Top Banner
Principles of Architecture G. Muthu Shoba Mohan Lecturer in Architecture, Sun College of Engineering & Technology, Kanyakumari District © Oxford University Press
56

Principles of Architecture

Mar 16, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Archcon.p65© Oxford University Press

% ! &#
"'! &
( ) *

+ ,
3 % 4)3 D%E D%E; ! $ 3 $; 3 3 $4 =4 $ ; ! $ D 3 E;
© Oxford University Press
C3 D E$ ' D E; 3 D E ; ! ' $ % % 3) ;
( ' % $AB ' 3' %' ;B$ $ $ ; = $3 3 ;

?

( ' $ $; 9 % $ $A ;9 3 3 $ '$ = ; ' 3 $A% %3E ' % %' 3 ); 3$A$
© Oxford University Press
# H H H
$$ ';;' ' ' ;" = $ $ ; ' ' ' '
© Oxford University Press
$' ' ; C ' % 3 $; $A% @ % $3 ;
' ; ' $ $ %3 ); $$ ;( $' $ $ *#; +;+2 ' % ' 3 3 ' ;
G $

$
Fig. 1.3 Erecting a roof truss using a tower crane
$ $ $; 3=; *2
$ 3 ) G $ =
© Oxford University Press
Fig. 1.4 Erecting a roof truss using a tripod


$ '' ' ' ' % *#; +;12; $ ; $ 3 D E ; % '3 I ' $; ! DE' 3 $ 3 I ; !
© Oxford University Press

Fig. 1.5 The primary elements of form are point, line, plane, volume
% ' % % * I 2;! ' = 3 ' ) 3 %B > > % ; $ %
% $ ;

© Oxford University Press
3#;+;.*2' % ) 3 ' 3 ' % ' % ;
Fig. 1.8 Point projected into a linear element: column, obelisk, or tower
3#;+;.*$2' ;!) 3 3 % ;( ' $' ; 3#;+;.*2'3 % I' $ % % $3 ; ; %$ )
' $ A % 3' 3#;+;,; ) ;
© Oxford University Press
3 = $ ; '$ 3 ;! = ' %' 3 %*#;+;++2;
Fig. 1.10 Two points in a plan denote a gateway; the same points when elevated denote an approach
!'3 $ 3; 3 3 % ' 3 #;+;+6;
Fig. 1.11 A point when extended becomes a line
© Oxford University Press

Fig. 1.12 Lines help in the formation of various visual elements
% *#; +;+<2G
A ' )' ' ' %'
Fig. 1.13 The character of line—bold, graceful, repetitive, etc.
' % ) *#; +;+82 $ %$; ) $ ' 3 ; '3 $ ' $ I I3 ;
© Oxford University Press

Fig. 1.14 The orientation or direction of a line represents horizontality or verticality
3 #; +;+7' @ % % I ;
Fig. 1.15 An oblique line is formed by a deviation from the perpendicular or the horizontal
$ $? ' 3 $ %I @ ;! 3 ' % @ ; #;+;+1;
Fig. 1.16 Examples of vertical linear elements such as columns, obelisks, and towers that have been erected to commemorate significant events
: ' ' 3 % $ %; = 3#;+;+-;
Fig. 1.17 Vertical linear elements define transparent volumes of space
Fig. 1.18 A villa that has an axis about which elements are symmetrically arranged
!#; +;+,' I ' ' 3 %$ ' =$ 3 ;
3 #; +;+.' % % ; ! ' 3 3 ;
© Oxford University Press
Fig. 1.20 Town hall, Finland
Fig. 1.19 The Seagram Building in New York built by Miles van der Rohe in 1958
& % ; $ 3 $3 $ ' 3 3 *#;+;+02' $*# +;<6 +;<+2; $ E =' 3 ;
© Oxford University Press

Fig. 1.21 Crown Hall, Illinois Institute of Technology, Chicago articulates a structural grid of columns and beams
Fig. 1.22 A bridge (in Switzerland)—linear elements suggest movement across space
& = % 3 #; +;<<' % % 3 #; +;<8' I 3#;+;<7;
© Oxford University Press

