Top Banner
1/30 1/36 Principy nanomechanické analýzy heterogenních materiálů. Dekonvoluce a homogenizace. Doc. Ing. JiříNěmeček, Ph.D., DSc. ČVUT Praha, Fakulta stavební Tvorba výukových materiálů byla podpořena projektem OPVVV, Rozvoj výzkumně orientovaného studijního programu Fyzikální a materiálové inženýrství, CZ.02.2.69/0.0/0.0/16_018/0002274 (2017-18) D32MPO - Mikromechanika a popis mikrostruktury materiálů –přednáška 04
36

Principy nanomechanické analýzy heterogenních materiálů ...

Oct 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Principy nanomechanické analýzy heterogenních materiálů ...

1/301/36

Principy nanomechanické analýzy heterogenních materiálů. Dekonvoluce a

homogenizace.

Doc. Ing. Jiří Němeček, Ph.D., DSc.

ČVUT Praha, Fakulta stavební

Tvorba výukových materiálů byla podpořena projektem OPVVV, Rozvoj výzkumně orientovaného studijního programu Fyzikální a materiálové inženýrství, CZ.02.2.69/0.0/0.0/16_018/0002274 (2017-18)

D32MPO - Mikromechanika a popis mikrostruktury materiálů – přednáška 04

Page 2: Principy nanomechanické analýzy heterogenních materiálů ...

2/302/36

Outline

Introduction and motivation

Principles of nanomechanical analysis on heterogeneous

materials. Nanoindentation, SEM, image analysis.

Nanomechanical analysis of distinct material phases applied to

cement paste, Alkali-activated Fly ash, Gypsum

Up-scaling phase properties to upper composite level

Page 3: Principy nanomechanické analýzy heterogenních materiálů ...

3/303/36

Introduction

Structural materials are characterized with

¬ Heterogeneous composition including porosity at different scales nm-mm

¬ Multi-scale models must be developed.¬ Basic tasks include: Scale separation, finding characteristic dimensions

(number of phases, morphology, volumetric content at individual levels)

and Mechanical characterization at each scale.

Examples of multi-scale materials

Concrete4 levels

C-S-H gel

Level 1 (~10 nm)

Cement paste(C-S-H, CH, clinker,pores)Level 2 (~100 um)

Mortar (+sand, Pores, ITZ)

Level 3 (~10 mm)

Concrete (+aggregate,ITZ, pores)

Level 4 (~100 mm)

AAFlyAshAAMetakaoline

2 levels

nm-um level um-mm level

Page 4: Principy nanomechanické analýzy heterogenních materiálů ...

4/304/36

Motivation

Bottom-up approach¬ Detect and characterize low-level material properties.i.e. Intrinsic (constant) properties of basic building blocks (phases)

¬ Use up-scaling to predict upper-level (macro/full-scale) propertiesknowing volume fractions of phases, microstructural configuration, phase

interactions

Then, virtual experiments are -possible (changing volume fraction of existing phases, adding new phases)-less expensive and more predictive than classical macroscopic experiments (one-

mixture test)

Page 5: Principy nanomechanické analýzy heterogenních materiálů ...

5/305/36

Available techniques at microscale

and their resolution

Practical limits:

surface roughness

- unpolished sample ~1-10 um

- polished sample 10-100 nm

Positioning system – precision

mechanical ~1um

piezopositioning ~1nm

Microstructural investigations

•Optical microscopy: basic morphometrics >>1 um

•SEM:SE detector: high resolution on morhology in 2D (100-10.000x)BSE detector: material constrast

EDX: elemental analysis ~5 um

•AFM – surface 3D topology (~1nm)

•Micro-CT: 3D imaging ~1um.

•MIP porosimetry, pores nm-um

Nanomechanical analysis

•Nanoindentationspacial resolution ~1 um

•AFM (very local ~1nm)

Page 6: Principy nanomechanické analýzy heterogenních materiálů ...

