Top Banner
Improving Water Quality using Indigenous Natural Treatment Methods Amitava Rakshit TWAS Nxt Fellow [email protected]
42
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Presentation iit

Improving Water Quality using Indigenous Natural Treatment Methods

Amitava Rakshit TWAS Nxt Fellow

[email protected]

Page 5: Presentation iit

Water is the life blood of our planet

Sufficient water supply of appropriate quality is a key ingredient in the health and well-being of humans and ecosystems, and for

social and economic development.

Page 6: Presentation iit

Water Down: the embarrassing lack of clean water access

Page 7: Presentation iit

Distribution of population and water resources

Page 8: Presentation iit

Becoming an International Agony

36 percent of the global population—

approximately 2.4 billion people—live in water-

scarce regions

22 percent of the world's GDP (US$9.4

trillion) is produced in water-scarce areas.

39 percent of global grain production is

unsustainable in terms of water

1.4 billion people live in areas with sinking

groundwater levels.

Page 11: Presentation iit

Around 17.6% of households in India don't have access to any source of drinking water in or near their

premises.

In last 50 years 21 million wells have been dug and 30% have been abandoned because water no longer

flows.

The main source of drinking is tap water(43.5%) followed by hand pump(42%) and open wells (14.5).

More than 27 million households in India drink untreated water. Around 37.7 million people are affected

by water borne diseases annually.

1.5 million children are estimated to die of diarrhoea alone.

73 million working days are lost due to water borne disease.

Subsequent economic burden is $600 million a year.

66 million Indians are as risk due to excess fluoride, 10 million due to excess arsenic.

Page 12: Presentation iit

System is Overloaded!

This becoming an Iraqi surface to air missile.

Page 13: Presentation iit

Multiple OptionsThe different treatment methods used are classified in three different categories as:Primary Treatment : Refers to physical unit operations.Secondary Treatment: Refers to chemical and biological unit processes.Tertiary Treatment: Referes to combination of all three i.e., physical unit operationsand chemical or biological unit processes, used after secondary treatment.

Page 15: Presentation iit

Need For Vibrant approach

For sujalam( Clean water), suphalam( clean food) , Malayaja sheetalam (fresh air)

Page 16: Presentation iit

Integration is key

Basics: Coagulation-flocculation followed by sedimentation, filtration and disinfection(chlorine)

Page 17: Presentation iit

Economics of different levels of treatmentsParticulars Primary treatment

system Primary + ultra filtration system

Primary + ultra filtration system + reverse osmosis

Capital cost (Rs lakhs) 30.0 90.64 145

Annualized capital cost (@15% p.a. interest & depreciation

5,79 18.06 26.69

Operation and maintenance cost (lakhs/annum)

5.88 7.04 12.63

Annual burden (Annualized cost +O&M cost) Rs. Lakhs

11.85 27.1 42.5

Treatment cost Rs./kl(Without interest and depreciation)

34.08 52.40 73.22

Page 18: Presentation iit

An Inconvenient Truth

• Natural materials have been used in water treatment since ancient times butlack of knowledge on the exact nature and mechanism by which they work hashindered their wide spread application.

• As a result, they have been unable to compete with the commonly usedchemicals.

• In recent years there has been a resurgence of interest to use naturalmaterials due to cost and associated health and environmental concerns ofsynthetic organic polymers and inorganic chemicals.

Page 19: Presentation iit

Use of Plant Species• Natural plant extracts have been used for water purification for many centuries and

Egyptians inscription afforded the earliest recorded knowledge of plant materials used forwater treatment, dating back perhaps to 2000BC .

• In recent years there has been considerable interest in the development of usage ofnatural coagulants which can be produced extracted from microorganisms, animal orplant tissues.

• These coagulants should be biodegradable and are presumed to be safe for human health.

• Natural coagulants produce readily biodegradable and less voluminous sludge thatamounts only 20– 30% that of alum treated counterpart.

• Can reduce hardness in water or wastewater with better performance and a low risk to environment.

• Nowadays a number of effective coagulants have been identified of plant origin. Some ofthe common ones include Moringa olifiera, Solanum incunum, Ocimum sanctum,Azadirachta indica, Triticum aestivum, Phyllanthus emblica and Strychnospotatorum and others .

Page 20: Presentation iit

Taxonomic diversity of plants used for water treatment.

Family Number of Genera Percentage Number of species Percentage of species

Fabaceae 10 26.3 10 25.0

Fagaceae 2 5.2 4 10.0

Malvaceae 3 7.8 3 7.5

Cactaceae 2 5.2 2 5

Cucurbitaceae 2 5.2 2 5

Euphorbiaceae 2 5.2 2 5

Poaceae 2 5.2 2 5

Other 15 families 15 39.4 15 37.5

Total 38 100 40 100

Page 21: Presentation iit

Who are the eligible candidates?

