Top Banner
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler Jochen Walz Sebastian Wolf WAG 13-15 November 2013 Bern 2014 – 2017 Bescool project
22

Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Jan 16, 2016

Download

Documents

Ethan Barnett
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Preparing antihydrogen at

rest for the free fall in

Laurent HilicoJean-Philippe KarrAlbane DouilletVu TranJulien Trapateau

Ferdinand Schmidt KalerJochen WalzSebastian Wolf

WAG 13-15 November 2013 Bern

2014 – 2017Bescool project

Page 2: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Outline

• H+ motion control requirements

• Capture and cooling challenges

• Experimental progress

Page 3: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

GBAR overview

Page 4: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Last GBAR steps

Reaction chamber

H+ Capture and cooling

by laser cooled Be+ ions

Threshold Photodetachment

=1.7 µmH at rest

g

H initial velocity v0 < 0.8 m/sH+

3 neV, 20 µK

Accurate measurment of g < 1 %

H

e+

H+

30 cm 1 .. 6 keVTemperature 60 .. 300 eV

Recoil 0.23 m/s

Page 5: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

H with v0 < 1 m/s ?

2i

aamp

Ground state quantum harmonic oscillator

mv

2

m = 1.67 10-27 kg , v0 < 0.8 m/s < 3 MHz

Cooling challengesReaction chamber

Kinetic energy 1 .. 6 keVTemperature 60 .. 300 eV 700 000 K

Trapped particuleTemperature 3 neV 20 µK

Capture + CoolingCold trapped H+

Classical world Frontiers of Quantum world

÷ 1010..11

NIST D. WinelandInnsbruck R. Blatt

Page 6: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

> 10 000 laser cooled Be+ ions100 neV, T ~ mK

few mm

300 eV, T = 240 000 K

H+

First step

Two Cooling Steps

T÷ 3 109

Capture and sympathetic Doppler cooling by laser cooled Be+ ions

313 nm laser

in the linear capture trap (Paul trap, r0 = 3.5 mm, = 13 MHz)

Second step

Transfer and ground state cooling of a Be+/H+ ion pair in the precision trap

F. Schmidt Kaler, S. Wolf , Mainz

Page 7: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Capture efficiency

300 ns bunch

0

25

50

75

100

0 0,5 1 1,5t block (µs)

ion

nu

mb

er

(%)

0

25

50

75

100

0 25 50 75 100

First stepBe+ laser cooled ions

1 keV H+ ions

1000… 0 VInput end-caps

Output end-caps

timeUbiais=980 V

H+ intake

0 V

Versus intake delay Versus initial temperature (eV)

eV

Biased linear RF Paul trap

Page 8: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Sympathetic cooling time First step

Ec= 2 meV313 nm laser

vt = 0 s

t = 8 ms

• Numerical simulation 500 Be+ and 20 H+

• Hotter H+ ions and larger ion clouds numerical challenge

Work plan : Experimental tests with matter ions H2

+ or H+

Page 9: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Precision trap – motional couplings

z

x,y

Be+H+

Two coupled oscillators in an external potential

T. Hasegawa, Phys. Rev. A 83, 053407 (2011)J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, 043412 (2012)

1D3D

normal modes

)cos(/

)sin(/

)(

)cos()sin()(

12

1

12

22

211

outoutout

ininin

outoutoutininin

tmm

zbt

mm

zbtq

tzbtzbtq

in phase modeout of phase mode

individual ion modesx, y, z

122

21 bb

• z trapping DC potentials• x,y trapping RF effective potentials• Coulomb interaction coupling

Newton equations equilibrium positions small oscillations

Second step

Page 10: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

mlc/msc

b12

z motionx,y motion

3,1.2,5.1~

,1

,1 z

x

Precision trap – motional couplings Second step

mLC/mSC 1 b1 = 50 % b2 = 50 %

mLC/mSC = 9/1 b1 = 99.996 % b2 = 0.872 %

Efficient sympathetic cooling

?

Page 11: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Doppler cooling in precision trap

>> 20 µK

Page 12: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Raman side band cooling

313.13 nm

2S1/2

2P1/2

2P3/2 F=0, 1, 2, 3

F=1, 2

Stimulated Raman transition

Spontaneous Raman transitions

n=3

n=2

n=2

hfs- i

3 laser freq.2 beams

hfs= 1.25 GHz

~ tens of GHz

Be+H+

vibr

Page 13: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Raman side band cooling

Stimulated Raman transition no spontaneous emission coherent process

n=3

n=2

n=2

)(sin)23( 2,32 tnnP Population transfert probability

nen aainn

)(21,' '

ukk

.21 Lamb Dicke parameter

For n → n-1, 22121

1, bnnnn

pulse duration 221

11

2 bn

Single ion b1 = 1 3 modes ~ 100 µs /n/mode

Be+/H+ b1z = 0.18 2 modes x 5

b1x,y = 0.0872 4 modes x 15

~ 10 ms

< 1s

Rabi oscillation

Second step

Page 14: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Experimental progress

Page 15: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

RF

DC O V DC

Hot H+

313 nm cooling laserQuadrupole guide

RF 250 V at 13.3 MHz, r0 = 3.5 mmDC’s 2 .. 10 V

Capture trap design Jean-Philippe Karr

12 mm

Page 16: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Design: Sebastian Wolf, MainzTransfer to precision trap

= 313 nm

= 1.64 µm

Cooling

Photodetachment

Mainz implantation trap

Capture trap

~2 mm

Page 17: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Vacuum vesselH+

Capture trapPrecision trap

with cryopumping

Page 18: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Evaluate sympathetic cooling timesnumerically & experimentally

Work plan11/2013

Achieve the design

12/2013

Setup the cooling lasers

Capture trap implementation

03/2014

Test with H2+ and H+ matter ions

from the REMPI source

12/2014

2013

2014

201506/2015

Test with Be+ and Ca+ ionsPrecision trap implementation

Transfer of precision trap to Paris,

12/2015

201603/2016 12/2016

Be+ and H2+ transfered in precision trap

Be+/H2+ ground state cooling

Page 19: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Tests with a H2+ / H+ REMPI source

P=10-6 mbIon creation

P=10-8 mbIon optics

P=10-10 mbInjection into the quadrupole guide

H2

303 nm pulsed laser3-4 mJ

H2+ ions

Ec = 50 eVE ~ 10 meV

H2+ ions

Ec = 0 eVE ~ 200 meV

Synergies H+ GbarH2

+ metrology projectHCI highly charged ions 40Ar13+, P. Indelicato, C. Szabo

100 %

efficiency

Page 20: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Conclusion

Capture of > 10 eV H+ and Doppler cooling in a linear Paul trap

Transfer to precision trap

Doppler and ground state cooling in precision trap OK

OK

• ANR BESCOOL• ITN ComiQ

Page 21: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Page 22: Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.

Can we improve the motional couplings ?Idea

Efficient coupling

Coulomb coupling

Coul 21

3120

2

4

2

eqCoul z

q

m

Trapped ions 1 ~ 2 ~ 1.0 MHz Coul ~ 100 kHz

z12eq < 40 µm z12eq

with m1 = 9, m2 =1

Double well structure with very small electrodes

12

coul

Single well z 2 ~ 3 z1 poor couplings

Possible solution

x 2 ~ 9 x1

?