Top Banner
55

Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Dec 24, 2015

Download

Documents

Hilary Shaw
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.
Page 2: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Presented by

Major Dr /Moamen Khalifa

chest specialist in military academy

Page 3: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Preneoplastic Syndrome

Page 4: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Introduction

Lung cancer is the leading cause of cancer deaths worldwide.

If we can define and detect preneoplastic lesions, we might have a chance of improving survival.

Page 5: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Despite advances in therapy; the over all survival rate for lung cancer patients only 15 % due to relatively advanced stage of the disease at diagnosis

Why?Screening can detect small

asymptomatic nodules (2-3 mm)

But!!!!!!!! It already malignant

Page 6: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

.Lung cancer consists of 4 major types including :

1- Squamous cell carcinoma,2- Adenocarcinoma, 3-Large cell carcinoma,4-Small cell carcinoma.

Page 7: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

The sequential preneoplasticchanges have been well defined for: 1)Centrally arising squamous cell carcinomas,2)Peripheral adenocarcinomas

While!!!!

Page 8: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

No preneoplastic lesions have been defined

For

Small Cell Lung Carcinoma

Page 9: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Definition of preneoplasia

Preneoplasia is used to identify groups of phenotypically altered cells.

Preneoplastic changes have been shown to consistently reflect sequential steps in carcinogenesis.

They include specific alteration in bronchial mucosa and epithelial alveolar layer.

(Microscopically visible )

Page 10: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

The Origen

Preneoplastic lesions of the lungs may start in; The basal layer of the bronchial mucosa orIn the bronchial glands As well as in bronchioalveolar epithelial layer (Clara cells &type 2 pneumocytes ) And may also affect neuro-endocrine cells in bronchial mucosa

Page 11: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Why we do our best to define and detect

preneoplastic lung lesions ?

Because

Page 12: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Lung cancer could be identified earlier at a preneoplastic stage, before:

1) Angiogenesis,

2)Invasion and Micrometastases can occur we might have a greater chance of improving survival.

Page 13: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

What are the preneoplastic lesions of the lungs ?

The World Health Organization (WHO) recently published a tumor classification system that defines three different preneoplastic lesions of the bronchial epithelium:1) Squamous Dysplasia (SD) and Carcinoma In Situ (CIS), which may be precursors to Squamous Cell Carcinoma (SCC);

2)Atypical Adenomatous Hyperplasia (AAH), which may be the progenitor lesion for Adenocarcinoma (particularly peripheral);

Page 14: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

3)Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIP-NECH), which may progress to

carcinoid Additional possible preneoplastic lesions and conditions include:

Basal cell hyperplasia and squamous metaplasia (progressing to SD and CIS); Adenomatous hyperplasia (progressing to AAH); Angiogenic squamous dysplasia (consisting of microscopic projections into the bronchial lumen, surfaced by squamous dysplasia); and

Pulmonary fibrosis.

Page 15: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Carcinoma in situ full thickness sever cytological atypia with chaotic appearance

Page 16: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Atypical adenomatous hyperplasia lesion found in centriaciner zone and showing alveolar wall thickening and increased numbers of alveolar lining cells

Page 17: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Data supporting the preneoplastic nature of lesions

1)Circumstantial evidence (lesions found in association with malignancies or in patients with high risk of developing lung cancer).

2)Genetic evidence (genetic similarities found between tumors and their associated preneoplastic lesions).

Page 18: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Circumstantial evidence

Patients with primary cancer in the lung or upper aero digestive tract have an increased RISK of developing synchronous or second primaries

This risk is likely to be related to chronic exposure of the bronchial tree to

Carcinogens.

Page 19: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Cigarette smoke causes a field change in the mucosa with mutations demonstrable even in histologically normal areas ('field cancerization').

After smoking cessation, many of these mutations seem to persist indefinitely, so risk of lung cancer never reverts to that of a lifelong nonsmoker

Thus

Page 20: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Broad areas of the tracheobronchial tree in high-risk patients are prone to premalignant or multifocal malignant change.

