0,34 0,35 0,42 0,41 0,44

2 0,14 0,14 0,16 0,17 0,19 0,20 0,21 0,22 0,24 0,24 0,25 0,26 0,28 0,32 0,33 0,38 0,38 0,41

3 0,10 0,10 0,14 0,13 0,14 0,14 0,15 0,16 0,18 0,18 0,18 0,19 0,21 0,23 0,24 0,30 0,32 0,36

4 0,08 0,10 0,10 0,11 0,12 0,12 0,13 0,13 0,15 0,15 0,15 0,16 0,17 0,20 0,20 0,25 0,26 0,30

5 0,49 0,08 0,08 0,09 0,10 0,10 0,11 0,12 0,13 0,13 0,13 0,14 0,15 0,17 0,18 0,22 0,22 0,26

6 0,59 0,66 0,08 0,08 0,09 0,10 0,11 0,11 0,12 0,12 0,13 0,13 0,15 0,16 0,20 0,20 0,23

7 0,78 0,86 0,08 0,09 0,10 0,10 0,11 0,11 0,12 0,12 0,14 0,15 0,18 0,19 0,22

8 0,95 0,08 0,08 0,08 0,10 0,10 0,11 0,11 0,13 0,14 0,17 0,18 0,21

9 1,10 1,17 1,26 0,08 0,10 0,10 0,11 0,12 0,13 0,16 0,17 0,20

10 1,38 0,08 0,09 0,10 0,12 0,12 0,15 0,16 0,18

11 1,49 0,08 0,10 0,11 0,12 0,14 0,15 0,17

12 1,66 0,08 0,08 0,11 0,14 0,14 0,16

13 1,86 2,11 0,11 0,12 0,14 0,15

14 0,10 0,10 0,13 0,14

15 2,44 2,93 0,12 0,12

16 0,10 0,10

3,27 3,65

UN thread - internal

Table c

No. ofinfeed pitch

[threads/inch] 32 28 24 20 18 16 14 13 12 11 10 9 8 7 6 5 4,5 4

1 0,17 0,17 0,19 0,20 0,23 0,22 0,23 0,25 0,27 0,27 0,27 0,28 0,30 0,35 0,36 0,43 0,45 0,47

2 0,15 0,15 0,17 0,19 0,21 0,21 0,22 0,24 0,26 0,26 0,26 0,26 0,28 0,33 0,34 0,40 0,41 0,44

3 0,12 0,12 0,15 0,14 0,16 0,16 0,17 0,18 0,20 0,20 0,20 0,21 0,22 0,26 0,27 0,32 0,35 0,36

4 0,08 0,10 0,12 0,12 0,13 0,13 0,14 0,15 0,16 0,17 0,17 0,18 0,19 0,22 0,23 0,28 0,28 0,33

5 0,52 0,08 0,08 0,10 0,12 0,12 0,12 0,13 0,14 0,15 0,15 0,16 0,17 0,19 0,20 0,24 0,24 0,30

6 0,62 0,71 0,08 0,08 0,11 0,11 0,12 0,13 0,13 0,14 0,14 0,15 0,17 0,18 0,22 0,22 0,26

7 0,83 0,93 0,08 0,10 0,11 0,12 0,12 0,13 0,13 0,14 0,16 0,17 0,20 0,21 0,24

8 1,03 0,08 0,08 0,08 0,11 0,12 0,12 0,13 0,15 0,16 0,19 0,20 0,23

9 1,17 1,26 1,36 0,08 0,11 0,12 0,12 0,14 0,15 0,19 0,18 0,22

10 1,48 0,08 0,11 0,12 0,12 0,14 0,18 0,17 0,21

11 1,63 0,08 0,11 0,11 0,13 0,17 0,16 0,19

12 1,79 0,08 0,08 0,12 0,15 0,15 0,18

13 2,01 2,28 0,11 0,12 0,14 0,16

14 0,10 0,10 0,14 0,15

15 2,66 3,19 0,12 0,12

16 0,10 0,10

3,52 3,96

reduce cutting speed proportionally to increasing the thread pitch

UN thread - external

Table d

Radial infeed [mm]

Radial infeed [mm]

reduce cutting speed proportionally to increasing the thread pitch

Page 53: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

52

ESC

ESC

4 Choice of turning tool

No. ofinfeed pitch

[threads/inch] 32 28 24 20 18 16 14 13 12 11 10 9 8 7 6 5 4,5 4

1 0,18 0,19 0,21 0,22 0,23 0,22 0,24 0,28 0,27 0,27 0,28 0,30 0,35 0,36 0,43 0,44 0,47 0,44

2 0,15 0,16 0,19 0,20 0,21 0,20 0,22 0,26 0,25 0,26 0,27 0,28 0,33 0,34 0,41 0,41 0,44 0,41

3 0,12 0,14 0,15 0,16 0,17 0,16 0,18 0,21 0,21 0,21 0,22 0,23 0,27 0,28 0,36 0,36 0,36 0,36

4 0,11 0,11 0,13 0,13 0,14 0,14 0,15 0,17 0,18 0,18 0,19 0,20 0,23 0,24 0,30 0,31 0,34 0,30

5 0,08 0,08 0,11 0,12 0,13 0,12 0,13 0,15 0,16 0,16 0,17 0,18 0,21 0,21 0,27 0,27 0,32 0,26

6 0,64 0,68 0,08 0,08 0,11 0,10 0,12 0,14 0,14 0,15 0,15 0,16 0,19 0,20 0,24 0,24 0,29 0,23

7 0,87 0,91 0,08 0,10 0,11 0,13 0,13 0,13 0,14 0,15 0,18 0,19 0,22 0,23 0,28 0,22

8 1,07 0,08 0,08 0,08 0,12 0,13 0,13 0,14 0,16 0,17 0,20 0,22 0,26 0,21

9 1,12 1,23 1,42 0,08 0,12 0,12 0,13 0,15 0,16 0,19 0,20 0,24 0,20

10 1,54 0,08 0,12 0,12 0,14 0,15 0,18 0,18 0,22 0,18

11 1,69 0,08 0,12 0,12 0,14 0,17 0,17 0,20 0,17

12 1,87 0,08 0,08 0,14 0,15 0,16 0,19 0,16

13 2,09 2,41 0,12 0,12 0,15 0,17 0,15

14 0,10 0,10 0,14 0,17 0,14

15 2,80 3,34 0,12 0,12 0,12

16 0,10 0,10 0,10

3,70 4,15 3,65

reduce cutting speed proportionally to increasing the thread pitch

Whitworth thread - internal and external

Table e

Radial infeed [mm]

Page 54: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

53

ESC

ESC

5 Choice of milling tool

5.1 Choice of milling cutter

5.1.1 Type choice of milling tool with regard to the basic tool geometry and engagement conditions

The following pages contain brief instructions how to proceed at tool choice for any milling operation. In praxiswe mostly proceed from a current warehouse stock, that is why at the end we concentrate on the choice of starting conditionswhich guarantee the optimum utilization of a milling tool.

Place of the fi rst contact with regard to the basic tool geometry

Page 55: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

54

ESC

ESC

5 Choice of milling tool

Nomograms for determination of milling cutter working geometry

tan γo = tan γp . sin κr + tan γf . cos κr

tan λs = tan γf . sin κr - tan γp . cos κr

Page 56: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

55

ES

C

ES

C

5C

hoice of milling tool

5.1.2 C

hoice of milling tool type w

ith regard to the sort of machined m

aterial

Page 57: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

56

ESC

ESC

5 Choice of milling tool

5.2 Choice of cutting inserts for milling

5.2.1 Choice of cutting insert with respect to cutting edge design

PRAMET cutting inserts for milling jobs are supplied in several versions of cutting edge. The marking of this modifi cation is specifi ed at the eight fi gure of the respective ISO code in accordance with the standard ISO.

The cutting edge modifi cation distinctly infl uences tool functional properties, corresponding to specifi c requirements which are set on cutting edge for milling of various materials.

Sharp cutting edge - it is recommended to use this insert for milling cutters that serve for machining Al alloys. With sharp cutting edge minimum distortionof the layer being removed is achieved, built-ups are minimized as well as the levelof cutting forces. The cutting edge strength is smaller compared with othermodifi cations of cutting edge.

Cutting edge with facet (rake land) – the facet of width x and angle γx increases the lip angle γn close to the cutting edge and therefore also the cutting edge strength – its resistance against the mechanical load – i.e. resistance against fragile failure or break of the whole cutting edge increases. Today it is used only exceptionally because it is replaced by version “S”.

Tool edge with protected cutting edge - it is a case of slightly rounded cutting edge to improve cutting edge’s micro-roughness. By rectifying the cutting edge under some very small radius ρ its resistance to mechanical damage of cutting edge is achieved – i.e. a failure caused by a brittle break or so calledmicro-erosion. Today this modifi cation of cutting edge is used at all cutting inserts without a facet (formerly the modifi cation F), which are used for mil-ling of nearly all material sorts (in general of materials classifi ed into groupsP, M, K, N, S, H).

Protected tool edge with a facet - Compared to the modifi cation T, in additionthe rectifi cation has been carried out to round out the tool edge reinforcedby a facet. This modifi cation enhances the cutting edge resistance to mechanical failure at most.

Page 58: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

57

ESC

ESC

5 Choice of milling tool

5.3 Choice of cutting conditions

5.2.2 Choice of cutting insert grade

At present the current series of grades with PVD coatings PVD 8016, 8026 and 8040, replaced by the new grade 5026, cover most of operations for face milling, end milling, copy milling; their application virtually prevails at all milling cutters delivered by Pramet.

The meaning of uncoated grades fell down very strongly, but to have the full picture they are classifi ed into the comple-mentary assortment of the fi rm PRAMET.

The current grades of series 8000 have an outstanding cutting edge strength which enables to implement designing solutionof cutting inserts with very high positive geometry – with rake angles γ0 = 20 ÷ 25° for milling of carbon and alloy steels with enhanced strength. As an example can be the milling of dies and moulds made from tool steels with the strengthof Rm = 900 ÷ 1400 MPa. They signifi cantly enlarge the application of Pramet’s milling cutters also for milling of austenitic,stainless and creep-resistant steels, superalloys and very hard treated steels. For these cases they bring a sharpand strong cutting edge with relatively large positive rake angles.

The substrate of grade 5026 is on the basis of WC+TaC+Co and also guarantees a high toughness thanks to a relatively high amount of cobalt.

For achievement of high wear resistance, the fi ne-grained substrate is used; its wear resistance is amplifi ed by a coating deposited by the MTCVD method which is deposited under medium temperatures which guarantees a substantially higher toughness in comparison with the formerly used CVD method.

Owing to these properties an excellent wear resistance together with high operation reliability characterizesthe grade 5026.

Its positive properties fi nd their expression in applications where a stress is put on a high productivity that meansthe use of high cutting speeds and also high feeds. Higher thermal stability limits can be utilized at operations with high milling performance where the cutting (cooling) fl uid cannot be used.

The overview of application fi elds and recommended use of grades 8016, 8026, 8040 and 5026 are demonstrated in Tables presented in the section that refers to machined materials (Chapter 3 – pages 7 - 8).

In the following passage we try to facilitate the choice of a convenient tool and choice of starting (initial) cutting conditions.

1. In the fi rst step we classify the material to be machined into one of the seven groups according to the PRAMETclassifi cation (Chapter 8, page 92).

2. We classify the given operation according to its character into a group (light, medium or heavy milling).

Light milling – one interruption per a revolution, favourable engagement conditions, pre-machined workpiece surface,of surface of forgings and castings without any larger defects and unevenness. Feed range fz = 0,1- 0,25 mm/tooth, cutting depth ap < 2 mm (criterion fz is just an additional one).

Medium milling – one up to two interruptions during one tool revolution. Engagement conditions cannot be chosen quite optimally. Workpiece surface nature – rolled material skin, casting and forging skin with minor defects and irregularities. Top feed rate fz = 0,30 - 0,40 mm/tooth and cutting depth ap = 2 - 4 mm.

Heavy milling – more than two interruptions during one tool revolution. Adverse engagement conditions (negative values of engagement angle). Rough skin of castings with surface defects, uneven rough forging skin and uneven surface of burnt piece. Varying cutting depth ap = 3 - 10 mm.

3. In the fi rst Table for the given group of materials to be machined, we choose a combination material + modifi cation of cutting edge for an insert being chosen ahead. In these Tables there are several options for every group of machined materials, they are marked as I - III. (pages 58-68).

4. In the following Tables we choose the starting cutting speed and possible corrections (for machine condition, hardness of machined material ……..) (pages 58-68).

The Tables are replenished with correction factors kVX for the conversion of cutting speeds at milling with regard to a good or bad technical machine state.

If a diverse value of cutting edge T than 30 min. is required, the tabular value is multiplied by a coeffi cient kvT accordingto Table of correction factors for tool life. If the hardness HB of workpiece differs from the hardness mentioned in the Table caption, the value v30 is multiplied by a factor kvHB.

The following product then gives the resulting cutting speed:

It is necessary to point out that cutting speed calculated in this way is just an initial (starting) value for the determination of a basic level of cutting speeds for a given operation.