Fig. 1.23 The Erecthion in Athens—linear elements (columns) provide support for the overhead plane
Fig. 1.24 Imperial Villa, Japan—linear elements form a three-dimensional structural frame for architectural space
© Oxford University Press
3 3*2> $ ? * 3 2> ' 3;
Fig. 1.25 From line to plane
© Oxford University Press

Fig. 1.26 A row of columns defines the front façade of a building
& G
L $ I BD $ E % $ $ ;
Fig. 1.27 Columns articulating the edges of interior spatial zones
! I ' % ; @ ' 3#;+;<.;

Fig. 1.29 (a) Columns articulating the edges of a building form in space; (b) columns articulating the edges of an exterior space defined within a building form
#+;<03 =B $ 3 = 3 $ ;
9 @ % $ % ' 3 $@ ;#;+;<,;
Fig. 1.28 A house in California illustrating horizontal overhead linear members
(a)
(b)
# +;86 ; ! 3 = 3 $ ;
Fig. 1.31 Vertical and horizontal linear elements defining a volume of space
: @ % ; #;+;8+;
Fig. 1.30 Columns articulating the edges of an exterior space defined within a building form
© Oxford University Press
© Oxford University Press
Fig. 1.34 The building can merge with the ground plane
Fig. 1.33 Different planes in architectural design: (a) the wall plane, (b) the overhead and the base plane
; *2 % G
*$2 3G: 3 % J*#;+;88*2K;
*2 $G % %$ $ J#;+;88*$2K;


Fig. 1.35 Temple in Thebes—The building sits on the ground plane
$ % ; ! $ % %$ 3 $$$;! $ 3 ;
Fig. 1.36 The Spanish Steps (in Rome)—The building is elevated above the ground plane
© Oxford University Press

Fig. 1.37 The floor plane supports the activities inside a space
%3 $ *#;+;8.2; 3 $ ;
Fig. 1.38 The floor plane can be manipulated—stepped or terraced
&) ' $ ' '%3 ' ;*#;+;8,2;

Fig. 1.39 A vaulted sky plane, where the ceiling plane merges with the wall plane
3 3 ; $ 33 ? ;! $ $) ; 3 $; %; ! $ I $ %'= ;! $ 3 ;
Fig. 1.40 Robin House, Chicago, built by Frank Lloyd Wright. The roof plane projects out of the building to protect the openings in the walls from sun or rain.
'3 $E ' *#; +;762; 3 $E3*#;+;7+2;
' $ $ @ %)*#;+;802; !$ 3 @ 3 ;
© Oxford University Press
Fig. 1.42 Dolmen (in Italy)—A burial place
Fig. 1.41 The roof plane can merge with the wall plane to emphasize the building’s volume
%$ $ ; % '3 D E' 3 3 @ $ *#;+;7<2;
Fig. 1.43 Kaufmann House ‘Falling water’ Pennsylvania (built by Frank Lloyd Wright)—The building form reflects the planar quality
$E ; $E %
3G
* %=2 3 % > * 2 3 3 ; * 2 $ % ; % ; ! $ I $ % ; I
% $ '% $ $ % 3 *#;+;712; Fig. 1.45 Building forms defining volumes of space (a) Doric temple
© Oxford University Press

Fig. 1.45 (contd) (b) Villa at Gardens (in France) (built by Le Corbusier)
Fig. 1.45 (contd) (c) Barn (in Ontario, Canada)
© Oxford University Press
© Oxford University Press

= F
*$2 ! ! $$ ?% $ *=2 *2;
"
3 %3 % ; *$2 =' $$ ;
© Oxford University Press
*2 = $ $I $ ; $ ' % *#;+;7,2;
*2 = $ $ $I ; Fig. 1.48 Edges (buildings) are defined along an axis
© Oxford University Press