6/306/36

Available information:Micromechanical characterization (nanoindentation on phases below 1 um) Grid nanoindentation, phase deconvolution

pointwise estimates of local mechanical

properties

measurement is performed from the

surface but affects volume under the

indenter (practically 0.1-1 um3)

Nanoindentation

P

h

specimen

indenter

Influence zone, typically 50-500 nm(3x penetration depth)

Locally

homogenized

E, H

Page 7: Principy nanomechanické analýzy heterogenních materiálů ...

7/307/36

Phase deconvolution in multi-phase systems

Dependent on-image quality-pixel luminosity

-segmentation (thresholds/local minima/deconvolution of histograms)

Image analysisDirect phase deconvolution from

mechanical tests -Nanoindentation

Averaged props.(h>>D)

Pointed

(optical image dependent)

(h<<D)

Statisticalgrid indentation

(h<<D)

Page 8: Principy nanomechanické analýzy heterogenních materiálů ...

8/308/36

Pointed indentation in HD C-S-H

Pointed indentation (HD C-S-H)

E=38.6± 2.57 GPa

Page 9: Principy nanomechanické analýzy heterogenních materiálů ...

9/309/36

Average properties

Grid indentation –large indents 100mN

“Physical homogenization”

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100 110

Er [GPa]

No

rma

lize

d f

req

ue

nc

y [

-] small indents, 2mN

large indents,100mN

Geopolymers

Page 10: Principy nanomechanické analýzy heterogenních materiálů ...

10/3010/36

Deconvolution

A

S

dh

dPEr β

π2

=

0

0.5

1

1.5

2

2.5

0 100 200 300

Depth [nm]

Lo

ad

[m

N]

N-A-S-H

Partlyactivated

Fly ash

S

•All indents taken into account •Assessment of E modulus from unloading curve (Standard Oliver-Pharr procedure) for individual indents•Material property can be plotted in the form of property histogram•Statistical deconvolution of material phases can be applied

Page 11: Principy nanomechanické analýzy heterogenních materiálů ...

11/3011/36

Deconvolution algorithm

Select number of expected phases (e.g. M=2)

Generate M Gauss PDFs (G)

Compute overall theoretical PDF from (G)

Compute quadratic norm from deviationsbetween experimental and theoretical PDFs (QN)

If (QN) < tolerance ormax. number of iterations reached Minimum found

Next iteration

+

-

Ill-posed problem!

Page 12: Principy nanomechanické analýzy heterogenních materiálů ...

12/3012/36

Nanoindentation on cement paste

Main phases at micro-scale•C-S-H gels (low and high density)•Portlandite Ca(OH)2

•Residual clinker•Capillary porosity

Page 13: Principy nanomechanické analýzy heterogenních materiálů ...

13/3013/36.

Nanoindentation on cement paste

•Representative material area (RVE 200x200 um)

•Indents spacing 10 um

•Individual indents depth h=100-300 nm

h<< characteristic size of heterogeneities(Portladite zones, clinker, .. um range)

h>> nanoporosity (30vol.% <100nm) (included in

intrinsic phase properties)

h<< Capillary porosity (not included in results)

Parameters of nanoindentation

Capillary pores

Nanoporosity included in NI results

20×20=400 indents10 µm spacing RVE size ~200 µm

Page 14: Principy nanomechanické analýzy heterogenních materiálů ...

14/3014/36

Statistical grid nanoindentation on cement paste

•Deconvolution of phases from grid results in RVE

•Assumption of n-phases (Gaussian distributions)

•Minimization of differences between theoretical and experimental probability

density

Page 15: Principy nanomechanické analýzy heterogenních materiálů ...