Above all the machinability dispersion of machined material, which can spread at high-grade steels over two machinability, is quite often a reason for the necessity of some cutting speed correction if a relatively exact observance of economical tool life is required.

vc = v30 . kVX . kVT . kVHB . (kVM)

Page 59: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

58

ES

C

ES

C

5C

hoice of milling tool

P

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. - I. 5026 I. 8026-E

II. 8026 II. 8026-E II. 8040

III. III. 8026 III.

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 5026-S I. 5026-S I. 8040-S

II. 8026-S II. 8040-S II. 5026-S

III. 8016-S III. 8026-S III. S45 -S

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 5026-S I. 5026-S I. 8040-S

II. 8026-S II. 8040-S II. 5026-S

III. 8016-S III. 8026-S III. S45 -S

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8026-E,S I. 8040-E,S I. 8040-E,S

II. 8016-E,S II. 8026-E,S II. 8026-E,S

III. 5026-E,S III. 5026-E,S III. 5026-E,S

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8026-ES I. 8040-E,S I. 8040-E,S

II. 8016-E,S II. 8026-E,S II. 8026-E,S

III. III. III.

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8026-S I. 8040-S I. 8040-S

II. S26 -S II. 8026-S II. 8026-S

III. 5026-S III. 5026-S III. 5026-S

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8026-S I. 8040-S I. 8040-S

II. 8016-S II. 8026-S II. 8026-S

III. III. III.

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8016 I. 8040 I. 8040

II. 8040 II. 8016 II.

III. III. III.

Page 60: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

P Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recommen-ded

feeds fz

Cutting speed v30 [m.min-1]

5026 8016 8026 8040 S26 S45

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ1275°

light 0,1÷0,2 330 - 255 - - -

medium 0,1÷0,3 315 - 220 - - -

heavy 0,1÷0,4 290 - 185 180 - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,1÷0,35 315 240 255 - 165 -

medium 0,15÷0,4 300 - 220 200 145 -

heavy 0,15÷0,5 280 - 185 180 - 65

60°

light 0,09÷0,3 315 240 255 - 165 -

medium 0,12÷0,35 300 - 220 200 145 -

heavy 0,12÷0,4 280 - 185 180 - 65

75°

light 0,08÷0,25 315 240 255 - 165 -

medium 0,1÷0,3 300 - 220 200 145 -

heavy 0,15÷0,35 280 - 185 180 - 65

90°

light 0,08÷0,2 315 240 255 - 165 -

medium 0,1÷0,25 300 - 220 200 145 -

heavy 0,15÷0,3 280 - 185 180 - 65

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP ,SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET SDEXAPEW,APET

45°

light 0,1÷0,35 315 240 255 - 165 -

medium 0,15÷0,4 300 - 220 200 145 -

heavy 0,15÷0,5 280 - 185 180 - 65

90°

light 0,08÷0,2 315 240 255 - 165 -

medium 0,1÷0,25 300 - 220 200 145 -

heavy 0,15÷0,3 280 - 185 180 - 65

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 315 240 255 - - -

Medium 300 - 220 200 - -

Roughing 280 - 185 180 - -

75°

light 0,08÷0,25 315 240 255 - - -

medium 0,1÷0,3 300 - 220 200 - -

heavy 0,15÷0,35 280 - 185 180 - -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,2 280 - 235 - 140 -

medium 0,1÷0,25 270 - 200 180 - -

heavy 0,15÷0,30 250 - 170 165 - -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light - 240 255 - - -

medium - - 220 200 - -

heavy - - 185 180 - -

CORRECTION VC

Correction factor kvx

Forging and casting skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Tool life correction

Tmin kvT

15 1,23

20 1,13

30 1,00

45 0,89

60 0,81

90 0,72

Workpiece hardness correction

HB kvHB

120 1,18

140 1,12

160 1,05

180 1,00

200 0,95

220 0,90

240 0,86

260 0,82

280 0,80

300 0,77

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05÷0,12 APKX 1505PD ER-F 0,05÷0,20

APKX 1103PD ER-M 0,10÷0,25 APKX 1505PD ER-M 0,15÷0,30

APKX 1505PD ER-R 0,25÷0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 - 12 10 - 20 25 - 32 40 - 63 80 - 125

RDEW 0802MOfz 0,10÷0,30

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,35

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,30

ap 1,00÷2,00

RDEW 10T3MOfz 0,10÷0,35

ap 1,00÷2,00

RDEW 12T3MOfz 0,12÷0,35

ap 1,50÷2,50

RDEX 1204MOfz 0,12÷0,40

ap 1,50÷2,50

RDEX 1604MOfz 0,20÷0,45

ap 2,00÷4,00

RPEX 1204MOfz 0,15÷0,50 0,15÷0,50

ap 2,00÷4,00 2,00÷4,00

59

ES

C

ES

C

5C

hoice of milling tool

Page 61: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

60

ES

C

ES

C

5C

hoice of milling tool

M

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. 8026 I. 8040 I. 8040

II. 8040 II. 8026 II. -

III. - III. - III. -

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-E II. 8026-S II. -

III. 5026-S III. 5026-S III. -

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-E II. 8026-S II. -

III. 5026-S III. 5026-S III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8026-ES I. 8040-E,S I. 8040-S

II. 8040-E,S II. 8026-E,S II. -

III. 8016-E,S III. 5026-S III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8026-ES I. 8040-E,S I. 8040-S

II. 8040-E,S II. 8026-E,S II. -

III. 8016-E,S III. 5026-S III. -

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-E II. 8026-S II. -

III. - III. - III. -

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8016-E I. 8040-S,E I. 8040-S

II. 8040-E II. 8026-S II. -

III. - III. - III. -

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8016 I. 8040 I. 8040

II. 8040 II. - II. -

III. - III. - III. -

Page 62: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

M Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recommen-ded

feeds fz

Cutting speed v30 [m.min-1]

5026 8016 8026 8040 S26 H10

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ12

75° light 0,1÷0,2 195 - 125 110 - -

medium 0,1÷0,3 185 - 110 100 - -

heavy 0,1÷0,4 170 - - 90 - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,1÷0,35 185 120 125 110 - -

medium 0,15÷0,4 180 - 110 100 - -

heavy 0,15÷0,5 165 - - 90 - -

60°

light 0,09÷0,3 185 120 125 110 - -

medium 0,12÷0,35 180 - 110 100 - -

heavy 0,12÷0,4 165 - - 90 - -

75°

light 0,08÷0,25 185 120 125 110 - -

medium 0,1÷0,3 180 - 110 100 - -

heavy 0,15÷0,35 165 - - 90 - -

90°

light 0,08÷0,2 185 120 125 110 - -

medium 0,1÷0,25 180 - 110 100 - -

heavy 0,15÷0,3 165 - - 90 - -

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP ,SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET SDEXAPEW,APET

45°

light 0,1÷0,35 185 120 125 110 - -

medium 0,15÷0,4 180 - 110 100 - -

heavy 0,15÷0,5 165 - - 90 - -

90°

light 0,08÷0,2 185 120 125 110 - -

medium 0,1÷0,25 180 - 110 100 - -

heavy 0,15÷0,3 165 - - 90 - -

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 185 120 125 110 - -

Medium 180 - 110 100 - -

Roughing 165 - - 90 - -

75°

light 0,08÷0,25 185 120 125 110 - -

medium 0,1÷0,3 180 - 110 100 - -

heavy 0,15÷0,35 165 - - 90 - -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,2 165 - 115 100 - -

medium 0,1÷0,25 160 - 100 90 - -

heavy 0,15-0,30 150 - 85 80 - -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light - 120 - - - -

medium - - 110 100 - -

heavy - - - 90 - -

CORRECTION VC

Correction factor kvx

Forging and casting skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Tool life correction

Tmin kvT

15 1,23

20 1,13

30 1,00

45 0,89

60 0,81

90 0,72

Workpiece hardness correction

HB kvHB

>150 1,40

150 ÷ 180 1,18

180 ÷ 210 1,00

210 ÷ 240 0,87

240 ÷ 270 0,79

270 ÷ 300 0,72

300 ÷ 330 0,68

330 ÷ 360 0,66

360 ÷ 390 0,62

- -

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05 ÷ 0,12 APKX 1505PD ER-F 0,05 ÷ 0,20

APKX 1103PD ER-M 0,10 ÷ 0,25 APKX 1505PD ER-M 0,15 ÷ 0,30

APKX 1505PD ER-R 0,25 ÷ 0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 ÷ 12 10 ÷ 20 25 ÷ 32 40 ÷ 63 80 ÷ 125

RDEW 0802MOfz 0,10÷0,30

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,35

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,30

ap 1,00÷2,00

RDEW 10T3MOfz 0,10÷0,35

ap 1,00÷2,00

RDEW 12T3MOfz 0,12÷0,35

ap 1,50÷2,50

RDEX 1204MOfz 0,12÷0,40

ap 1,50÷2,50

RDEX 1604MOfz 0,20÷0,45

ap 2,00÷4,00

RPEX 1204MOfz 0,15÷0,50 0,15÷0,50

ap 2,00÷4,00 2,00÷4,00

61

ES

C

ES

C

5C

hoice of milling tool

Page 63: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

62

ES

C

ES

C

5C

hoice of milling tool

K

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. 5026 I. 5026 I. 8026-E

II. 8016-E II. 8016-E II. 5026

III. 8026 III. 8026 III. 8040

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 5026-S I. 5026-S I. 8026-S

II. 8016-S II. 8016-S II. 5026-S

III. 8026-S III. 8026-S III. 8040-S

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 5026-S I. 5026-S I. 8026-S

II. 8016-S II. 8016-S II. 5026-S

III. 8026-S III. 8026-S III. 8040-S

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8016-E,S I. 8026-E,S I. 8040-E,S

II. 5026-S II. 5026-S II. 5026-S

III. 8026-E,S III. 8016-E,S III. 8026-E,S

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8016-E,S I. 8026-E,S I. 8040-E,S

II. 5026-S II. 5026-S II. 5026-S

III. 8026-E,S III. 8016-E,S III. 8026-E,S

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8016-S I. 8026-S I. 8040-S

II. 8026-S II. 8016-S II. 8026-S

III. 5026-S III. 5026-S III. 5026-S

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8016-S I. 8026-S I. 8040-S

II. 8026-S II. 8016-S II. 8026-S

III. - III. - III. -

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8016 I. 8040 I. -

II. - II. - II. -

III. - III. - III. -

Page 64: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

K Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recommen-ded

feeds fz

Cutting speed v30 [m.min-1]

5026 8016 8026 8040 S26 H10

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ12

75° light 0,08÷0,25 380 260 250 - - -

medium 0,10÷0,30 330 240 235 - - -

heavy 0,10÷0,50 290 - 200 100 - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,10÷0,35 350 260 250 - - 145

medium 0,15÷0,40 315 240 235 - - -

heavy 0,15÷0,50 270 - 200 100 - -

60°

light 0,09÷0,30 365 260 250 - - 145

medium 0,12÷0,35 320 240 235 - - -

heavy 0,12÷0,45 285 - 200 100 - -

75°

light 0,08÷0,25 370 260 250 - - 145

medium 0,10÷0,30 330 240 235 - - -

heavy 0,15÷0,40 290 - 200 100 - -

90°

light 0,08÷0,25 380 260 250 - - 145

medium 0,10÷0,30 340 240 235 - - -

heavy 0,15÷0,40 - - 200 100 - -

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP, SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET, SDEXAPEW, APET

45°

light 0,10÷0,35 350 260 250 - - 145

medium 0,15÷0,40 315 240 235 - - -

heavy 0,15÷0,60 280 - 200 100 - -

90°

light 0,08÷0,25 380 260 250 - - 145

medium 0,10÷0,30 340 240 235 - - -

heavy 0,10÷0,40 - - 200 100 - -

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 380 260 250 - - 145

Medium 340 240 235 - - -

Roughing - - 200 100 - -

75°

light 0,08÷0,25 370 260 250 - - 145

medium 0,10÷0,30 330 240 235 - - -

heavy 0,15÷0,40 - - 200 100 - -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,25 345 240 230 - - -

medium 0,10÷0,30 305 220 215 - - -

heavy 0,15÷0,35 - - 200 90 - -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light - 260 250 - - 145

medium - 240 235 - - -

heavy - - 200 100 - -

CORRECTION VC

Correction factor kvx

Forging and casting skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Tool life correction

Tmin kvT

15 1,23

20 1,13

30 1,00

45 0,89

60 0,81

90 0,72

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05 ÷ 0,12 APKX 1505PD ER-F 0,05 ÷ 0,20

APKX 1103PD ER-M 0,10 ÷ 0,25 APKX 1505PD ER-M 0,15 ÷ 0,30

APKX 1505PD ER-R 0,25 ÷ 0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 ÷ 12 10 ÷ 20 25 ÷ 32 40 ÷ 63 80 ÷ 125

RDEW 0802MOfz 0,10÷0,30

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,35

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,30

ap 1,00÷2,00

RDEW 10T3MOfz 0,10÷0,35

ap 1,00÷2,00

RDEW 12T3MOfz 0,12÷0,35

ap 1,50÷2,50

RDEX 1204MOfz 0,12÷0,40

ap 1,50÷2,50

RDEX 1604MOfz 0,20÷0,45

ap 2,00÷4,00

RPEX 1204MOfz 0,15÷0,50 0,15÷0,50

ap 2,00÷4,00 2,00÷4,00

Workpiece hardness correction

HBkvHB

grey nodular creep-res.

