Top Banner
PRESENTS DANNY TERNO & ETERA LIVINE With contributions from Asher Peres, Viqar Hussain and Oliver Winkler PRODUCTION
23

PRESENTS

Feb 09, 2016

Download

Documents

ESMA

DANNY TERNO & ETERA LIVINE. PRODUCTION. With contributions from Asher Peres, Viqar Hussain and Oliver Winkler. PRESENTS. B. A. L. K. H. C. E. O. L. when. T. M. E. N. E. N. T. '. L. E. m et. Outline. Volume 1: new properties. Noncovariance of reduced density matrices - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PRESENTS

PRESENTS

DANNY TERNO & ETERA LIVINE

With contributions fromAsher Peres,

Viqar Hussain and Oliver Winkler

PRODUCTION

Page 2: PRESENTS

when

met

Page 3: PRESENTS

Noncovariance of reduced density matrices Noninvariance of entropy Implications to holography and thermodynamics

Outline

Entanglement and black hole entropy Entanglement and Hawking radiation

Volume 1: new properties

Volume 2: old applications

Page 4: PRESENTS

Volume 1: new properties

Page 5: PRESENTS

Noncovariance (1)

spin

momentum

classical info

DExample: Lorentz transform of a single massive particle

( ) ( ) ,d p p p

*( ) ( ) ( )d p p p 2 2/ 2( ) ,

1p N e

m

p

,)],([,)( ppWDpUtransform: valong the z-axis

important parameter:

21 1m

vv

sincos

Page 6: PRESENTS

Partial trace is not Lorentz covariantSpin entropy is not scalarDistinguishability depends on motion

1

2

3

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

2

3

0

0.2

0.4

0.6

0.8

0

3.0

6.0

Entropy

Peres and Terno,Rev. Mod. Phys. 76, 93 (2004)

sincos

21 1m

vv

Page 7: PRESENTS

herethere there

here( ) 0S

here

trace out “there”

2( / )cS f A l

Bombelli et al, Phys. Rev. D34, 373 (1986)

i i ii

c Holzhey, Larsen and Wilczek, Nucl. Phys. B424, 443 (1994) Callan and Wilczek, Phys. Lett.B333, 55 (1994).

Noncovariance (2)Geometric entropy

c Pl l

Page 8: PRESENTS

1

=?

no correlationsno Bell-type violations

1 2( ) ( )U U not irreducible

Transformations do not split into here and there spaces

i i ii

c

Decomposition of Lorentz transformations

Terno, Phys. Rev. Lett. 93, 051303 (2004)

1 2( ) ( ) ( )U U U

trivial 1D rep

irrep of 1-particle states

Page 9: PRESENTS

Noninvariance (1)

Yurtsever, Phys. Rev. Lett. 91, 041302 (2003)

24 P

ASl

Bekenstein, Lett. Nuovo Cim. 4, 737 (1972) ….Busso, Rev. Mod. Phys. 74,825 (2002)

3 3PN L l

4max ( )E c G L

2 2PS L l

Pm

maxE

Boundary conditions & cut-offs

Model

Number of degrees of freedom " " SN e

N is frame-dependent

Page 10: PRESENTS

Lorentz boost: factors 1/γ

26A L 2' 2 (1 2 / )A L

21 v

max max' (1 )S S v

Spacelike holographic bound

both area and entropy change

Saved ?

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

v

' 'S A

Terno, Phys. Rev. Lett. 93, 051303 (2004)

Page 11: PRESENTS

Black holes: invariance

( )S S A

Hawking’s area theorem constS

Model 1+1 calculations: the same crossing point, relative boost

Two observers with a relative boost

-

Fiola, Preskill, Strominger,Trivedi, Phys. Rev. D 59, 3987 (1994)

-

constS

Page 12: PRESENTS

Noninvariance (2)Accelerated cavityMoore, J. Math. Phys. 11, 2679 (1970)Levin, Peleg, Peres, J.Phys.A 25, 6471 (1992)

Accelerated observers & matter beyond the horizonTerno, Phys. Rev. Lett. 93, 051303 (2004)

Page 13: PRESENTS

Volume 2: old applications

Page 14: PRESENTS

Entanglement on the horizon

Requirement: SU(2) invariance of the horizon states

Object: static black hole

0J

States: spin network that crosses the horizon

Qubit BH

Page 15: PRESENTS

1/ 2 2A a n

1

1 N

k kkN

2 0k J

tr log logS N

density matrix

2 2

3

21

n nnCN

n n

Standard counting story

area

constraint 2n spins

number of states

entropy 32log 2 log 2 logS N n n

Fancy counting story

entropy

( 1)ja j j

Page 16: PRESENTS

EntanglementMeasure: entanglement of formation

i i ii

w ({ }) ( )i i ii

S w S tr

{ }( ) min ({ })ES S

2 vs 2n-2States of the minimal decomposition

0 00,0, 0,0,a bdegeneracy indices

11 1 1 1 1 13

1, 1, 1,1, 1,0, 1,0, 1,1, 1, 1,a b a b a b

Alternative decomposition: linear combinations Its reduced density matrices: mixturesEntropy: concavity

Page 17: PRESENTS

unentangled fraction 140f

entanglement 34( | 2) log3ES

n vs n 12( ) logES n

Entropy of the whole vs. sum of its parts

half( ) 2 ( ) 3 ( )ES S S

reduced density matrices ( ) ( ) log 2A BS S n

( ) ( ) ( )A BS S S

BH is not madefrom independent qubits,

but…Livine and Terno, gr-qc/0412xxx

Page 18: PRESENTS

Entanglement and Hawking radiation

Hussein,Terno and Winkler, in preparation

in grav mat

out inU

mat grav outtr

mat out( ) ( )ES S

Page 19: PRESENTS

Summary

when

met

Reduced density matrices are not covariant Entropy (and the # of degrees of freedom) are observer-dependent

Entanglement is responsible for the logarithmic corrections of BH entropy

Entropy of the BH radiation = entanglement entropy between gravity and matter

Page 20: PRESENTS

Thanks toJacob BekensteinIvette Fuentes-SchullerFlorian GirelliNetanel LindnerRob MyersJohnathan OppenheimDavid PoulinTerry RudolphFrederic SchullerLee SmolinRafael SorkinRowan Thomson

Page 21: PRESENTS

TechniqueTechnique:

Unruh effect

'', ' ', '

', ' '

1kr

k m k mrk m k

e r rZ

( )S

Entropy usually diverges maxS

General: cut-off

: lim ( , ) ( , )l

S S l S l

''

2

krk

rZ e

a

trB

renormalization of entropy

Page 22: PRESENTS

UnruhUnruh ++

Audretsch and Müller, Phys. Rev. D 49, 4056 (1994)

Matter outside the horizon

'', ' ', ' , ,

', ' ',

1 1 ( )!! !

k kqrk m k m n k m k m

r qk m k kk m

n qe r r e r rZ Z n q

n particles in the mode (k,m)

''

2

krk

rZ e

a

Splitting: usual + super

Page 23: PRESENTS

1ne Special case

renormalized quantitiesE ne

( ( 1) log( 1))S n n n n e

temperature

1 ln( 1)ndS dEdn dnT

Of what?

/ ( ln( 1)) 0S E T n n e

two subsystemsGeneral case:

temperature is undefined

Two observers: the same acceleration,

different velocities

1 2S S

/S E T