15/3015/36

Deconvolution approachLocal minima approach

Image analysis (SEM) on cement paste

Segmentation to only 4 phases(Not sufficient contrast to distinguish between low/high-density C-S-H)

s.d.fractionPhase

0.044

0.078

0.862

0.017

0.020Clinker

0.013Portlandite

0.024C-S-H

0.015Porosity

green=C-S-H;pink=Portlandite;blue=porosity;red=clinker

s.d.fractionPhase

0.062

0.101

0.805

0.032

0.028Clinker

0.032Portlandite

0.035C-S-H

0.02Porosity

IA insufficiencies•Cannot sense B/C•Smooth transitions between phases – no local minima

Segmentation

Page 16: Principy nanomechanické analýzy heterogenních materiálů ...

16/3016/36

Comparison

Image

analysis

Nanoindentation

0.062

0.101

0.805

0.032

f_IA (dec)

0.23

0.54

-0.11

0.66

Error=(f_IA-f_NI)/f_AI

0.048

0.046

0.263

0.632

0.011

f_NIE (GPa)Phase

43.88D=Portlandite

121E-Clinker

33.93C=high density C-S-H

20.09B=low density C-S-H

7.45A-Low stiffness phase

•IA overestimates low density regions (pores)•IA can not sense two types of C-S-H

•IA overestimates Portlandite and clinker volumes(due to smooth color transition)

Page 17: Principy nanomechanické analýzy heterogenních materiálů ...

17/3017/36

Nanomechanical analysis of AAFA

Page 18: Principy nanomechanické analýzy heterogenních materiálů ...

18/3018/36

Nanomechanical analysis on AAFA

Alkali-activated fly ash (AAFA)

Basic reaction product is an amorphous alumino-silicate

gel (N-A-S-H gel) and/or C-S-H gel forming in the presence

of calcium and low alkalinity activator

A. light luminous points = iron rich particles (Fe-Mn oxides)B. light grey compact spheres = alumina-silica rich glass particlesC. porous fly ash particles and non-activated slagsD. N-A-S-H gel

B

A

CD

High degree of hetegogeneity

Nanoindentation

•CSM nanohardness tester

•Several matrices of 10x10=100 imprints

•Mutual indents’ spacing 10-50 um

•Total 700 - 800 imprints per sample

•Load controlled test

•Trapezoidal loading diagram

•Max. load 2 mN

•Loading/holding/unloading 30/30/30s

Page 19: Principy nanomechanické analýzy heterogenních materiálů ...

19/3019/36

Results on AAFA

• the second peak comes from partly activated slag particles (mix of gel and rest of a slag particle)• different reaction kinetics between ambient and heat-cured sample.

Heat curedAmbient cured

Page 20: Principy nanomechanické analýzy heterogenních materiálů ...

20/3020/36

Nanomechanical analysis on gypsum

Page 21: Principy nanomechanické analýzy heterogenních materiálů ...

21/3021/36

Nanomechanical analysis on gypsum

Samples:•low-porosity purified α-hemihydrate (CaSO4.1/2H2O)•Used for dental purposesMicrostructure:•Interlocking crystals+porosity (total 19%)•The major porosity: in nano-range 0–300 nm (0–100 nm 7%, 100–300 nm 4%, 300–1000 nm 1%)•virtually no pores appeared between 1-100 µm (<0.5%)

Results:•polycrystalline nature•apparent isotropic moduli associated with theindentation volume 1.53 µm3 were assessed•three significant crystallographic orientations (monoclinic system)

E = 33.90 GPa

3-phases fit 1-phase fit

15×12=180 indents15 µm spacing RVE size ~200 µm

EM-T=32.96 GPa

Page 22: Principy nanomechanické analýzy heterogenních materiálů ...

22/3022/36

Nanomechanical analysis of Al alloy

2x(10×10)=2x100 indents10 µm spacing RVE size ~100 µm

0.3623190.3587.395Ca/Ti-rich zone

0.6376810.3561.882Al-rich zone

Volume fractionPoisson’s ratio (-)E (GPa)Phase

Page 23: Principy nanomechanické analýzy heterogenních materiálů ...