150 ÷ 180 1,40 1,15 -

180 ÷ 200 1,25 1,08 -

200 ÷ 220 1,10 1,03 -

220 ÷ 240 1,00 1,00 -

240 ÷ 280 0,86 0,95 -

280 ÷ 330 0,60 0,85 -

260 ÷ 300 - - 1,25

300 ÷ 360 - - 1,00

360 ÷ 450 - - 0,75

Material correction

Sort of cast kvM

grey 1,00

nodular 0,85

malleable 0,95

creep-resistant 0,40

63

ES

C

ES

C

5C

hoice of milling tool

Page 65: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

64

ES

C

ES

C

5C

hoice of milling tool

N

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. 8016 I. 8016 I. 8016

II. - II. - II. -

III. - III. - III. -

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 8016-E I. 8016-E I. 8016-E

II. H10-F II. H10-F II. H10-F

III. - III. - III. -

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 8016-E I. 8016-E I. 8016-E

II. - II. - II. -

III. - III. - III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8016-E I. 8016-E I. 8016-E

II. - II. - II. -

III. - III. - III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8016-E I. 8016-E I. 8016-E

II. - II. - II. -

III. - III. - III. -

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8016-E I. 8016-E I. 8016-E

II. H10-F II. H10-F II. H10-F

III. - III. - III. -

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8016-E I. 8016-E I. 8016-E

II. - II. - II. -

III. - III. - III. -

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8016 I. 8016 I. 8016

II. - II. - II. -

III. - III. - III. -

Page 66: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

N Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recommen-ded

feeds fz

Cutting speed v30 [m.min-1]

Al alloys Cu alloys

8016 HF7 8016 HF7

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ12

75° light 0,1÷0,2 - - - - - -

medium 0,1÷0,3 - - - - - -

heavy 0,1÷0,4 - - - - - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,1÷0,35 650 600 - 330 300 -

medium 0,15÷0,4 550 500 - 280 260 -

heavy 0,15÷0,5 500 450 - 250 240 -

60°

light 0,09÷0,3 650 600 - 330 300 -

medium 0,12÷0,35 550 500 - 280 260 -

heavy 0,12÷0,4 500 450 - 250 240 -

75°

light 0,08÷0,25 650 600 - 330 300 -

medium 0,1÷0,3 550 500 - 280 260 -

heavy 0,15÷0,35 500 450 - 250 240 -

90°

light 0,08÷0,2 650 600 - 330 300 -

medium 0,1÷0,25 550 500 - 280 260 -

heavy 0,15÷0,3 500 450 - 250 240 -

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP ,SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET SDEXAPEW,APET

45°

light 0,1÷0,35 650 600 - 330 300 -

medium 0,15÷0,4 550 500 - 280 260 -

heavy 0,15÷0,5 500 450 - 250 240 -

90°

light 0,08÷0,2 650 600 - 330 300 -

medium 0,1÷0,25 550 500 - 280 260 -

heavy 0,15÷0,3 500 450 - 250 240 -

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 650 600 - 330 300 -

Medium 550 500 - 280 260 -

Roughing 500 450 - 250 240 -

75°

light 0,08÷0,25 650 600 - 330 300 -

medium 0,1÷0,3 550 500 - 280 260 -

heavy 0,15÷0,35 500 450 - 250 240 -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,2 500 450 - 280 260 -

medium 0,1÷0,25 450 400 - 250 230 -

heavy 0,15÷0,30 400 350 - 230 210 -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light 650 600 - 330 300 -

medium 550 500 - 280 260 -

heavy 500 450 - 250 240 -

CORRECTION VC

Correction factor kvx

Forging and casting, skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Tool life correction

Tmin kvT

15 1,23

20 1,13

30 1,00

45 0,89

60 0,81

90 0,72

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05 ÷ 0,12 APKX 1505PD ER-F 0,05 ÷ 0,20

APKX 1103PD ER-M 0,10 ÷ 0,25 APKX 1505PD ER-M 0,15 ÷ 0,30

APKX 1505PD ER-R 0,25 ÷ 0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 ÷ 12 10 ÷ 20 25 ÷ 32 40 ÷ 63 80 ÷ 125

RDEW 0802MOfz 0,10÷0,30

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,35

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,30

ap 1,00÷2,00

RDEW 10T3MOfz 0,10÷0,40

ap 1,00÷2,00

RDEW 12T3MOfz 0,12÷0,40

ap 1,50÷2,50

RDEX 1204MOfz 0,12÷0,40

ap 1,50÷2,50

RDEX 1604MOfz 0,20÷0,45

ap 2,00÷4,00

RPEX 1204MOfz 0,15÷0,50 0,15÷0,50

ap 2,00÷4,00 2,00÷4,00

Material correction

Material kvM

Al alloys wroughtnon-hardened HB 60 2,60

Al alloys wrought hardenedHB 100 1,00

Al alloys cast non-hardened HB 75 0,90

Al alloys cast hardenedHB 90 0,60

Al alloys cast non-hardened (>12% Si) HB 130 PKD

Brass for automatic machines(>1% Pb) HB 110 1,80

BrassHB 90 1,00

Bronze electrolytic Cu 0,70

65

ES

C

ES

C

5C

hoice of milling tool

Page 67: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

66

ES

C

ES

C

5C

hoice of milling tool

S

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. 8040 I. 8040 I. 8040

II. - II. 8026 II. -

III. - III. - III. -

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-S II. 8026-S II. 8026-S

III. 8016-S III. 5026-S III. -

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-S II. 8026-S II. 8026-S

III. 8016-S III. 5026-S III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8026-E,S I. 8040-E,S I. 8040-E,S

II. 8040-E,S II. 8026-E,S II. 8026-E,S

III. 8016-E,S III. 5026-S III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8026-E,S I. 8040-E,S I. 8040-E,S

II. 8040-E,S II. 8026-E,S II. 8026-E,S

III. 8016-E,S III. 5026-S III. -

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-S II. 8026-S II. 8026-S

III. 8016-S III. - III. -

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8026-S I. 8040-S,E I. 8040-S

II. 8040-E II. 8026-S II. 8026-S

III. 8016-S III. - III. -

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8040 I. 8040 I. 8040

II. 8016 II. - II. -

III. - III. - III. -

Page 68: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

S Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recomen-ded

feeds fz

Cutting speed v30 [m.min-1]

8016 8026 8040 S26 H10 S45

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ1275°

light 0,1÷0,2 - - 40 - - -

medium 0,1÷0,3 - - 35 - - -

heavy 0,1÷0,4 - - - - - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,1÷0,35 50 45 40 - - -

medium 0,15÷0,4 - 40 35 - - -

heavy 0,15÷0,5 - - - - - -

60°

light 0,09÷0,3 50 45 40 - - -

medium 0,12÷0,35 - 40 35 - - -

heavy 0,12÷0,4 - - - - - -

75°

light 0,08÷0,25 50 45 40 - - -

medium 0,1÷0,3 - 40 35 - - -

heavy 0,15÷0,35 - - - - - -

90°

light 0,08÷0,2 50 45 40 - - -

medium 0,1÷0,25 - 40 35 - - -

heavy 0,15÷0,3 - - - - - -

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP ,SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET SDEXAPEW,APET

45°

light 0,1÷0,35 50 45 40 - - -

medium 0,15÷0,4 - 40 35 - - -

heavy 0,15÷0,5 - - - - - -

90°

light 0,08÷0,2 50 45 40 - - -

medium 0,1÷0,25 - 40 35 - - -

heavy 0,15÷0,3 - - - - - -

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 50 45 40 - - -

Medium - 40 35 - - -

Roughing - - - - - -

75°

light 0,08÷0,25 50 45 40 - - -

medium 0,1÷0,3 - 40 35 - - -

heavy 0,15÷0,35 - - - - - -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,2 40 40 35 - - -

medium 0,1÷0,25 - 35 30 - - -

heavy 0,15÷0,30 - - - - - -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light 50 45 40 - - -

medium - 40 35 - - -

heavy - - - - - -

CORRECTION VC

Correction factor kvx

Forging and casting skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Correction for sort of alloy

sort of alloy kvT

Ti alloy 2,30

Fe alloy 1,25

Ni alloy 1,00

Co alloy 0,70

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05 ÷ 0,12 APKX 1505PD ER-F 0,05 ÷ 0,20

APKX 1103PD ER-M 0,10 ÷ 0,25 APKX 1505PD ER-M 0,15 ÷ 0,30

APKX 1505PD ER-R 0,25 ÷ 0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 ÷ 12 10 ÷ 20 25 ÷ 32 40 ÷ 63 80 ÷ 125

RDEW 0802MOfz 0,10÷0,20

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,25

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,20

ap 1,00÷1,50

RDEW 10T3MOfz 0,10÷0,25

ap 1,00÷1,50

RDEW 12T3MOfz 0,12÷0,25

ap 1,00÷1,50

RDEX 1204MOfz 0,12÷0,25

ap 1,00÷1,50

RDEX 1604MOfz 0,20÷0,30

ap 1,00÷2,00

RPEX 1204MOfz 0,15÷0,30 0,15÷0,30

ap 1,00÷2,00 1,00÷2,00

Workpiece hardness correction

HB kvHB

Ni a

lloy

230 1,05

250 1,00

280 0,92

320 0,84

350 0,79

Ti a

lloy

200 1,30

250 1,14

300 1,00

320 0,95

Fe a

lloy

180 1,05

200 1,00

240 0,90

280 0,83

Strength Rm kRm

Ti a

lloy 450 2,50

900 1,00

1100 0,90

67

ES

C

ES

C

5C

hoice of milling tool

Page 69: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

68

ES

C

ES

C

5C

hoice of milling tool

H

TOOL TYPE INSERT SHAPEMachining conditions for milling

light medium heavy

SNHN 12-EN; SNHN 15-ENCNE 635; CNM 563; SNHQ 12

I. 8016-E I. 8026-E I. -

II. 8026 II. H10-E II. -

III. - III. - III. -

SEER12..EN; SN; SEEN12..FN;SNSEER15..EN; SN; SEEN15..FN;SN

SPGN25..SR; SPUN25..SSPKR12..SR; SPKN12..ER;SR;EL;SLSPKR15..SR; SPKN15..ER;SR;EL;SL

SPUN25..S

I. 8016-S I. 8016-S I. -

II. 8026-S II. 8026-S II. -

III. - III. - III. -

SEET12..EN; SN; SEEW12..EN, SNSEET12..FN; SDET; SDEX; SNKX12..ER

SPET12..SN; APET15..EN;SNAPEW15..ER;SR; SPET12..EN;SNSPEW12;EN;SN; SDEW09..EN;SN,

SEMT09, SOMT 09

I. 8016-S I. 8026-S I. -

II. 8026-S II. 8016-S II. -

III. - III. - III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

ADKT15..ER-MAPKT10..ER-M

I. 8016-E,S I. 8026-E,S I. -

II. 8026-E,S II. 8016-E,S II. -

III. - III. - III. -

APKX11..ER-F; ER-MAPKX15..ER-F; ER-M; SR-R

I. 8016-E,S I. 8026-E,S I. -

II. 8026-E,S II. 8016-E,S II. -

III. - III. - III. -

TPKR22..SR; TPKN22..ERTPKN22..SRTPCN16..SN

I. 8016-S I. 8026-S I. -

II. 8026-S II. 8016-S II. -

III. - III. - III. -

RPEX12..EN;SN; RDEX16..EN;SNRDET08..SN; RDEW08..SN

RDET10..SN;RDEW10..EN;SNRDEX12..EN;SN; RDET12..SN

RDEW12..EN;SN; RDEX16..EN,SN

I. 8016-S I. 8026-S I. -

II. 8026-S II. 8016-S II. -

III. - III. - III. -

RC08-RC32LC08..08FLC10..10FLC12..12FLC16..16FLC20..20F

I. 8016 I. - I. -

II. - II. - II. -

III. - III. - III. -

Page 70: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

H Choice of cutting speed vc v depending on feed fz

Sortof tool

Insertshape

Approachangle

Workingconditions

milling

Recommen-ded

feeds fz

Cutting speed v30 [m.min-1]

8016 8026 8040 S26 H10 S45

W75SN12W75SN15

S88CN, S90 SN12

SNHN, SNKXCNE635, CNM563

SNHQ1275°

light 0,1÷0,2 45 35 - - 25 -

medium 0,1÷0,3 35 30 - - 20 -

heavy 0,1÷0,4 - - - - - -

W45SE123.W45SE15..W60SP25..W75SP12..W75SP15..W90SP25..