Ocimum sanctum

Azardiracta indica

Phyllanthus emblicaTriticum aestivum

Solanum incunumStrychnospotatorum Carica papaya

Moringa oleifera Dolichos lablab Phaselous vulgaris

Opuntia ficus indica

Castanea sativa

Page 22: Presentation iit

Cicer arientinum

Q.rubra Coccinia indica Phoenix

Azadirachta indica

Aloe barbadensis

Citrus aurantifoliaJatropha curcas

Luffa cylinderca

Page 23: Presentation iit

Hibiscus sabdarifa

Cuminum cyminumTrigonella foenum graecum

Strychnos potatorumMangifera indica

Carica papaya Vigna unguiculata

Parkinsonia aculeata

Garciniakola Heckel

Page 24: Presentation iit

Many more in the list

Quercus robur Senna alataAesculus hyppocast annum

Page 25: Presentation iit

Plant parts usedMost of these extracts are derived from the seeds, leaves, pieces of bark or sap,

roots and fruit extracts of trees.Protein is reported to be the main component responsible for coagulation-flocculation

process.

A polyelectrolyte: active ingredient responsible for coagulationactivity. High cationic charge density, long polymer chains, bridging ofaggregates, and precipitationBioactive constituents:

Pterygospermin (C22H18N2O2S2:),an unstable substance with low melting point

Benzyl isothiocyanate, Glucosinolate

Page 26: Presentation iit

How it works?

The coagulation mechanism was reported to be throughcharge neutralization ,adsorption and bridging.

In coagulation and disinfection, a substantial number of active compounds havebeen isolated from various parts of plant species. Thus, isolating the activecomponent is critical not only to understand the coagulation mechanism, but also todevelop pretreatment practices for potential field implementation .

Natural coagulants were more efficient in higher turbidity ranges than lower andmedium turbidity waters either in artificially prepared or natural turbid raw waterincluding surface and ground water.

Page 27: Presentation iit

Of the large number of plant materials that have been used over the years, Moringa oleifera have been shown to be one of the most effective crop

species for water treatment

Page 28: Presentation iit

Moringa oleifera –Multipurpose tree-Model plant

It has been widely used for many purposes, including water purification by activated carbon from its

seed husks

M. oleifera seeds contain coagulant molecules such as proteins which showed good flocculating effects

.A protein extracted from M. oleifera seed has demonstrated its effectiveness in wastewater systems

removing 99% of suspended solids without changing the pH of the water.

Heavy metal removal such as Cd(II), Cr(III) and Ni(II) .

nutrition sources, medicinal purposes ,antibacterial agents

M. oleifera seed coagulant was able to significantly improve the clarification of highly turbid river

water, showing a high reduction in its turbidity

Protein in the M. oleifera seed is a natural product, which can reduce hardness in water

Page 30: Presentation iit

Chemical composition of crude powder of Moringa

Page 31: Presentation iit

Average seed kernel yield of a mature plant:3 kg

One tree can treat 30,000 ltrs(@ 100 mg/l)

For 1 ha plantation with 3 m spacing yield :3000 kg which can treat 30,000 m3 water= A treatment plant 10 m 3 hr-1

with 8 hrs a day for a full year

Simple Statistics

Thumbs rule

Page 32: Presentation iit

Purification of natural coagulants

• The limitation of natural coagulants and disinfectants include organic load andresidual (storage).

• Therefore, Purification of natural coagulants is vital in order to reduce organicload and helps to use in a large scale because of the fact that the crude extract isnot generally suitable for large water supply systems where the hydraulicresidence time is very high and this is indicated in the result of who reportedcoagulation efficiency decreased as storage duration increased.

• Another disadvantage of natural coagulants is its efficacy only for highly turbidwater.

• Therefore, active agents should be purified and characterized using differenttechniques, namely dialysis, ultrafiltration, lyophilisation, ion-exchange,chemical precipitation, SDS-PAGE and electro phoresis.

• Isolating the active component is critical not only to understand the coagulationmechanism, but also to develop pretreatment practices for potential fieldimplementation .

Page 33: Presentation iit

• Natural coagulants produce less sludge volume compared with Alum andthey require no pH adjustment..Considerable savings in chemicals and sludgehandling cost may be achieved.

• They are great interest for low or zero net costl water treatment and help toprovide pure water for developing countries who hardly get pure water and anadditional benefit of using coagulants derived from natural products, is that anumber of useful products may be extracted from the seed.

• In particular, edible and other useful oils may be extracted before thecoagulant is fractionated. Residual solids may be used as animal feed andfertilizer, while the shell of the seed may be activated and used as anadsorbent.

• Usage of natural products also reduces the formation of disinfectants thatdeteriorate human health and their byproducts are organic and biodegradableand reduced risk of handling.