23/3023/36

Up-scaling low level properties to upper level

Page 24: Principy nanomechanické analýzy heterogenních materiálů ...

24/3024/36

Motivation

Structural materials (concrete, gypsum, plastics, wood, …) are characterized by

Multiscale heterogeneity (different chemical and mechanical phases)

Phase separation process (depends on scale nm-mm)

Micromechanics

mm-cmOverallproperties

Traditional concept

Characterization of individualcomponents and microstructure

RVE

Effective

(homogenized)properties

Material = black-box

Microstructure based evaluation

DLd <<<<

D

L

d

Page 25: Principy nanomechanické analýzy heterogenních materiálů ...

25/3025/36

Analytical Upper/Lower Bounds

Voigt bound = strains constant in composite (rule of mixtures for stiffness, parallel

configuration)…

Reuss bound = stresses constant in composite (rule of mixtures for compliance,

serial configuration)

Hashin-Shtrikman Bounds

Page 26: Principy nanomechanické analýzy heterogenních materiálů ...

26/3026/36

Micromechanical averaging

1. Analytical schemes

Average stress/strain

Local stress

RVE (volume V):

Macrostress Σ/macrostrain Ε

Boundary conditions(homogeneous)

Inclusions:

Local fields ε, σ

Local strain

Page 27: Principy nanomechanické analýzy heterogenních materiálů ...

27/3027/36

Micromechanical averaging

localstiffn

ess

and

com

plia

nce

ten

sors

stra

inor

stre

ss lo

caliz

atio

n

(concentra

tion)

tensors

r-phase medium:fr… volume fractioncr/sr…local stiffness/compliance tensors

Ar/Br… localization tensors

Eshelby’s estimate

For r-phases:

Page 28: Principy nanomechanické analýzy heterogenních materiálů ...

28/3028/36

Mori-Tanaka method

∑−

−+

−+=

r

rr

r

rrr

eff

k

kf

k

kkf

k1

0

0

1

0

0

))1(1(

))1(1(

α

α

∑−

−+

−+=

r

rr

r

rrr

eff

f

f

1

0

0

1

0

0

))1(1(

))1(1(

µµβ

µµβµ

µ

00

000

00

00

2015

126,

43

3

µµβ

µα

++=

+=

k

k

k

k

Bulk and shear effective

moduli for r-phase composite:

Reference medium == 0-th phase

Volume fractions and phase stiffnesses

•Based on Eshelby’s solution of an ellipsoidal inclusion in an infinite body

•Assumes prevailing matrix reinforced with non-continuous spherical inclusions•Uses phase volume fractions and stiffnesses (here taken from deconvolution)•Produces effective (homogenized) composite properties

Page 29: Principy nanomechanické analýzy heterogenních materiálů ...

29/3029/36

Analytical homogenization (Mori-Tanaka)

Level 1

Level 2

Page 30: Principy nanomechanické analýzy heterogenních materiálů ...

30/3030/36

FFT based Numerical homogenization

Ed =)(1

:= xxεε ∫ΩΩ⟩⟨

Ω∈x0xσxεxxσ =)( )(:)(L=)( div

⟩⟨⟩⟨ εσ effL=

Governing differential equation:

yyεyyxxε dE )(:)L)(L(:)(Γ=)( 00 −−−∫ΩDecomposition of local strain to homogeneous strain and polarization part)

001 e=e)]LL(FΓFI[ −+ −

Average

strain

Effective stiffness tensor

Depends only on the stiffness at local grid points

Green’s operator Polarization stress

(periodic Lippmann-Schwingerintegral equation)

Strain at

discretization points

Macro

strain

Integral kernel (Green’s operator) found in the Fourier space

Discretization (by trigonometric collocation method) leads to--->nonsymmetric linear system of equations (CG method)

Page 31: Principy nanomechanické analýzy heterogenních materiálů ...