SEERSEENSPKNSPKRSPUNSPGN

45°

light 0,1÷0,35 45 35 - - - -

medium 0,15÷0,4 35 30 - - - -

heavy 0,15÷0,5 - - - - - -

60°

light 0,09÷0,3 45 35 - - - -

medium 0,12÷0,35 35 30 - - - -

heavy 0,12÷0,4 - - - - - -

75°

light 0,08÷0,25 45 35 - - - -

medium 0,1÷0,3 35 30 - - - -

heavy 0,15÷0,35 - - - - - -

90°

light 0,08÷0,2 45 35 - - - -

medium 0,1÷0,25 35 30 - - - -

heavy 0,15÷0,3 - - - - - -

S45SE12..S45SN12..S90SP12

SSAP-A, SSAPS90SAP ,SSD09

SEETSEEW

SPET, SPEWSNKX, SDEWSDET SDEXAPEW,APET

45°

light 0,1÷0,35 45 35 - - - -

medium 0,15÷0,4 35 30 - - - -

heavy 0,15÷0,5 - - - - - -

90°

light 0,08÷0,2 45 35 - - - -

medium 0,1÷0,25 35 30 - - - -

heavy 0,15÷0,3 - - - - - -

S90AP11.. S90AP15SAP11 SAP15

SAP ModulS90AP11 S90AP15..S75AP11 S75AP15

APKXAPKTADKT

90°

Finishing 45 35 - - - -

Medium 35 30 - - - -

Roughing - - - - - -

75°

light 0,08÷0,25 45 35 - - - -

medium 0,1÷0,3 35 30 - - - -

heavy 0,15÷0,35 - - - - - -

W90TP22 F90TP16TPKR

TPKN TPCNLC08-20

90°

light 0,08÷0,2 40 30 - - - -

medium 0,1÷0,25 30 25 - - - -

heavy 0,15÷0,30 - - - - - -

SMORP12, SMORD16BSRD, E-SRD, E(2)SRD

K2 SRC, K2-SLC

RPEX, RDEXRDET, RDEWRC08-RC25

light 50 45 - - - -

medium 45 40 - - - -

heavy - - - - - -

CORRECTION VC

Correction factor kvx

Forging and casting skin 0,70÷0,90

Good machine condition 1,05÷1,20

Bad machine condition 0,80÷0,95

Recommended feedsfor inserts APKX

insertsfz

[mm.tooth-1]inserts

fz

[mm.tooth-1]

APKX 1103PD ER-F 0,05 ÷ 0,12 APKX 1505PD ER-F 0,05 ÷ 0,20

APKX 1103PD ER-M 0,10 ÷ 0,25 APKX 1505PD ER-M 0,15 ÷ 0,30

APKX 1505PD ER-R 0,25 ÷ 0,50

F.. fi nishing M.. medium R.. roughing

Recommended feeds and cutting depths for tools with round indexable inserts

insertsFeed Milling cutter diameter [mm]

Cuttingdepth 8 ÷ 12 10 ÷ 20 25 ÷ 32 40 ÷ 63 80 ÷ 125

RDEW 0802MOfz 0,10÷0,20

ap 0,50÷1,50

RDEW 0803MOfz 0,10÷0,25

ap 0,50÷1,50

RDEW 1003MOfz 0,10÷0,20

ap 1,00÷1,50

RDEW 10T3MOfz 0,10÷0,25

ap 1,00÷1,50

RDEW 12T3MOfz 0,12÷0,25

ap 1,00÷1,50

RDEX 1204MOfz 0,12÷0,25

ap 1,00÷1,50

RDEX 1604MOfz 0,20÷0,30

ap 1,00÷2,00

RPEX 1204MOfz 0,15÷0,30 0,15÷0,30

ap 1,00÷2,00 1,00÷2,00

69

ES

C

ES

C

5C

hoice of milling tool

Page 71: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

70

ESC

ESC

5 Choice of milling tool

5.4 Special milling technology

5.4.1 Descending milling

Milling into material under an angle. In the following Table in the fi gure there are given the maximum acceptable angleof descent αmax for face cutter millers PRAMET with cutting inserts APKX 1505PD and APKX 1103PD.

APKX 1103 PD APKX 1505 PD

Ø mill [mm] αmax [°] Ø mill [mm] αmax [°]

16 5 25 4

20 4,5 32 3,5

25 4 40 3,5

Entering the material under angle

APKX 1103 PD APKX 1505 PD

Ø mill [mm] aemax [mm] Ø mill [mm] aemax [mm]

16 4 25 7

20 4 32 7

25 4 40 7

Recessing milling

5.4.2 Recessing milling

It is mainly used for semi-roughing and fi nishing milling of vertical surfaces of deep cavities with a relatively highperpendicular accuracy; it can be also achieved very good quality of machined workpiece (the roughness in axial direction) depending on the chosen cutting conditions, above all the feed per tooth fz and radius of the nose curvature rε of cutting insert, or by using the milling cutters with round cutting inserts.

The waviness of the machined surface in radial direction depends on the slotting dimension – i.e. on the feed fe of the milling cutter in radial direction.

Page 72: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

71

ESC

ESC

5 Choice of milling tool

5.4.3 Ramping

APKX 1103 PD APKX 1505 PD

Ø mill [mm] apmax [mm] Ø mill [mm] apmax [mm]

16 0,5 25 0,5

20 0,5 32 0,5

25 0,5 40 0,5

Repeated ramping into depth ap with a subsequent starting is used for milling of closed cavities. In combination with circular interpolation it is possible with this technique to mill closed cavities with various cross-sections and shapes.The maximum acceptable radial cutting depths ae for cutter millers with cutting inserts APKX 1103PD and APKX 1505PD are given in the following Table. In case a special ramping cutter is used then the value ap max is limited by the lengthof cutting edge of peripheral cutting insert l.

Ramping

5.4.4 Milling by using circular and helical interpolation

APKX 1103 PD APKX 1505 PD

Ø mill [mm]

Ø d1 min[mm]

smax[mm.rev-1]

Ø d1 min[mm]

smax[mm.rev-1]

Ø mill [mm]

Ø d1 min[mm]

smax[mm.rev-1]

Ø d1 min[mm]

smax[mm.rev-1]

16 24 1,5 30 2,8 25 42 3,2 48 4,5

20 32 1,6 38 2,5 32 55 2,7 62 3,5

25 42 1,8 48 2,4 40 72 1,4 78 1,8

Milling by using circularand helical interpolation

Milling with circular interpolation is used to increase the diameter of a hole or in general a cavity in workpiece. In combinationwith descent milling (ramping) it comes to helical interpolation in this case the internal surface is machined, thereforewe speak about the internal circular or helical interpolation. Similarly it is possible to machine external cylindrical or generalsurfaces. In this case we speak about the external interpolation.

For milling cutters PRAMET with cutting inserts APKX 1103PD and APKX 1505PD, the following Table gives on the one hand the minimum initial diameter of an increased hole D1 and maximum acceptable feed per revolution in axial direction for each cutter diameter mentioned in the Table.

When calculating the feed speed vf [mm.min-1] and feed per tooth from the medium chip thickness hm, at circular interpolationboth values are related to the centre of the cutter. For determination of the feed per tooth fz, which guarantees the observanceof a certain optimum mean chip thickness hm, it is necessary to proceed from the radial cutting depth ae (see next Figure).

Page 73: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

72

ESC

ESC

fz = hmDae

5 Choice of milling tool

The magnitude ae at circular interpolation is given by the following relation:

ae = radial cutting depth [mm]

d2 = resulting hole diameter [mm]

d1 = initial hole diameter [mm]

D = cutter diameter [mm]

ae = [mm]d2

2 - d12

4(d2 - D)

The feed per tooth for required optimum medium chip thickness hm is determined from the relation:

hm = fzae

D

or vice versa, the medium chip thickness hm for chosen feed fz is given by the relation:

[mm.tooth-1]

[mm]

Page 74: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

73

ESC

ESC

5 Choice of milling tool

At the external circular interpolation, at which the external initial diameter d2 decreases to the resulting diameter d1

by milling with a cutter with diameter of D, the radial cutting depth is calculated according to the following relation:

ae = [mm]d2

2 - d12

4(d1 + D)

At the same difference of diameters d2 - d1, the larger radial cutting depth ae is achieved by milling of a tool with the same diameter D by means of internal circular interpolation than that by external interpolation.

The medium chip thickness hm is dependent according to the above mentioned formula on the ratio ae/D, and therefore it is at milling by the circular interpolation smaller. For the maintenance of a medium chip thickness in a certain rangeof optimum values it is necessary to choose higher feeds per tooth fz.

The gradual entrance (Fig. a) is more convenient from the point of continuous tool load.

When choosing the direct entrance in radial direction (Fig. b) then during entrance it is necessary to reduce feed and cuttingspeed by 30 - 50 % because of an impact elimination which can cause vibrations, especially at larger tool overhang.

Fig. a Fig. b

Page 75: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

For drills with cutting inserts Pramet, the cutting inserts WCM ... from grades 6640 and 8030 have an optimum cutting effi ciency.

Cutting inserts from grade 6640 with MTCVD coating show a high cutting performance and they are used as peripheral inserts for drilling of smooth uninterrupted holes into workpiece from carbon steels and also alloy steels and slightly machinable stainless steels and for drilling of cast iron.

Cutting inserts from grade 8030 are all-purpose powerful and reliable inserts with PVD coating. It is convenient for peripheraland internal inserts for hole drilling into workpieces from carbon and alloy steels, stainless steels and cast iron and non--ferrous metals. Cutting inserts from grade 8030 are convenient for drilling of holes being interrupted by transversal holes and also for drilling of holes with another sort of interruption. It can be also used for drilling in the surface skin of castings and for drilling in inclined and generally uneven surfaces.

Chip former geometry of cutting inserts for drilling. Cutting inserts WCMT(X) .....UM, UD, 45 are optimal for medium values of feeds at drilling of steels. Cutting inserts WCMT ...UR, 46, 47, 48 can be also used for drilling of cast iron. Chip formers 46, 47, 48 are an alternative solution for harder steels at higher feeds.

The recommended range of cutting speeds vc and feeds f for drilling of material groups P, M, K, N, S, H is givenin the following Tables; there are given the range of feeds for drills with various diameters D, recommended gradeof internal and peripheral cutting inserts, the range of cutting speeds and values of correction factors kVMB for machined materials with different hardness HB. Expected tool life is T ≈ 20 min.

Recommended cutting speeds are specifi ed in 3 levels – marked with I, II, III.

The highest values of initial (“starting”) cutting speeds, marked as „I” correspond to “good” machining conditionsat a high stiffness of the system machine-tool-workpiece, that means a stabile clamping of a tough workpiece at minimum drill overhang and at machining with a rigid machine with a suffi cient power of driving motor and a suffi cient reserveof the torque.

Medium values of cutting speeds, marked as „II”, correspond to common machining conditions at a suitable stiffnessof the system machine-tool-workpiece. They represent the medium level of “starting” cutting speeds in most cases of hole drillings in deeper cavities.

The lowest values of cutting speeds at the level marked as „III“.: it is convenient to choose them in cases of reduced stiffnessof the system machine-tool-workpiece. It is above all a case of drilling of less tough workpieces by tools which are clamped for technological reasons with a longer overhang, furthermore at drilling holes which are interrupted by transverse holes and for drilling into inclined and generally uneven surfaces.

The Tables also content the corrections of recommended cutting speeds vc, for a different material hardness and alsofor the sort of alloy.

74

ESC

ESC

6 Drilling

6.1 Procedure for optimum tool choice

6.1.1 Choice of insert grade and chip former

6.2 Choice of cutting conditions for drilling with drills with inserts Pramet

Page 76: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

75

ESC

ESC

6 Drilling

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]

HB 180 ÷ 200

Internal Peripheral Workpiece hardness correction

P

16 ÷ 20

8030

6640

(80

30)

0,07 ÷ 0,10 HB kvHB HB kvHB

21 ÷ 25 0,08 ÷ 0,13 120 1,18 220 0,90

I

240

230220

26 ÷ 30 0,10 ÷ 0,14 140 1,12 240 0,86

II

220

210200

31 ÷ 40 0,12 ÷ 0,16 160 1,05 260 0,82

III

190

180170

41 ÷ 50 0,13 ÷ 0,18 180 1,00 280 0,80

51 ÷ 58 0,13 ÷ 0,20 200 0,95 300 0,77

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]

HB 180 ÷ 210

Internal Peripheral Workpiece hardness correction

M

16 ÷ 20

8030

8030

0,07 ÷ 0,10 HB kvHB HB kvHB

21 ÷ 25 0,09 ÷ 0,12 <150 1,40 270÷300 0,72

I

170

160150

26 ÷ 30 0,08 ÷ 0,14 150÷180 1,18 300÷330 0,68

II

140

130120

31 ÷ 40 0,10 ÷ 0,16 180÷210 1,00 330÷360 0,66

III

115

10095

41 ÷ 50 0,10 ÷ 0,18 210÷240 0,87 360÷390 0,62

51 ÷ 58 0,11 ÷ 0,20 240÷270 0,79

Page 77: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

76

ESC

ESC

6 Drilling

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]Internal Peripheral

K

16 ÷ 20

8030

6640

0,04 ÷ 0,10

21 ÷ 25 0,08 ÷ 0,14

I275

260250

26 ÷ 30 0,12 ÷ 0,18

II175

160150

31 ÷ 40 0,14 ÷ 0,20

III120

11095

41 ÷ 50 0,15 ÷ 0,22

51 ÷ 58 0,18 ÷ 0,25

HB 220 ÷ 240

Workpiece hardness correction

HBkvHB

for grey

cast iron

kvHB

for grey

cast iron

kvHBfor special

creep-resistantcast iron

150÷180 1,40 1,15 -

180÷200 1,25 1,08 -

200÷220 1,10 1,03 -

220÷240 1,00 1,00 -

240÷280 0,86 0,95 -

280÷330 0,60 0,85 -

260÷300 - - 0,5

300÷360 - - 0,4

Correction for sort of cast iron

Sort of cast iron kvM

Grey cast iron 1,00

Nodular cast iron 0,85

Malleable cast iron 0,95

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]Internal Peripheral

N

16 ÷ 20

8030

8030

0,04 ÷ 0,12slitiny

Alslitiny

Cu

21 ÷ 25 0,06 ÷ 0,16

I 380 330

26 ÷ 30 0,10 ÷ 0,18

II 350 300

31 ÷ 40 0,12 ÷ 0,22

III 310 260

41 ÷ 50 0,13 ÷ 0,23

51 ÷ 58 0,14 ÷ 0,26

AL and Cu alloys

CORRECTION FOR SORT OF ALLOYS

Al alloys

Material kvM

Al alloys wrought non-hardened HB 60 2,6

Al alloys wrought hardened HB 100 1,0

Al alloys wrought non-hardened HB 75 0,9

Al alloys wrought hardened HB 90 0,6

Cu alloys

Material kvM

Brass for automatic machines HB 110 1,8

Brass HB 90 1,0

Bronze electrolytic Cu 0,7

Page 78: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

77

ESC

ESC

6 Drilling

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]