The finding of these presumed premalignant lesions in cancer-bearing lungs or in patients at high risk of developing lung cancer is circumstantial evidence of the lesions' preneoplastic nature, and supports the field cancerization theory

Page 21: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Several studies have shown an increased incidence of squamous metaplasia and dysplasia in the lungs of smokers.

In contrast, we still have little information about the incidence of AAH or DIP/NECH in either smoking or nonsmoking populations.

Page 22: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Genetic evidence

Alterations in gene expression and chromosome structure known to be associated with malignant transformation can be demonstrated in squamous metaplasia, dysplasia and CIS, as well as in AAH.

These changes can be seen both as proof of the preneoplastic nature of the lesions, and aspossible markers of transformation

Page 23: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Cell proliferation markers and cell cycle regulators

Hyperproliferation and loss of cell cycle control seem to be early events in malignant transformation.

Staining for proliferation markers (PCNA and Ki-67) increased with increasing atypia in both squamous cell dysplasia and AAH

Page 24: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Normal bronchial mucosa, The first column shows hematoxylin and eosin (H&E) tissue staining The second column shows staining for the proliferation marker, Ki-67. Ki-67 is essentially negative in normal tissue.

Page 25: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

The picture of AAH shows low (40×) and high (400×, inset)power images inThe first column. The images show increased Ki-67 in AAH inthe second column

Page 26: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

The H&E staining of squamous dysplasia shows relatively normal mucosa on the left of the image and severe dysplasia on the right. In severe dysplasia, there is considerable cellular pleiomorphism The images show further increased Ki-67 in squamous dysplasia

Page 27: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

coarse uneven chromatin, and little cell maturation. Vertical nuclei and mitotic figures are present in the lower two thirds of the mucosa. In invasive carcinoma the cytological aberration is extreme, mitoses occur at all levels of the mucosa, and maturation is absent.

Page 28: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

DNA ploidy

Studies in both squamous cell metaplasia/dysplasia and AAH have shown progressive, increased aneuploidy with increasing atypia

A few studies have shown aneuploidy of chromosome 7 in both the bronchial epithelium of patients with high risk for lung cancer (smokers, uranium miners) and in preneoplastic lesions, with an increase in the percentage of aneuploid cells from preinvasive to invasive lesions

Page 29: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

TelomeraseTelomerase is thought to play a role in conferring immortality on tumor cell populations. It may prevent progressive telomere shortening and therefore cellular senescence. In adult somatic cells telomerase is inactive, whereas the enzyme is activated and expressed in most human cancers.

They found telomerase activity in 95–100% of CIS and invasive disease, in 70 to 80% of both hyperplasic and dysplastic bronchial epithelium, and in only 20% of normal epithelium.

When they assayed activity, they found preinvasive lesions had enzymeactivity only 3–4 times normal, whereas in invasive disease, activity was more than 40 times normal.

Page 30: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

k-ras genesThe ras genes play an important role in signal transduction and cellular proliferation (through the mitogen-activated protein kinase pathways) and were among the first oncogenes identified.

Mutation of k-ras is found in about 30% ofnon-small cell carcinoma, and is more common in adenocarcinoma than in squamous cell carcinoma.

Accordingly, studies have found k-ras mutation more commonly in AAH than in SD.

Page 31: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

FHITThe FHIT gene (fragile histidine triad tumor suppressor gene) is frequently deleted in many carcinomas, including lung

This gene encodes a protein that hydrolyzes diadenosine triphosphate to ADP and AMP in vitro. Although the in vivo function of this protein is not known, it may play a role in celldeath through apoptosis and/or may affect cell proliferation.

Loss of FHIT protein is the most frequent alteration innon-small cell lung carcinoma and precancerous lesions (both squamous cell and adenocarcinoma). The frequency of loss increases as the grade of dysplasia increases

Page 32: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Genomic alterations and LOH studies

The most common and earliest changes in both squamous cell carcinoma and adenocarcinoma seem to involve allele-specific loss of genome at 3p and 9p and perhaps 17q, among others .These changes involve all regions of the respiratory tract, and occur with increasing frequency with increasing atypia.