Fig. 1.50 A row of columns viewed through the entrance arch defines an axis
= % $ % % ; $ 3 *#;+;702;Fig. 1.49 Different terminating elements of an axis
*2 * ' 3 *2$I $%
© Oxford University Press
$ =; *$2 ! ! ?%$$ 3

Fig. 1.52 A building in Venice, Austria. Two axes can be established about which the arched openings and the elements in the elevation are symmetrical
Fig. 1.53 Oak Park, Illinois (built by F.L. Wright). A vertical axis can be established.
Fig. 1.54 A portion of a building that is symmetrical
@ @ 3 3; # $ @ $* #+;1<+;182;

Fig. 1.55 Principle of hierarchy—the central structure is given more importance by varying its height and structure
Fig. 1.56 Form or space articulated to be visually unique
! @ $% '$ %$?*#;+;1-2; $ 33 *#+;1./+;102;
Fig. 1.57 Form or space can be made visibly unique
*2 $ 3 $$ ;

Fig. 1.58 Legislative Assembly Building, Capital Complex, Chandigarh (built by LeCorbusier). The roof of the assembly hall dominates by size, shape, and strategic location.
© Oxford University Press

(% )
© Oxford University Press

Fig. 1.60 Column details: Notre Dame, France. Beams and columns repeat to form structural bays—principle of rhythm.
Fig. 1.61 Harmonious recurrence of lines, shapes, or forms
$ *2 *$2 % ; 3 ; *#;+;-+2; $ $ % ; 3 ' ' 3 $%?$ ;
© Oxford University Press
Fig. 1.63 Reims Cathedral, France
# +;-8/+;.6 % % ;
© Oxford University Press

Fig. 1.64 Cathedral of Salisbury Fig. 1.65 Dipteral Fig. 1.66 The Smintheum
Fig. 1.67 The Victorian façade facing a San Francisco street. Observe the repetition of the elevation façade.
© Oxford University Press

Fig. 1.68 View of a villa in Spain. The rhythmic pattern is observed in the form of the buildings.
Fig. 1.69 Studies on the internal façade of a basilica. The repetition of the columns, archways, and windows in the elevation is marked as a, b, c, … .
© Oxford University Press

Fig. 1.70 Sydney Opera House, Australia (built by John Utson). The roof structure forms a rhythmic pattern.
%
; ;
(a)
(b)
(c)
(d)
(e)

Fig. 1.72 Temple group, Japan—random patterns of elements are organized
Fig. 1.73 Arcades unify the facades of houses that face the Town square of Czechoslovakia
© Oxford University Press

Fig. 1.74 German pavilion in the World Exhibition, Montreal, Canada. The cable structure unifies the varied structures beneath it, through regularity, continuity, and constant pressure.
© Oxford University Press

%
3 ' % % * 2; ' $ = % ; $ ; 3 3 $ ' *#;+;.-2' = ' $ $ ' ;#+;../+;,6;
Fig. 1.76 Plan development of North Indian Cella. A formal structure is transformed through a series of changes.
Fig. 1.77 Villa Savoye, France. Transformation of the ramp in a square, ‘Free Plan’ Organization by Le Corbusier.
© Oxford University Press

Fig. 1.78 George Blossom House, Chicago. Transformation of the Cruciform plan organization by F.L. Wright.
Fig. 1.79 Mill Owner’s Association building, Ahmedabad. Transformation of ramp leading from the road to the elevated entrance of the building by Le Corbusier.
© Oxford University Press

Fig. 1.80 Ward Willet’s House, Illinois. Transformation of the Cruciform plan organization.
%@ % % % ' % $ ? B ' ' B$ = ; $ 3
; <;
!"
*67 4 8
+; ; <; ( $3% M 8; ; 7; ( M 1; ; -; ; .; ( $M ,; ( M 0; ; +6; 9 3 M ++; ( $ M +<; ( =M +8; $ ; +7; 33 ;
*2 *$2 & *2 *2 :
+1; ( M +-; ( $ M +.; ( =M +,; ( $M +0; ( $3$M <6; ( M <+; ; <<; ( M <8; ( $ M
*6"79 4 8
+; ( 3 =