Creep-resistant alloys on basisof Ni, Co, Fe, Ti

Internal Peripheral Correction on sort of alloy

S

16 ÷ 20

8030

8030

0,05 ÷ 0,08

Sort of alloy kvHB

21 ÷ 25 0,06 ÷ 0,09

I

80

7560

26 ÷ 30 0,06 ÷ 0,10 Ti alloys 1,80

II

50

4030

31 ÷ 40 0,08 ÷ 0,12 Fe alloys 1,25

III

30

2515

41 ÷ 50 0,09 ÷ 0,12 Ni alloys 1,00

51 ÷ 58 0,09 ÷ 0,14 Co alloys 0,70

Materialgroup

Drilldiameter

D[mm]

Insert grade Feed

f[mm.rev-1]

Cutting speed

vc

[m.min-1]Internal Peripheral

H

16 ÷ 20

8030

8030

0,04 ÷ 0,08

21 ÷ 25 0,06 ÷ 0,10

I65

6055

26 ÷ 30 0,08 ÷ 0,12

II50

4540

31 ÷ 40 0,10 ÷ 0,15

III35

3025

41 ÷ 50 0,11 ÷ 0,15

51 ÷ 58 0,12 ÷ 0,18

Treated steels 46 ÷ 50 HRC

Page 79: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

78

ESC

ESC

6 Drilling

6.3 Drilling of holes with larger or smaller diameter than nominal drill diameter

By means of misalignment of drills with cutting inserts we acquire the possibility to machine holes with a diameter (larger or smaller) differing from a nominal drill diameter. It is generally accepted that the misalignment (displacement) of drill axis with nominal diameter Dc towards the hole axis (axis of revolution) by the value + x or – x, results in a hole with diameterDo = Dc ± 2x, thus larger or smaller one than the nominal drill diameter is. Both cases are shown in the following Figure.

In the Figure a, the drill was misaligned by a value of +x (in direction of peripheral insert from the workpiece axisof revolution; on the contrary in the Figure b, the drill was misaligned by a value of –x in direction towards the workpiece axis of revolution.

In the case according to the Fig. a, it comes to the formation of a larger hole with the diameter of Do = Dc + 2x

In the case according to the Fig. b, it comes to the formation of a smaller hole with the diameter of Do = Dc - 2x.

The magnitude of misalignment -x is before all restricted by the difference between the nominal drill diameter Dc

and the diameter of its body D1 – thus by the clearance between a drilled hole and a drill body.

Fig. a Fig. b

At drills with cutting inserts Pramet, the holes of diameters in the range of 16 ÷ 59 mm can be drilled in this way.

The possibility to drill holes with a diameter of Do that differs from the nominal drill diameter Dc extends the applicationfi eld of drills with cutting inserts. Pre-adjustment of the position of drill body enables the tolerance reduction of drilled holes.

From the technological point of view, two differing cases must be distinguished:

a) Stationary drill – it is used on turning lathe – the workpiece performs the main rotary motion, the tool usually does the feed

b) Rotating drill – it is mostly used in machining centres where the drill performs the main rotary motion, the feed is mostly performed by drill or also by workpiece

6.3.1 Stacionary drill

At drill clamping it is necessary to maintain the insert edge position (tool tip) which shall be parallel with the axisof the transverse feed (infeed) of a machine. The misalignment has to be carried out in direction of tool tip, and drill axis and hole axis have to be at the same line. A larger hole diameter is achieved by the misalignment in direction of a peripheral cutting insert. The maximum allowable misalignment in the perpendicular direction to the misalignment direction is 0,03 mm.

Page 80: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

79

ESC

ESC

6 Drilling

The maximum drill misalignment +x is for each drill diameter Dc different; it depends on the dimension of a cuttinginsert – depending on the “effi cient length” tip xL of a cutting insert. At cutting inserts with shape WCMT which are usedon drills Pramet, the value xL is indicated in the following Figure. The maximum value +x can be determined for a certain drill diameter Dc from the condition that both drill edges must remove the whole hole material with an increased diameter of Do = Dc + 2x.

Problems with the determination of maximum drill misalignment +xmax are displayed in the following Figure.

A/ Without misalignment ≈ drill axis in the hole axis

Dc .......... drill diameter [mm]

Do .......... hole diameter [mm]

xLo ......... effi cient length of peripheral edge [mm]

xLv ......... effi cient length of internal edge [mm]

x´Lv ........ overhang of internal edge over the drill axis [mm]

It is usually accepted xLo = xLv then it is accepted

In case without misalignment, both edges operate with a certain overlapping xp

Dc

2xLo + (xLv - x Lv) - xp =

Dc

22xL - x Lv - xp =

Page 81: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

80

ESC

ESC

6 Drilling

B/ Misalignment by value of +x

By drill misalignment +x, the axis of revolution shifts in accordance with the Figures 4-9 along the internal edge, its effectivelength shortens consequently. Furthermore, the effective length of each edge shortens by a value of radius of the nose curvature rε.

Then it means according to the following Figure:

for xLo = xLv = xL is accepted:

2(xLo + rε)+2(xLv - rε - x Lv-xmax) = Dc + 2xmax

x L

2xmax = (xL - rε) - -

Dc

4

It is necessary to reduce the maximum misalignment with regard to a possible drill springing-back (pressing off),for instance at drilling in an inclined concave or convex surface. At the same time the infl uence of the holedepth ≈ relation L/D of a drill must be taken into account.

At drills with small diameters in the range of Dc = 16 ÷ 25 mm, where cutting inserts VBD WCMX 0302 and WCMT 0402are applied, it is necessary to reduce the values xmax with regard to the fact that the axis of revolution moves withan increasing misalignment in direction to the centre of the internal cutting insert and the edge length xLv increasesand it comes to a friction of machined material. Consequently, a very unfavourable stress of cutting insert developsand a risk of its destruction increases.

The maximum misalignment value –x (Do < Dc) is determined by the requirement that the tip of the internal cutting insert is not moved to the right direction from the axis of revolution, that no material remains in the middle of the hole bottom which could cause stamping and practically could aggravate or disable a drilling (x´Lv < 0).

Maximum values +xmax a -xmax for different drill diameters with cutting inserts Pramet are given in the following Table. Simultaneously, the values of hole diameter D0min and D0max are also mentioned which can be achieved by the respective misalignment. It concerns the values for stationary drills. The data “A” are valid for smaller tool overhang and drills for hole depth 2,5D, and the data “B” for tools with a larger overhang and for a hole depth 3,5D and larger.

Page 82: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

81

ESC

ESC

6 Drilling

DrilldiameterDc [mm]

VBDDrill misalignment

x [mm]Range of diameters

D0 [mm]

A +x B +x -x A D0max B D0max D0min

16

WCM

X 03

0208

EUD

1,25 1,0 0,2 18,5 18 15,6

16,5 1,2 1,0 0,2 18,9 18,5 16,1

17 1,15 0,9 0,2 19,3 18,8 16,6

17,5 1,1 0,85 0,2 19,7 19,2 17,1

18 1,0 0,8 0,2 20 19,6 17,6

18,5 0,95 0,75 0,2 20,4 20 18,1

19 0,9 0,7 0,2 20,8 20,4 18,6

19,5 0,85 0,65 0,2 21,2 20,8 19,1

20 0,75 0,6 0,2 21,5 21,2 19,6

21

WCM

T 04

0208

E46

1,35 1,0 0,2 23,7 23 20,6

22 1,2 0,9 0,2 24,4 23,8 21,6

23 1,05 0,8 0,2 25,1 24,6 22,6

24 0,9 0,7 0,2 25,8 25,4 23,6

25 0,75 0,55 0,2 26,5 26,1 24,6

26

WCM

T 05

0308

E 2,4 1,9 0,25 30,8 29,8 25,5

27 2,2 1,75 0,25 31,4 30,5 26,5

28 2,0 1,6 0,25 32,0 31,2 27,5

29 1,85 1,45 0,25 32,7 31,9 28,5

30 1,65 1,3 0,25 33,3 32,6 29,5

31

WCM

T 06

T308

3,0 2,5 0,25 37 36 30,5

32 2,9 2,3 0,25 37,8 36,6 31,5

33 2,7 2,15 0,25 38,4 37,3 32,5

34 2,5 2,0 0,25 39 38 33,5

35 2,3 1,85 0,25 39,6 38,7 34,5

36 2,15 1,7 0,25 40,3 39,4 35,5

37 1,95 1,55 0,25 40,9 40,1 36,5

38 1,75 1,4 0,25 41,5 40,8 37,5

39 1,6 1,25 0,25 42,2 41,5 38,5

40

WCM

T 08

0412

1,4 1,1 0,25 42,8 42,2 39,5

41 4,15 3,3 0,25 49,3 47,6 40,5

42 3,95 3,15 0,25 49,9 48,3 41,5

43 3,8 3,0 0,25 50,6 49 42,5

44 3,6 2,9 0,25 51,2 49,8 43,5

45 3,4 2,7 0,25 51,8 50,4 44,5

46 3,2 2,6 0,25 52,4 51,2 45,5

47 3,05 2,4 0,25 53,1 51,8 46,5

48 2,85 2,25 0,25 53,7 52,5 47,5

49 2,65 2,1 0,25 54,3 53,2 48,5

50 2,45 1,95 0,25 54,9 53,9 49,5

51 2,3 1,8 0,25 55,6 54,6 50,5

52 2,1 1,65 0,25 56,2 55,3 51,5

53 1,9 1,5 0,25 56,8 56,0 52,5

54 1,7 1,35 0,25 57,4 56,7 53,5

55 1,55 1,2 0,25 58,1 57,4 54,5

56 1,35 1,05 0,25 58,7 58,1 55,5

57 1,15 0,9 0,25 59,3 58,8 56,5

58 0,95 0,75 0,25 59,9 59,5 57,5

Page 83: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

82

ESC

ESC

6 Drilling

6.4 Practical recommendations

6.3.2 Rotating drill

For misalignment of rotating drills it is necessary to use special eccentric chucks, by which it is possible to adjust intermediatediameters of holes up to the nearest higher standard diameter. Chucks of various products enable a misalignmentin the range of around –0,2 ÷ +1,4 mm. The misalignment enables to compensate production tolerances of the drill body and cutting insert; by the diameter pre-adjustment on the machine, it is possible to improve the hole toleranceup to ± 0,1mm. By controlling the misalignment during drilling at stationary drills it is possible to carry out e.g. a hole pre-drilling (hole recessing) for threads including chamfering. The hole accuracy is dependent on the drill length; at drills with 2D ÷ 2,5D it is usually in the range of +0,2 ÷ -0,1mm. The roughness of machined hole surface usually achieves the values of Ra = 3,2 ÷ 6,4 µm.

For achievement of better roughness values of machined surface it is recommended to retain the speed at the levelof double up to three-fold working feed during withdrawal the drill from the hole.

At drills misalignment it comes to a specifi c balance disruption of radial components of the cutting force; thereforeit is necessary to reduce feed values to the level of 0,05 - 0,1 mm.rev-1.

Drills intended for the depth of hole up to 3D can be also used for drilling in inclined concave, convex and generally uneven surfaces. They can be also used for re-drilling of pre-drilled (coaxial) holes or also in cases of drilling other holes which are perpendicular or inclined to the axis of drilled hole. But in this case it is necessary to respect the recommendations mentioned for the two following Figures.

Drills intended for the depth of hole > 3D and drills working with a large overhang require a planar entrance surfaceand a homogeneous workpiece.

Provided that a drill drills in an inclined concave, convex and generally uneven surface, it is necessary to reduce the feed by 50 % up to the full drilling completion. The same is accepted for drill exit after drilling a hole.

At the re-drilling of a pre-drilled hole the diameter of pre-drilled hole must not be larger than ¼ of drill diameter. Otherwisethere is a risk of drill defl ection (pressing off).

At drilling of a hole with perpendicular or inclined axis towards the axis of another hole, the diameter of drilled hole must not be larger than ¼ of drilled hole diameter. In the course of drilling it is necessary to reduce the feed by 50%.

Page 84: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

83

ESC

ESC

6 Drilling

6.5 Use of cutting fl uids at drilling with drills with cuting inserts

At drilling of a through hole in a rotating workpiece by the stationary drill, a small disc is created after drilling completion;it springs out by a high speed. For the safety reason it is necessary to cover up the working spot.

Important notice!

An extreme power and thermal edges load of indexable cutting inserts and a large quantity of chips which are generatedin a closed compartment set above all high requirements for the quantity and pressure of a supplied cutting fl uid.