Loss of heterozygosity (LOH) at this locus was found in atypical carcinoids as well.

Page 33: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

MethylationRecently, there has been increased interest in the significance of the methylation of genes and their promoters.

Aberrant methylation of gene promoters can silence gene expression. In an animal model exposed to tobacco carcinogen, methylation was frequent in preneoplastic lesions.

In human lung cancer, p16, p53 and k-ras promoter hypermethylation has been seen. Aberrant methylation of the promoter regions of other tumor suppressors may also play a role in carcinogenesis.

Page 34: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Other possible markers of transformation

Increasing neovascularization and vascular count has been found with increasing dysplasia of lesions of the bronchial tree

Accordingly, expression of vascular endothelial growth factor was found to increase from normal tissue to SD to CIS to invasive cancer

Changes in the extracellular matrix may also distinguish normal, preinvasive, and malignant lesions.

Many other proteins have been found to have either increasedor decreased expression, correlating with increasing histopathologic abnormality. (fatty acid synthase, thrombomodulin and epithelial cellular adhesion molecule)

Page 35: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

SQUAMOUS LESIONSThe spectrum of mucosal abnormalities associated with squamous cell carcinoma has been known for many years. These include basal cell hyperplasia, squamous metaplasia, dysplasia, and carcinoma in situ, which are all usually seen in the background of invasive squamous cell carcinoma of the large airways. However, the same mucosal abnormalities may be detected in smokers without evidence of carcinoma.The frequency of these lesions in smokers correlates with the number of cigarettes smoked.These lesions are preinvasive and reversible, which means that they may not necessarily progress into invasive carcinoma and may regress if an individual quits smoking.

Page 36: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Morphologic Entities

1)Goblet cell hyperplasia: May be seen in a background of carcinoma.

It consists of an increased number of goblet cells in the bronchial mucosa. In goblet cell hyperplasia, the goblet cells are frequently adjacent to one another and may appear multilayered, the nucleus is basally located, the chromatin is dense, and the cytoplasm is abundant

Page 37: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

2) Basal cell hyperplasia:

Is characterized by expansion of the basilar zone of bronchial mucosa. Nuclei are small, round, and stratified in the lower levels of the mucosa. Cytoplasm is scant. Goblet cells and cilia are maintained at the luminal surface

Page 38: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Transbronchial biopsy showing goblet cell hyperplasia (left) and basal cell (reserve cell) hyperplasia (right) in a patient with a historyof squamous cell carcinoma of the lung. An intact thickened basement membrane is present (hematoxylin-eosin,

Page 39: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

3) Immature squamous metaplasia:

Is similar to basal cell hyperplasia except that the metaplastic epithelium occupies nearly the full thickness of the epithelium. In comparison to mature squamous metaplasia, cells have less cytoplasm and are nonkeratinized.

Ciliated cells may be retained on the epithelial surface, but goblet cells are usually depleted.

Page 40: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

4)Mild squamous dysplasia :

Is characterized by mildly increased epithelial thickness, with slightly enlarged cells showing mild anisocytosis and pleiomorphism.

The basilar zone is expanded with cellular crowding in the lower third.

The intermediate zone is intact and distinct, and cells show superficial flattening. Chromatin is finely granular.

Nuclei show minimal angulation and are vertically oriented in the lower third.

Nucleoli are absent. Mitoses are absent or very rare

Page 41: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

mild squamous dysplasia

Page 42: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

5)Moderate squamous dysplasiaIs characterized by moderately increased epithelial thickness, with moderately enlarged cells, although in some cases cells may be small.

Moderate anisocytosis and pleiomorphism are common features. The basilar zone is expanded with cellular crowding in the lower two thirds.

The intermediate zone is confined to the upper third of the epithelium, and cells show superficial flattening.

Similar to mild dysplasia, chromatin is finely granular and nucleoli are absent.

However, nuclei are angulated with grooves and lobulations and are vertically oriented in the lower two thirds. Mitoses are present in the lower third.