31/3031/36

Comparison of the results

Comparison of analytical and FFT scheme

−−

−+=

eff

eff

eff

effeff

effE

ννννν

νν2100

01

01

)21)(1(

A

effL

Stiffness matrix for Plane strain conditions (isotropic material)

( ) ( )( )FFT

eff

FFT

eff

A

eff

FFT

eff

A

eff

FFT

eff

LL

LLLL

:

:error stiffness

−−== δ

Uni-directional stiffness and Poisson’s ratio

Page 32: Principy nanomechanické analýzy heterogenních materiálů ...

32/3032/36

Results from nanoindentation and deconvolution

1.00.206725.3308M-T homogenized valueOUTPUT

0.04830.3130clinker

0.04610.343.88Ca(OH)2

0.26340.233.93High density C-S-H

0.63170.220.09Low density C-S-H

0.01050.27.45Low stiffnessINPUT

Volume fractionPoisson’s ratio (-)E (GPa)Phase

1.00.240.000M-T homogenized valueOUTPUT

0.2437500.256.277High stiffness

0.7125000.237.234Dominant

0.0437500.219.357Low stiffnessINPUT

Volume fractionPoisson’s ratio (-)E (GPa)Phase

1.00.3570.083M-T homogenized valueOUTPUT

0.3623190.3587.395Ca/Ti-rich zone

0.6376810.3561.882Al-rich zoneINPUT

Volume fractionPoisson’s ratio (-)E (GPa)Phase

CE

ME

NT

GY

PS

UM

ALP

OR

AS

Page 33: Principy nanomechanické analýzy heterogenních materiálů ...

33/3033/36

Numerical results

=109.2100

0145.28036.7

0036.7145.28A

effL

=818.19014.0068.0

014.0224.26778.6

068.0778.6177.26FFT

effL

=333.3300

0444.44111.11

0111.11444.44A

effL

−−−−

=909.30024.0349.0

024.0726.41593.10

349.0593.10995.40FFT

effL

=913.5100

0479.112566.60

0566.60479.112A

effL

−−−−

=313.54143.0163.0

143.0106.117741.62

163.0741.62130.117FFT

effL

0.071045=δcement

0.075138=δgypsum

0393058.0=− δalloyAl

CE

ME

NT

GY

PS

UM

ALP

OR

AS

Error 7.1%

Error 7.5%

Error 3.9%

(Stiffness matrices in Mandel’s notation)

Page 34: Principy nanomechanické analýzy heterogenních materiálů ...

34/3034/36

Examples of Elastic Homogenization

UHPC

16mm100mm

Level I (basalt aggregate)Level II (cement matrix+small

aggregate+fibers)Level III (matrix+largeaggregate) Main components:

•feldspar (22.8%, E=91 GPa)•Olivine (68.4%, E=169 GPa)•magnetite (5.2%, E=150 GPa)•pores (3.6%, E=0GPa)

•Eeff, I=131.3 GPa

Main components:•Cement matrix incl. microsilica (58%, E=29.4 GPa)•Small agg. 0-4mm (37.5%, E=131.1 GPa)•fibers (2%, E=200 GPa)•pores (2.8%, E=0GPa)

•Eeff, II=46.6 GPa

Main components:•Level II•Large agg. (21.6%, E=131.1 GPa)•pores (2.8%, E=0GPa)

•Eeff, II=55 GPa

1mm

Page 35: Principy nanomechanické analýzy heterogenních materiálů ...

35/3035/36

Examples of Elastic Homogenization

+−

−+

=

−−

−+=

µµµ

µµ

ννννν

νν200

03

4

3

2

03

2

3

4

2100

01

01

)21)(1(LA

eff kk

kk

E

eff

eff

eff

effeff

eff

Cement paste

from NI

FFT homogenization from NI

Analytical

Comparison

Page 36: Principy nanomechanické analýzy heterogenních materiálů ...

36/3036/36

FFT homogenization from NI

Homogenization

Gypsum

Analytical

Comparison