The cutting fl uid supply in a suffi cient quantity is a necessary condition for the reliable function of drills with cutting inserts.

The most important function of the cutting fl uid during drilling is the removal of generated chips from the cut placeand furthermore lubricative and cooling functions.

Water emulsions of emulsifying oils upon the petroleum basis are recommended for using as cutting fl uids; furthermore, half-synthetic or synthetic emulsifying oils with usual concentration of 3 ÷ 5%.

The cutting fl uid supply in a suffi cient quantity and the pressure of cutting fl uid are necessary conditions for the reliable function of drills with cutting inserts; the cutting fl uid is usually supplied directly into the cut place.

The quantity of cutting fl uid and its pressure depend above all on the drill diameter, thus of the diameter of a holeto be drilled, and consequently on the material volume which is removed within unit of time; furthermore on the depthof drilled hole, on the drill position (drill in horizontal or vertical position) and on the function of chip former on the cutting insert. All these technological factors have above all the infl uence on the chip disposal from the cut place.

Naturally, another no less important factor is the infl uence of properties of machined material. The recommended guide values for quantity of supplied cutting fl uid Q l/min and pressure P in MPa are given in the following Table.

Drill diameterDc [mm]

Cutting fl uid quantity Q [l.min-1] Cutting fl uid pressure P [MPa]

Drill length Drill length

2,5 D 3,5 D 2,5 D 3,5 D

16 ÷ 20 20 28 0,25 0,36

21 ÷ 25 21 30 0,24 0,35

26 ÷ 30 22 31 0,23 0,34

31 ÷ 35 25 34 0,23 0,34

36 ÷ 40 28 36 0,23 0,34

41 ÷ 45 30 38 0,22 0,33

46 ÷ 50 32 40 0,22 0,32

51 ÷ 55 35 42 0,22 0,32

56 ÷ 58 37 45 0,22 0,31

That is impossible to drill a sheet-metal pack by this type of tool. !!!

Page 85: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

84

ESC

ESC

6 Drilling

6.6 Drills with cutting inserts - troubleshooting

These values are valid for drills in the horizontal position. For drills in the vertical position it is necessary to increasethe quantity and pressure of supplied cutting fl uid by 40%.

At a good function of chip former, the cutting liquid quantity and pressure can be reduced by 20-30%.

On the contrary, when the chip generation is bad and there is a risk of crowding the grooves for chip disposal, the cutting fl uid quantity and pressure must be increased by 40 ÷ 50%.

At assessment of the right chosen cutting liquid quantity and pressure, its cooling impact cannot be forgotten. A large heat quantity generating by mechanical energy expended for drilling should be reliably taken away by cutting fl uid.

The fl owing chip should not be coloured as a result of heat. Provided that the fl owing chip has a blue shade or is straw--coloured, it is necessary to increase the cutting liquid quantity and the pressure. Otherwise there is a risk of reductionof edge longevity and drill body life.

It means in general that with increasing drill diameter the recommended quantity Q increases and recommended cutting liquid pressure slightly falls.

Problem Problem remedy

1. Low performance of machine driving motor

(low twisting moment at spindle)

a) Reduce the cutting speed – reduce the spindle revolutions

b) Reduce the feed

2. Excessive wear of edge of peripheral cutting

insert

a) Reduce the cutting speed

b) Choose more wear-resistant insert grade

c) Increase the cutting liquid volume and pressure

3. Crumbling – fragile failure of peripheral insert edge

a) Reduce feed during drilling (especially at an uneven entrance workpiece surface)

b) Choose a tougher insert grade

c) Reduce the cutting speed

d) Choose another geometry of chip former

4. Crumbling – fragile failure of internal insert edge

a) Choose a tougher insert grade

b) Reduce the feed during drilling

c) Check the drill and workpiece clamping

d) Choose another geometry of chip former

5. Continuous, badly formed chip

a) Increase the feed

b) Enhance the cutting speed and reduce the feed

c) Choose another geometry of chip former

6. Crowding of short chips in disposal grooves

a) Increase the cutting fl uid quantity and pressure

b) Reduce the cutting speed

c) Choose another geometry of chip former

In case that a Table with recommended values Q and P is not available, a very approximate rule is valid that the cutting liquid quantity Q in l.min-1. should numerically correspond to the drill diameter Dc in mm.

Page 86: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

The following Figure specifi es the wear types of the edge according to the standard ISO 3685 together with the identifi cationof their characteristic dimensions.

Time relationship between the fl ank wear and face wear is displayed in the following Figure.

Kf = distance of crater wear margin

KB = width of crater wear

KM = distance of crater wear centre

KT = depth of crater wear

Sectional view A-A

85

ESC

ESC

7 Wear of cutting inserts

7.1 Types (sorts) of wear

Page 87: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

86

ESC

ESC

7 Wear of cutting inserts

In a concrete case of machining there usually occur several wear types in parallel; but their growth with the machining time is not in progress with the same intensity. According to the machining conditions, one of the present wear types usually reaches a higher intensity in comparison with the others and it becomes decisive for the tool blunting and consequently it limits the tool life.

For a certain tool couple tool material-workpiece material, the prevailing edge wear type is above all dependenton the applied cutting conditions, especially on the cutting speed and the feed.

The dependence of the prevailing wear type on the feed f and cutting speed v is illustrated in the following Figure.

The wear type caused by abrasion of fl owing hard components of built-ups, prevails at the lowest values of cutting speed and feeds when there is a built-up edge. With increasing the cutting speed and feed, the cutting temperature is increasing; fi rst the fl ank wear becomes the prevailing wear type, furthermore the cratering, then the oxidation of incidental fl ank close to the tip and fi nally at the highest cutting speeds and feeds it comes to the cutting edge plastic deformation which practically indicates the exceeding of limit cutting values.

At choosing feeds it is necessary to maintain the limit values depending on the angle insert’s nose r and radiusof the nose curvature rε.

In addition to the mentioned wear types which to a large extent occur and proceed regularly, it comes at carbide tools very often to a mechanical edge failure either in the form of edge crumbling or a fracture of a part of edge or of the whole cutting insert.

These types of tools blunting arise especially doe to a strong mechanical stress of the edge (i.e. the impacts during inter-rupted cut or as a consequence of preceding edge disruption due to thermal impacts). A fragile edge failure also occurs very often when the machined material contains hard inclusions (sand etc.).

Mechanical edge damage is a type of blunting which occurs accidentally. It can occur at a sharp tool in the course of cut beginning as well as at a tool with a certain wear grade. Substrates of cemented carbide with high amount of cobalt, which increases their toughness, are more resistant to mechanical damage.

7.2 Mechanisms of wear formation

From the point of physical nature, the wear of tool edge due to abrasion is a result of the whole complex of effects includingchemical and mechanical processes that proceed in contact surfaces with machined material and they fade into one anther and overlap.

Two types of phenomena, namely mechanical and chemical ones, characterize the mechanism of a tool wear.

At the mechanical wear type, it comes to the failure of surface and face by the impact of chip fl owing off and workpiece material in the cut area without any change of chemical composition of these surface layers of the cemented carbide.

On the other hand at chemical wear type, to a large or small extent it fi rst comes to the change of the chemical compositionin the surface layer of tool material in the contact place chip-face and fl ank-cut area. By this change, the mechanical properties of surface layers of tool material are usually worsened and consequently also their resistance to wear dueto abrasion. In other cases it comes to a direct diffusional dissolution of structural components of the cemented carbide.

Page 88: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

87

ESC

ESC

7 Wear of cutting inserts

abrasion

mechanical wear types

adhesion

diffusion

chemical wear types

oxidation

Abrasive wear is a mechanical wear type. Microscopic, very hard parts cut the tool material similarly like abrasive grainsat grinding. This wear type depends on the total tool path with respect to the workpiece, on the shape, amount and occurrencefrequency of abrasive particles and their hardness.

Adhesive wear is an abrasion caused by the adhesion effect (formation of micro-welds) between pure metal surfacesof cemented carbide and machined material which come each other in contact on the fl ank and on the face.

Oxidation wear at higher cutting speeds, some components of cemented carbide react at higher cutting speeds either with the air from ambient atmosphere or with the cutting liquid which substitutes the air environment, or eventually withthe machined material.

Diffusion wear the atoms of tool or workpiece material diffuse one another and create on the one hand solid solutionsand on the other hand chemical compositions, whose properties differ from the properties of the initial tool material.

While the intensity of mechanical wear types is dependent on the temperature to the extent that it infl uences the ratio of the hardness of tool and machined material (HSK/Hobr) under conditions which exist in the contact, the physical-chemical wear is above all dependent on the temperature of contact place and on the mutual chemical activity of both materials irrespective of the hardness ratio.

Processes, which directly lead to the edge wear, can be divided by the following manner:

Under certain machining conditions, all processes do not participate in the total wear alike. For a certain couple machinedmaterial–cemented carbide, the one or the other process can prevail (according to the machining conditions).The decisive factor, which determines the prevalence the type of wear process, is the contact temperature of the tollwith the workpiece.

Page 89: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

88

ESC

ESC

7 Wear of cutting inserts

7.3 Some undesirable edge wear types and recommended measures for their removal

Provided that some undesirable problems with application of tools with cutting inserts occur, for instance undesirableor excessive edge wear, worsened surface roughness, bad chip forming or vibrations, it is necessary to respect the followingspecifi ed recommendations.

It is one of the main criteria for characterization of the indexable insert operating life. It originates as a result of wear mechanisms on the tool. Its impact (intensity) can be only reduced.

Recommendation:- Apply a tougher cemented carbide grade.- Use a coolant or increase the cooling intensity.- Reduce the cutting speed.- Increase the feed if it is smaller than 0,1 mm.rev-1 (at MTCVD coated grades).

FLANK WEAR

CRATERING

OXIDATION GROOVE ON THE SIDE FLANK

NOTCH FLANK WEAR

A characteristic wear which appears most distinctly on cutting inserts with plain face; but its occurrence is not limited only to this type of inserts.

Recommendation:- Use a more wear-resistant cemented carbide grade.- Use a coolant or increase the cooling intensity.- Reduce the cutting speed.- Use another (more positive) type of cutting geometry.

it is one of the most meaningful criteria limiting the cutting insert operating life.The interconnection of the oxidation groove with the face cratering becomes evidentin an enhancement of the workpiece surface roughness; it comes to the effect for which the slang expression is ”fuzzing”.

Recommendation:- Use a coated or more wear-resistant cemented carbide grade; use coated indexable

inserts incorporating Al2O3 if it is possible. - Use a coolant or increase the cooling intensity.- Reduce the cutting speed.

it originates in the area of contact of the cutting edge with the workpiece surface.It is mainly caused by hardening of surface workpiece layers and burrs. This wear type occurs especially at austenitic stainless steels and at operations characterizedby the variation of cutting depth.

Recommendation:- Choose a tool with a smaller approach angle.- Use a coated or more wear-resistant cemented carbide grade; use coated indexable

inserts incorporating Al2O3 if it is possible.

Wear type Description and remedy

Page 90: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

89

ESC

ESC

7 Wear of cutting inserts

PLASTIC NOSE DEFORMATION

BUILT-UP EDGE

CHIPPING OF CUTTING EDGE (OUT OF ENGAGEMENT)

CHIPPING OF CUTTING EDGE

BRITTLE FAILURE IN THE TIP AREA

the reason for this wear is the edge overloading in consequence of high cutting speeds and feeds.

Recommendation:- Use a more wear-resistant cemented carbide grade.- Reduce the cutting speed.- Reduce the feed.- Use a coolant or increase the cooling intensity.- Use cutting inserts with larger radius of nose curvature.- Use cutting inserts with larger nose angle.

The chips from the machined workpiece stick on the tool nose. It is a kind of micro-weldeddeposit on the cutting edge. When it is torn away, the cutting edge can be slightly damaged. Another consequence is the quality deterioration of machined surface.

Recommendation:- Increase the cutting speed.- Increase the feed.- Apply coated types of cemented carbides (especially PVD coating).- use another (more positive or sharper) cutting geometry.- Use a coolant with better anti-built-up-edge impact (if it is not available,

desist from cooling).

its reason is the unsuitable chip forming which at departing from the cut impingeson the cutting edge causing its mechanical damage.

Recommendation:- Change the feed.- Use a tool with different approach angle.- Use another cutting geometry (another chip former).- Use a tougher cemented carbide grade.

In most cases they appear in combination with other wear types; separately theyare hardly identifi able.

Recommendation:- Use a tougher type of cemented carbide.- Choose less intensive cutting conditions.- Use another cutting geometry.- Reduce the feed while entering the cut.

There are many reasons depending upon properties of tool material and workpiece material, upon condition and especially upon the stiffness of the system machine – tool – machined workpiece; furthermore, it is also infl uenced by magnitude and type of wear and engagement conditions.

Recommendation:- Use a tougher type of cemented carbide.- Choose less intensive cutting conditions

(reduce the feed and cutting depth).- Use cutting inserts with larger radius

of nose curvature.

- Use cutting inserts with larger nose angle.- Use another cutting geometry

(another chip former).- Stabilize the cutting edge.- Reduce feed while entering the cut.

Page 91: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

90

ESC

ESC

7 Wear of cutting inserts

COMB RACK CRACKSthis phenomenon appears due to dynamic thermal load at interrupted cut. Recommendation:- Do not apply cutting fl uids (compressed air should be applied for removing

chips from the place of cut).- Use a tougher cemented carbide grade.- Reduce the cutting speed.