Page 43: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Moderate squamous dysplasia

Page 44: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

6)Severe squamous dysplasia :Is characterized by markedly increased epithelial thickness. The basilar zone is expanded with cellular crowding into the upper third.

Cells are large with marked anisocytosis and pleiomorphism. No or little maturation is seen from base to luminal surface. Intermediate zone is attenuated, and cells show superficial flattening. In contrast to mild and moderate dysplasia, the chromatin is coarse and uneven.

Prominent nuclear angulation and folding are present with nuclei vertically oriented in the lower two thirds. Nucleoli are frequently present. Mitoses are present in the lower two thirds

Page 45: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Sever squamous dysplasia

Page 46: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

7)Squamous carcinoma in situ

May not be necessarily associated with increased epithelial thickness. Cells are usually markedly increased in size and may show marked anisocytosis and pleiomorphism.

Usually there is no progression of maturation from base to luminal surface the epithelium has a monotonous appearance.

The basilar zone is expanded with cellular crowding throughout the epithelium.

Nucleoli may be present or inconspicuous. Mitoses are present through the full thickness of the epithelium.

Page 47: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

GLANDULAR LESIONSRecently, substantial attention has been paid to AAH that is considered to represent the adenoma in a putative ‘‘adenoma-carcinoma’’ sequence in the lung periphery leading to the development of non mucinous BAC and invasive peripheral adenocarcinoma.

These lesions are detectable on high-resolution computed tomography scan as small, ground glass densities

Page 48: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

What is Atypical Adenomatous Hyperplasia? (AAH)

The WHO

defines AAH as a localized proliferation of mild to moderately atypical cells lining involved alveoli and sometimes respiratory bronchioles, resulting in focal lesions in peripheral alveolated lung, usually less than 5 mm in diameter.

Page 49: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Histology of AAHDiscrete parenchymal lesion arising often in the centriacinar region . The alveolar septa are lined by rounded, cuboidal, low columnar cells with round to oval nuclei showing either Clara cell or type II pneumocyte differentiation. Intranuclear inclusions are a frequent feature and may be seen in up to 25% of the cells . Ciliated and mucin producing cells are absent. Mitoses are extremely rare. Cellularity and atypia are variable. The majority of the lesions show a discontinuous lining of the alveolar septa with cells showing minimal atypia, whereas in some cases cells may be more continuous exhibiting moderate atypia.

Pseudopapillae and tufts may be present.

Page 50: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

A, Atypical adenomatous hyperplasia is a centriacinar lesionusually identified in a peripheral lung parenchyma.

Page 51: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

B, Thickened alveolar septa are lined by round, cuboidal, and/or low columnar cells frequently showing intranuclear inclusions.

Page 52: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

DIFFUSE IDIOPATHIC NEUROENDOCRINECELL HYPERPLASIA

It may be arranged as a diffuse proliferation of scattered single neuroendocrine cells, small nodules (neuroendocrine bodies), or a linear proliferation of pulmonary neuroendocrine cells confined to the epithelium of large and small airways. When there is extension of neuroendocrine cells beyond the basement membrane that measures less than 5 mm in diameter, the term carcinoid tumorlet is appropriate.

Proliferations larger than 5 mm are classified as carcinoid tumors and may be associated with diffuse idiopathic neuroendocrine cell hyperplasia.

Page 53: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Bronchial mucosa showing focal proliferation of neuroendocrinecells. This was seen in a patient with a typical carcinoid tumor

Page 54: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

SUMMARYA careful morphologic examination of lung specimens using established histologic criteria is necessary for diagnosing preneoplastic lesions of lung carcinoma.

Histologic examination together with improved techniques of molecular biology will help us to improve our understanding of lung carcinogenesis.

In the future, we might possibly be able to use a combination of histology and molecular biology within the clinical arena, resulting in earlier detection and decreased mortality of lung carcinoma

Page 55: Presented by Major Dr /Moamen Khalifa chest specialist in military academy.

Thank You