Page 35: Presentation iit

Physio- Chemical Analysis of Sewage Waste Water

S.No

Parameter Beforetreatment

After treatment(M.o) After treatment(Alum) After treatment(M.o+Alum)

50mg/l 100mg/l 150mg/l 50m/l 100mg/l 150mg/l

50mg/l 100mg/l 150mg/l

1. pH 4.5 7.93 7.8 7.7 7.53 7.13 7.13 7.3 7.1 7.3

2. EC 961.5 430.5 431 434 417.5 435.5 449.5 427.5 444.5 442.5

3. TDS 640.16 286.71 287.04 289.04 278.05 290.04 299.36 284.71 296.03 294.70

4. Hardness 22.5 10.04 10.68 10.56 11.2 10.82 10.44 10.52 10.72 10.64

5. DO 3.5 6.1 6.65 6.55 6.8 8 8.2 7.5 7.6 7.75

6. COD 238.4 236.8 255.2 234.4 241.28 228.8 233.6 236.8 248.8 223.2

7. Sodium 365.66 265.95 270.35 278.56 354.65 408.45 457.35 313.1 345 391.15

8. Potassium 48.33 23 24.35 27.35 54.75 74.50 90.60 38.8 50.35 67.80

Page 36: Presentation iit

Physio – Chemical Analysis of Saree Dyeing Waste Water

S.No Parameter Beforetreatment

After treatment(M.o) After treatment(Alum) After treatment(M.o+Alum)

50mg/l 100mg/l 150mg/l

50m/l

100mg/l 150mg/l 50mg/l

100mg/l

150mg/l

1. pH 7.3 8.1 7.83 8.0 7.90 7.80 7.60 7.80 7.70 7.73

2. EC 1378 1363.5 1516.5 1364.5 1361 1407 1426 1415 1394.33 1403

3. TDS 923.48 913.54 1016.05 1140.76 911.87 942.69 955.42 948.05 934.31 939.86

4. Hardness 328.33 258 278 257 237 217 248 273 246 243

5. DO 3.2 10.73 10.73 11 11.90 11.23 11.83 12.23 12.43 11.356. COD 259.2 134.4 127.2 112 127.2 107.42 105.6 117.6 117.6 108.8

7. Sodium 404.3 405.25 414.85 410.35 423.7 435.75 451.60 423.15 427.15 433.30

8. Potassium 4.5 4.7 4.93 5.13 7.83 11.73 7.40 7.13 8.23 9.93

Page 37: Presentation iit

S.No` Parameters Before treatment

After treatment (M.oleifera) After treatment(Alum) After treatment(M.Oleifera+ Alum)

50mg/l 100mg/l 150mg/l 50mg/l 100mg/l 150mg/l 50mg/l 100mg/l 150mg/l

1. pH 5.4 7.13 9.60 9.93 9.73 9.40 9.03 9.70 9.53 8.40

2. EC 10.96 8.75 7.58 7.72 7.66 7.79 7.82 7.74 7.71 9.06

3. TDS 7.29 5.82 5.07 5.14 5.10 5.18 5.20 5.15 5.13 6.02

4. Hardness 119 72 62 62 59 62 61 61 59 61

5. DO 2.53 2.75 3.20 3.50 3.33 3.20 4.05 3.75 3.50 4.05

6. COD 278.40 228 218.60 215.20 130.40 135.21 134.40 122.40 132.80 98.40

7. Sodium 1557 1286 1102.33 1111 1175.33 1229.33 1267 1148.33 1186.33 1366.33

8. Potassium 341.25 285.6 20.77 26.32 51.07 108.40 137.85 43.93 72.65 93.45

Physio – Chemical Analysis of Carpet Waste Water Before and After treatment

Page 38: Presentation iit

After treatment

Page 40: Presentation iit

What extra is needed?

• Active agent of indigenous plants which mediates turbidity and microbial removal mechanism that

should be investigated in detail

• Moreover, different simple purifying mechanisms should be investigated in order to reduce organic

load and recontamination. It is particularly important that such trials be applied at small scale

(household) level and scalability of this technology should be investigated.

• For instance they increase organic load in the water which tend restablization to occur.• In addition water treated with natural coagulants was reported only used for 24 hours and

inefficiency of treating low turbid water (<50 NTU)is another problem.

• However, toxicological test of natural coagulants and disinfectants is also crucial before

implementing the laboratory result to the field.

• In addition, comprehensive cost effectiveness and cost benefit analyses will also be crucial to be

made in order to see the affordability of natural coagulants and disinfectants to the poor community

living in developing countries.

Page 41: Presentation iit

Final submission

India is facing daunting challenges in water sector due to the demands of arapidly industrializing economy and urbanizing society.When potential for augmenting supply is limited and water tables are falling,water quality issues have increasingly come to the fore.Inventory of indigenous knowledge and plants used by local wisdom for waterpurification technologies is an unexplored area with huge unrealized potential.Plants identified were Moringa oleifera, Jatropha curcas, Pleurotustuberregium, Citruss aurontifolia, Strynos potatorium with their potentials ascoagulants with respect to turbidity removal and disinfection of water bornediseases vis-a vis the pitfalls of chemical coagulants and disinfectants .Biocoagulants are as efficient as Alum is purifying water and wastewater atlow cost. The need to further develop biocoagulants as green treatmentalternative for global water management admist growing global water crises .

Page 42: Presentation iit

Acknowledgement

Banaras Hindu University

MSc Students: Dharmendra,Mahesh,Lokesh,

Samarth, Shivaranjani, Papihara

Prof.Asit K. Biswas