Undesirable phenomena Description and remedy

UNSUITABLE CHIP SHAPE

At present it is a criterion of the same importance as the tool life. It is especially infl uenced by the workpiece material, feed, cutting depth and, naturally, by a suitable cutting geometry (chip former). A long (unshaped), continuous chip cannot be accepted for many reasons, but a too short, ”crushed” chip is undesirable (it shows the overloadingof the cutting edge and leads to the origin of vibrations).

Recommendation:- Adjust feed and depth of cut according to the diagram.- Chose more suitable chip former according to diagram for chip forming.

BURR FORMATION

LOWER MACHINEDSURFACE QUALITY

This is a very frequent phenomenon; it cannot be always avoided. The burr mainly originates at turning (machining) of soft steels and plastic materials.

Recommendation:- Use cutting inserts with a sharp cutting edge (uncoated cemented carbide

or PVD coated grade).- Use cutting inserts with positive geometry.- Reduce the approach angle.

This phenomenon can be seen very often, especially at fi nishing operations with requirement for the surface roughness, which is naturally affected by many factors, under which belong workpiece material, cutting environment, design and condition of the cutting edge, cutting conditions (especially the feed and cutting speed) and the stabilityof the system machine-tool-workpiece.

Recommendation:- Reduce the feed.- Increase the cutting speed.- Use cutting inserts with larger radius of nose curvature.- Eliminate vibrations.- Use cutting inserts with a suitable cutting geometry or a chip former.- Optimize the type of cutting environment.- Enhance the cutting depth over the nose radius.

Page 92: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

91

ESC

ESC

7 Wear of cutting inserts

DIMENSIONAL AND SHAPEINACCURACY OF WORKPIECE

VIBRATION AND INSTABILITY

Quality of machined surface – we meet this phenomenon mainly at fi nishing operations where the requirement on surface roughness is set; it is infl uenced by many factors, e.g. material of workpiece, cutting environment, style and state of tool edge, cutting condition (mainly feed and cutting speed) and stability of the system machine-tool-workpiece.

Recommendation:- Reduce the feed.- Increase the cutting speed.- Use cutting inserts with larger radius of nose curvature.- Eliminate vibrations.- Use cutting inserts with a suitable cutting geometry or a chip former.- Optimize the type of cutting environment.- Enhance the cutting depth over the nose radius.

It is a very frequent phenomenon; the main reasons are an unbalanced workpiece and a high value of cutting forces. It also appears when turning long thin shafts.

Recommendation:- Reduce the cutting depth.- Use a tool with the approach angle 90°.- Use cutting inserts with a smaller radius of nose curvature.- Check the workpiece clamping stability (or safeguard balancing).- Check the tool clamping stability (reduce the overhang).- Optimize suitably cutting conditions (feed and speed).Minimize the power balance of cutting process by means of a suitable choice of cutting

geometry and tool grade ( the sharpest and most positive tool).

Page 93: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

92

ESC

ESC

8 Classifi cation of machined materials and tables of equivalents

In past Pramet’s system used its own classifi cation of the machined materials, namely into seven fundamental groups which proceed was corresponding with this new classifi cation according to the new proposal ISO 513; materialsto be machined are here classifi ed into six groups where such materials are associated which cause the same load type (stress) of a cutting edge and thus also a similar wear type. This new classifi cation according to the standard ISO 513is given in the following Table in comparison with the old Pramet’s classifi cation.

PI

PII

MI

austenitic and ferritic-austenitic steels; stainless,creep-resistant and heat-resistant steels

non-magnetic and wear-resistant steels

MII special creep-resistant alloys on the basis of Ni, Co, Fe and Ti

MIIItreated steels, hardness over 1500 MPa

hardened steels HRC 48 - 60

KI

grey cast irons, unalloyed and alloyed ones (42 24 …)

nodular cast irons (42 23 …)

malleable cast irons (42 25 …)

KII non-ferrous metals, Al and Cu alloys

P

M

S

H

K

N

carbon (unalloyed) steels, grade 10, 11, 12

low and medium alloy steels, grade 13 (13. 0, 13.1., …)

alloy steels, grades 14, 15, 16

ferritic and martensitic stainless steels, (grades 17 and cast 4229…)

carbon tool steels (19 1.., 19 2.., 19 3..)

alloy tool steels (19 3 up to 19 8..)

carbon cast steel grade 26 (4226 …)

low and medium alloy steels, grade 27 (42 27 …)

OLDNEW

Page 94: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

93

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents8.1 Machined materials, group P

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

P

10425 - - FeE 40 - BSt420 S St50B - A III 2164

10505 FeB500 RB50W - Fe430B BSt500S - - - -

11109 11SMn28 11SMn28 S 250 CF9Smn28 9 SMn 28 A10X - CF9SMn28 1912-04

11300 - - - 3CD5 D6-2 - UC6 05kp -

11373 S235JRG1 Fe360B E 24-2 Fe360BFU USt 37-2 St3SX St 37F St3Kp 1311

11500 E295 Fe490 A 50-2 Fe 490,E295 St 50-2 St5, MSt5 St 490, St 50F S285, St5sp 2172, 1151

11523 Fe 510 Fe 510 E 36-3 Fe 510 St 52-3 16G2, G355 St 510C,D 17GS, 17G1S

11600 E335, Fe590-2 Fe 590 A 60-2, E335 Fe590, E335 St 60-2 MSt6, St6 St60F STt6sp

12010 2C10 C10 XC10, C10RR C10 C10, Ck10 10 RC12, UC12 08, 10

12020 C15E, 2C15 C15E4, C16E4 C18RR, XC18 C15 C 15, Ckl5 - - C15, C16

12040 C35 C35E4 C35, XC38 C35 C35, Ck35 35 C35 35 1550, 1572-02

12050 C45 C60E4 C45 C45 C 45, Ck45 45 C45SW 45 1650

12060 C55 C55E4 C54, XC55 C55 C 55 55 - 50, 55 1655

12090 2 CS 85 CS85 C90RR C85 C85E, Ck85 85 - 85 -

13180 - - - - 80Mn4 65G - 70G -

19191 CT105 C105U C105E2U C100KU C105W1 N10E K990 U101 1880

19192 CT105 U90U C105E2U C100KU C105W2 N10E K990 U10-1

19255 CT120 CT120 C120E3U C120KU C125W N12 K995 U13-1 -

19314 95MnWCr5 95MnWCr 95MnWCrV5 95MnWCr5KU 100MnCrW4 NMWV K460 9ChVG 2140

422630 C18D 20-40 20-40M FeG400 GS38 LII400 GS38 15L-I -

422640 - 23-45 A48M1 FeG450 GS-45 LII 400 GS-45 25 L 1305

422650 - 26-52 E26-52-M FeG49-1 GS52 LII 500 GS52 30L -

422660 - 30-57 30M6M FeG570 GS-60 LII 600 GS-60 45L2 1606

Page 95: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

94

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents Machined materials, group P

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

P

13180 - - - - 80Mn4 65G - 70G -

13240 - - 38M S5 - 37MnSi5 35SG - 35SG

13250 45Si7 type3 45S7 - 46Si7 45S - 50S2 -

14100 100Cr 6 Type 1-0 100C6 100Cr6 100Cr6 LH15 - Šch15 2258

14109 100Cr6 Type 1-0 100 Cr6 10Cr6 100 Cr 6 LH15 - Šch15 2258

14220 16MnCr5 Type 5 16 M C 5 16MnCr5 16 Mn Cr 5 15HG - 18ChG 2127

14260 - - 54SiCr6 48Si7 54SiCr6 60S2 - 60S2ChA 2090

15217 S355JOWP Fe 355 W-1A E36W-A3 S355JOWP 9CrNiCuP324 10H - - -

15231 - - - - 27MnCrV4 - - - -

15260 51CrV4 type 13 51CrV4 51CrV4 50 Cr V 4 50HF - 50ChFA 2230

15340 - - 40CAD6.12 41CrAlMo7 41CrAlMo7 38HMJ - 38Ch2MJuA -

16220 15NiCr6 - 16NC6 16CrNi4 15CrNi6 15HN - 12ChN2 2512

16320 - - - 18Ni14 - - - 12ChN3 -

16343 34CrNiMo6 type3, 36CrNiMo6 35NCD6 35CrNiMo6 34CrNiMo6 34HNM - 38Ch2N2MA 2541

16420 - - 13NiCr14 - 14NiCr14 - - 12Ch2N4A -

16440 - - 30NC12, 18 NC13 - 31 Ni Cr 14 37HN3A - 30ChN3A -

17022 X20Cr13 Type4 X20Cr13 X20Cr13 X20Cr13 2H13 - 12Ch13 2302

17023 X30Cr13 Type5 Z30 C13 30Ch13 X30Cr13 3H13 - 30Ch13 2304-03

17024 X39Cr13 Type6 Z40C13 X40Cr14 X39Cr13 4H13 - 40Ch13 -

17042 - - - H18 - 95Ch18 -

17102 5CrMo16 TS37 Z10 CD5.05 A16CrMo25 5KG,KV 12 Cr Mo 195 H5M - 15Ch5M -

17153 - - Z10C24 X16Cr26 X8CrTi25 - - 15Ch25T 2322

19312 90MnV8 90MnCrV8 90MV8 90MnCrV8KU 90MnCrV8 NMV K720 9G2V -

19314 95MnWCr5 95MnWCr 95MnWCrV5 95MnWCr5KU 100MnCrW4 NMWV K460 9ChVG 2140

19356 100V2 TCV105 C105E2UV1 102V2KU 100V1 NV K760 - -

19436 X210Cr12 X210Cr12 Z200C12 X205Cr12KU X210Cr12 NC11 - Ch12 -

19452 - - Y60SC7 - 58SiCr8 - K224 - -

19541 30CrMoV12-11 32CrMoV12-28 32CDV12-28 30CrMoV12-27KU X32CrMoV33 WLM W320 3Ch3M3F -

Page 96: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

95

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

P

19552 X37CrMoV5-1 X37CrMoV51 Z38CDV5 X37CrMoV51KU X38CrMoV5.1 WCL W300 4Ch5MFS -

19554 X40CrMoV511 40CrMoV5 X40CrMoV5 X40CrMoV511KU X40CrMoV5.1 WCLV W302 4Ch5MF1S 2214

19662 55NiCrMoV7 - 55CNDV7 55NiCrMoV7KU 55NNiCrMoV6 WLN W502 5ChNM -

19721 X30WCrV93 X30WCrV9-3 Z30WCV9 X30WCrV93KU X30WCrV9.3 WWV W100 3Ch2V8F -

19732 45WCrSiV8 50WCrV8 45WCV20 45WCrV8KU 45WCrV7 NZ2 K450 5ChV2SF 2710

19733 55WCrV8 60WCrV8 55WC20 55WCrV8KU 60WCrV7 NZ3 K455 5ChV2S -

19824 HS18-0-1 HS18-0-1 HS18-0-1 HS18-0-1 HS18-0-1 SW18 S200 R18 2750

19829 - HS6-5-2 C HS6-5-2 HC HS6-5-3 HS6-5-2 C - S604 - -

19852 HS6-5-2-5 HS6-5-2-5 Z85WDKCV06 HS6-5-2-5 HS6-5-2-5 SK5M S705 R6M5K5 2723

422709 - - 35M5 - GS-20Mn5 L20G - 35G -

422714 G-21Mn5 - - G22Mn3 GS-20Mn5 L20G GS-21Mn5 20GL -

422744 GS-17CrMo55 - 15CD5-05M G15CrMo55 GS-17CrMo55 L18HM GS-17CrMo55 20ChMFL -

422771 - - Z15CD505-M GX15CrMo5 - - - 20Ch5ML -

422895 - - - - AlNiCo44/5 - - Jun13dK24S -

422905 - - Z12C13-M GX12Cr13 G-X12Cr13 LOH13 - 15Ch13L -

422920 - - Z120M12M XG120Mn12 G-X120Mn13 C120G13 AoMn10 110G13L -

422930 G-X5CrNi19-10 - ZGCN18-10-N G-X6CrNi2010 G-X5CrNi18-9 - - 07Ch18N9L -

422940 - - Z6CND18-12-M G-X2CrNiMo19 11 G-X6CrNiMo18-12 LOH18N10M2 G-X6CrNiMo18-10 07Ch18N10G2S2M2L 2343

422952 - - Z40CN25-20M G X40CrNi2620 G -X40CrNiSi2520 LH25N19S2 - 20Ch25N19S2L -

Machined materials, group P

Page 97: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

96

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents8.2 Machined materials, group M

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

M

17240 X5CrNi18-10 Type 11 Z6 CN 18-09 X5CrNi18-10 X5CrNi18-10 OH18N9 X5CrNi18-10S 08Ch18N10 2333-02

17241 - - - X10CrNi 1809 X12CrNi 18 8 1H18N9 - - -

17246 X10CrNiTi18-10 Type 15 Z6 CNT 18-10 X8CrNiTi1811 X12CrNiTi189 1H18N9T X6CrNiTi1810KKW 08Ch18N10T 2237-02

17247 X10CrNiTi18-10 Type 15 Z6 CNT 18-10 X6CrNiTi1811 X6CrNiTi1810 - X6CrNiTi1810S 08Ch18N10T 2237

17248 X6CrNiTi18-10 Type 15 Z6 CNT 18-10 X6CrNiTi1811 X6CrNiTi1810 OH18N10T X6CrNiTi1810KKW 08Ch18N10T 2237

17251 X15CrNiSi2012 Type H13 Z 17CNS 20 12 X16CrNi13 14 X15CrNiSi20 12 H20N12S2 - 20Ch20N14S2 -

17253 X12NiCrSi35-16 H17 Z12NCS37.18 - X12NiCrSi36-16 H16N36S2 - - -

17255 X8CrNi25-21 H16 Z8CN25-20 X6CrNi2520 X8CrNi25-21 H25N20S2 - 20Ch23N18 2361

17341 - TS 63 Z6CND17-13B X5CrNiMo1712 X6CrNiMo1713 - X5CrNiMo17122S - -

17346 X5CrNiMo17122 Type 20 Z6 CND 17.11 X5CrNiMo17 12 X 5 Cr Ni Mo 17122 - X5CrNiMo 17122KKW XSCrNiMo 1712 2247

17352 X3CrNiMo17-13-3 Type 20a Z7 CND 18-12-03 X5CrNiMo17 13 X5CrNiMo17 13 3 - X5CrNiMo17 13 3KW - 2343

17353 X10CrNiMoTi1812 Type21A Y 6CNDT 17-12 X6CrNiMo17 13 X10CrNiMoTi1812 -X6CrNiMo17 12

2KKW- 2350

17436 - - - - X40MnCr18 - - - -

17465 X53CrMnNiN21 9 Type 9 Z 52 CMN 21.09 X53CrMnNiN21 9 X53 CrMnNiN21 9 50 H21G9N4 - 55Ch20G9AN4 -

17618 - - Y120M12 - X120Mn12 - - 110G13L 2183

*SAF 2304 X2CrNin23 - X2CrNin23 4 X2CrNin23 4 X2CrNin23 4 - - - 2308

* SAF 2507 X2CrNiMon25-74 - X2CrNiMon25-74 X2CrNiMon25-74 X2CrNiMon25-74 - - - 2328

* SAF 2205 X2CrNiMoN 22 5 3 - Z3CND 22-05Az X2CrNiMoN 22 5 3 X2CrNiMoN 22 5 3 - - - 2377

Page 98: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

97

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents8.3 Machined materials, group K

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

K

Nodular cast iron

422304 - 400-12 FGS400-12 GS400-12 GGG40 Zs40015 - VČ40 0717-00

422307 GJS-700-2 700-2 FGS-700-2 GS 700-2 GGG70 Zs70002 GGG-700 VČ70 0737-01

422308 - 800-2 FGS800-2 GS800-2 GGG80 Zs80002 - VČ80 -

Grey cast iron

422410 - Gr.100 Ft10 G10 GG10 Zl100 GG100 SČ10 0110-00

422420 - Gr.200 Ft20 G20 GG20 Zl200 GG200 SČ20 0120-00

422425 - Gr.250 Ft25 G25 GG25 Zl250 GG250 SČ25 0125-00

422430 - Gr.300 Ft30 G30 GG30 Zl300 GG300 SČ30 0130-00

Malleable cast iron

422533 - B35-10 MN35-10 B35-10 GTS35-10 Zcc35010 GTS-350 KČ35-10 0815-00

422536 - W35-04 MB35-7 GMN35 GTW35-04 Zcb35004 GTW-350 - -

422540 - W 40-05 MB 400-5 GMN 40 GTW 40-05 Zcb 40005 GTW 400 - -

422555 - P55-04 MN 550-4 P 55-04 GTS 55-04 Zpc 55004 - KČ55-4 -

Page 99: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

98

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents8.4 Machined materials, group N

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

N

Cu 99,95 * Cu-OF Cu-OF Cu-c1 - OF+Cu Cu99,95B Cu-OF M00 -

CuNi2Si * CuNi2Si CuNi2Si - P- CuNi2Si CuNi2Si CuNi2Si CuNi2Si - -

CuSn6 * CuSn6 CuSn6 CuSn6P - CuSn6 CuSn6 CuSn6 Br0F6,5-0,15 CuSn6

CuAl5 * CuAl5As CuAl5 CuAl6 P- CuAl5 CuAl5As CuAl5As CuAl5As BrA5 -

CuAl10Fe4Ni4 * CuAl10Ni5 Fe4 CuAl10Ni5 Fe4 CuAl9Ni5Fe3 P-CuAl10Fe5Ni5 CuAl10Ni5 Fe4 CuAl10Ni5 Fe4 CuAl10Ni5 Fe4 BrAZN10-4-4 -

CuSi3Mn1 * CuSi3Mn1 CuSi3Mn1 - P- CuSi3Mn1 - CuSi3Mn1 CuSi3Mn BrKMc3-1 -

CuCd1 * CuCd1 - - - CuCd1 - BrKd1 -

CuPb30Fe * CuPb30 - - - CuPb30 - - BrS30 -

CuZn4 * CuZn5 CuZn5 CuZn5 - CuZn5 CuZn5 - L 96 -

CuZn15 CuZn15 CuZn15 CuZn15 P- CuZn15 CuZn15 CuZn15 CuZn15 L85 CuZn15

CuZn20 CuZn20 CuZn20 CuZn20 - CuZn20 CuZn20 CuZn20 L80 CuZn20

CuZn30 CuZn30 CuZn30 CuZn30 P- CuZn30 CuZn30 CuZn30 CuZn30 L70 CuZn30

CuZn40 CuZn40 CuZn40 CuZn40 P-CuZn40 CuZn40 CuZn40 CuZn40 L60 CuZn40

* Al 99,8 AW-Al 99,8(A) Al 99,8(A) 1080A P- Al 99,8 Al 99,8 Al 99,8 Al 99,8 AD000 -

* AlCu4Mg AW - AlCu4MgSI (A) AlCu4MgSi 2017A P- AlCu4MgMnSi AlCuMg1 AlCu4Mg1 AlCuMg1 D1 -

* AlZn6Mg2Cu AL-P7075 AlZn6MgCu 7075 P-AlZn5,8MgCuCr AlZnMgCu 1,5 AlZn6Mg2Cu AlZnMgCu 1,5 V95 -

* AlMg1Si1Mn Al-P6082 AlMg1Si1Mn 6082 P- AlSi1MgMn ALMgSi1 AlMgSi1Mn AlMgSi1 AD35 AlSi1MgMn

* AlMg2 AW- AlMg2 AlMg2 5052 P- AlMg2,5 AlMg2,5 AlMg2 AlMg2,5 AlMg2 AlMg2,5

* AlMg3 AW- AlMg3,5Mn0,3 AlMg3,5(A) 5754 P- AlMg2,7Mn AlMg2,7Mn AlMg3 AlMg3 AlMg3 AlMg3

* AlMn1 AW-AlMn1 AlMn1 3103 P- AlMn1,2Cu AlMn1 AlMn1 AlMn AMc AlMn

* AlCu4SiMg - AlCu4SiMg 2014 P- AlCu4,4SiMnMg AlCu4SiMn AlCu4SiMg AlCu4SiMn AK8 AlCu4SiMg

* AlCu6Mn 2219 ALCu6Mn - - - ALCu6MnTi - - -

* AlMn1 - AlMn1 3103 P- AlMn1,2 AlMn1 AlMn1 AlMn1 Amc AlMn1

* AlMg4 - AlMg4 5086 P- AlMg4,4 AlMg4Mn - - AlMg4 -

* AlMgSi - AlMgSi 6060 P AlMg0,5Si0,4Fe AlMgSi0,5 - AlMgSi0,5 - AlMgSi

* AlZn4,5Mg1 - AlZn4,5Mg1 7020 P- AlZn4,5Mg1 AlZn4,5Mg1 AlZn5Mg1 AlZn4,5Mg1 1915 AlZn4,5Mg1

* AlSi7MgTi AC-AlSiMg0,3 Al-Si7Mg A-S7G03 G-AlSi7MgTi G-AlSi7Mg - GAlSi7Mg AK7pc AlSi7Mg

* AlSi8Cu2Mn AC-AlSi9Cu3(Fe) Al-Si8Cu3Fe A-S9U3 Y4 G-AlSi8,5Cu G-AlSi9Cu3 - GAlSi8Cu3 AK8M3 AlSi9Cu3

* AlSi5Cu4Zn - Al-Si6Cu4Fe A-S5UZ G-AlSi5,5Cu G-AlSi6Cu4 AlSi6Cu4 GAlSi6Cu4 AK5M4 AlSi6Cu4

Page 100: Prirucnik

DEFINITIONOF BASIC CONCEPTS

CUTTING GRADESPRAMET

CHOICEOF TURNING TOOL

CHOICEOF MILLING TOOL

CHOICEOF DRILLING

WEAROF CUTTING INSERTS

GRADE GROUPSEQUIVALENT TABLES

99

ES

C

ES

C

8C

lassifi cation of machined m

aterials and tables of equivalents8.5 Machined materials, group S

Maingroup

CZ EURO ISO F IT D PL A RU S

Czech Rep. France Italy Germany Poland Austria Russia Sweden

ČSN EN ISO AFNOR UNI DIN PN ÖNORM GOST SS

S

INCOLOY 800 330 - Z12NCS35.16 F-3313 X12NiCrSi36 16 - - - -

Ni70Cu30 - NiCu30 NiCu32Fe1,5Mn - NiCu30Fe NiCu30 - NMZMc28-2,5-1,5 -

NiFe17CuCr - - - - NiFe16CuCr - - - -

NiFe48 - - Fe-Ni50 - NiFe47 NiFe49Pr - - -

NiCr21Mo16Al ALLOY 59 - - - - - - - -

NiCr21Mo16W INCONEL alloy 686 - - - - - - - -

NIMONIC 80A UNS N07080 - NC 20 TA - - - - El –437 B -

NiCrCo18TiNIMONIC alloy 90

(HEV 6)- - - - - - - -

NiCo20Cr15MoAlTi NIMONIC alloy 105 - - - - - - - -

INCONEL 617 N06617 - - - - - - - -

INCONEL 718 UNS N07718 - NC 19FeNb - - - - - -

NiMoCr15W(ALLOY C-276)

UNS N10276 - NiMo16Cr16 - - - - - -

NiCr22Mo9Nb(ALLOY625)

- - NC22DNb - - - - - -

CoCr23Ni10W7Ta4 MAR-M509 - - - - - - - -

Air Resist 213 5537C - KC20WN - CoCr20W15Ni - - - -

Jetalloy 209 AMS 5772 - KC22WN - CoCr22W14Ni - - - -

TiAl5Sn2.5 AMS R54520 - T-A5E - TiAl5Sn2.5 - - - -

TiAl6V4 AMS R56400 - T-A6V - TiAl6V4 - - - -

TiAl6V4ELI AMS R56401 - - - TiAl6V4ELI - - - -

8.6 Machined materials, group H

The equivalents are not mentioned because it is generally a case of heat-treated materials from other groups.

Page 101: Prirucnik

DEF

INIT

ION

OF

BA

SIC

CO

NC

EPTS

CU

TTI

NG

GR

AD

ESP

RA

MET

CH

OIC

EO

F TU

RN

ING

TO

OL

CH

OIC

EO

F M

ILLI

NG

TO

OL

CH

OIC

EO

F D

RIL

LIN

GW

EAR

OF

CU

TTI

NG

IN

SER

TSG

RA

DE

GR

OU

PS

EQU

IVA

LEN

T TA

BLE

S

100

ESC

ESC

8 Classifi cation of machined materials and tables of equivalents

8.7 Hardness conversion table

Breakingstrength[MPa]

Rm

BRINELL

HBVICKERS

HVROCKWELL

HRBROCKWELL

HRC

Breakingstrength[MPa]

Rm

BRINELL

HBVICKERS

HVROCKWELL

HRBROCKWELL

HRC

285 86 90 1190 352 370 37,7

320 95 100 56,2 1220 361 380 38,8

350 105 110 62,3 1255 371 390 39,8

385 114 120 66,7 1290 380 400 40,8

415 124 130 71,2 1320 390 410 41,8

450 133 140 75,0 1350 399 420 42,7

480 143 150 78,7 1385 409 430 43,6

510 152 160 81,7 1420 418 440 44,5

545 162 170 85,8 1455 428 450 45,3

575 171 180 87,1 1485 437 460 46,1

610 181 190 89,5 1520 447 470 46,9

640 190 200 91,5 1555 456 480 47,7

675 199 210 93,5 1595 466 490 48,4

705 209 220 95,0 1630 475 500 49,1

740 219 230 96,7 1665 485 510 49,8

770 228 240 98,1 1700 494 520 50,5

800 238 250 99,5 1740 504 530 51,1

820 242 255 23,1 1775 513 540 51,7

850 252 265 24,8 1810 523 550 52,3

880 261 275 26,4 1845 532 560 53,0

900 266 280 27,1 1880 542 570 53,6

930 276 290 28,5 1920 551 580 54,1

950 280 295 29,2 1955 561 590 54,7

995 295 310 31,0 1995 570 600 55,2

1030 304 320 32,2 2030 580 610 55,7

1060 314 330 33,3 2070 589 620 56,3

1095 323 340 34,4 2105 599 630 56,8

1125 333 350 35,5 2145 608 640 57,3

1155 342 360 36,6 2180 618 650 57,8