Top Banner
1 PREHRAMBENO -BIOTEHNOLOŠKI FAKULTET Poslijediplomski studij: PREHRAMBENE TEHNOLOGIJE MODELIRANJE, OPTIMIRANJE I PROJEKTIRANJE PROCESA Prof.dr.sc. Želimir Kurtanjek PBF tel: 4605 294 fax: 4836 083 E-mail: [email protected] URL: http:/mapbf.pbf.hr/~zkurt
58

PREHRAMBENO -BIOTEHNOLOŠKI FAKULTET

Dec 31, 2015

Download

Documents

alyssa-duke

PREHRAMBENO -BIOTEHNOLOŠKI FAKULTET. Poslijediplomski studij: PREHRAMBENE TEHNOLOGIJE. MODELIRANJE, OPTIMIRANJE I PROJEKTIRANJE PROCESA. Prof.dr.sc. Želimir Kurtanjek PBF tel: 4605 294 fax: 4836 083 E-mail: [email protected] URL: http:/mapbf.pbf.hr/~zkurt. MODELIRANJE. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

1PREHRAMBENO -BIOTEHNOLOŠKI FAKULTET

Poslijediplomski studij: PREHRAMBENE TEHNOLOGIJE

MODELIRANJE, OPTIMIRANJE I PROJEKTIRANJE PROCESA

Prof.dr.sc. Želimir Kurtanjek

PBF

tel: 4605 294 fax: 4836 083

E-mail: [email protected]

URL: http:/mapbf.pbf.hr/~zkurt

Page 2: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

2

MODELIRANJE

Page 3: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

3MULTIDISCIPLINARNOST MATEMATIČKOG MODELIRANJA PROCESA

BIOTEHNIČKE

ZNANOSTI

MATEMATIČKE

ZNANOSTI

RAČUNARSKE

ZNANOSTI

Page 4: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

4 TEORIJA SUSTAVA I MATEMATIČKO MODELIRANJE

Osnovni pojmovi o sustavu:

SUSTAV

OKOLINAGRANICASUSTAVA

{masa

energija

informacija}

masa

energija

informacija

Prikaz odnosa sustava i okoline

Page 5: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

5

POČETAK

SISTEMSKI PRISTUP MODELIRANJU

SVRHA MODELA

DEFINIRANJE ULAZNIH VELIČINA X

DEFINIRANJE IZLAZNIH VELIČINA Y

IZVODI BILANCI MASE, ENERGIJE, KOLIČINE GIBANJA

IZBOR NUMERIČKE METODE

IZBOR RAČUNALNOGJEZIKA

RJEŠENJE JEDNADŽBI MODELA

ODREĐIVANJE PARAMETARA

PROVJERA MODELA

2M < NE

PRIMJENA

DA

Page 6: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

6Značajke sustava

Sustav je apstraktna tvorevina, najčešće definira matematičkim relacijama ( npr. skupom diferencijalnih jednadžbi, diskretnih jednadžbi, neuralnim mrežama, neizraženom “fuzzy “ logikom, ekspertnim sustavom itd.).

1) za analizu nekog procesa, 2) upravljanje,3) projektiranje,4) nadzor ( monitoring )5) osiguranje kakvoće proizvoda6) optimiranje7) razvoj novih proizvoda8) zaštitu okoliša

Sustav se definira s obzirom na određenu svrhu, na primjer:

Page 7: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

7NAČELO IZVOĐENJA BILANCI

V

dio volumena

ulazni tokovi:

tvari, energije,

količine gibanja

izlazni tokovi:

tvari, energije,

količine gibanja

Page 8: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

8U procesnom inženjerstvu ( kemijskom, biokemijskom, prehrambenom, farmaceutskom .. ) matematičke modele izvodimo na osnovi slijedećih bilanci: mase (tvari), energije i količine

gibanja.

Osnovni oblik bilance je:

reakcijeebiokemijsk

iliikemijskezbogVvolumenu

uSpromjena

Vvolumenaiz

Stokovaizlaznih

zbroj

Vvolumenu

Stokovaulaznih

zbroj

Vvolumenuu

Saakumulacij

t /

gdje S označava masu ( količinu tvari), energiju i količinu gibanja.

Page 9: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

9Modeli se razlikuju zavisno od izbora volumena za koji se postavlja bilanca.

Kada volumen obuhvaća ukupan volumen u kojem se zbiva proces ( na primjer biokemijski reaktor ) onda su to modeli s usredotočenim ili koncentriranim veličinama stanja.

Ako se kao volumen za koji se postavljaju bilance odabere samo dio cijelog volumena onda se radi o modelu s raspodjeljenim ili distribuiranim veličinama stanja.

Modeli s usredotočenim parametrima postaju sistemi običnih diferencijalnih jednadžbi, a modeli s distrubuiranim stanjima određeni su sistemom parcijalnih diferencijalnih jednadžbi.

Page 10: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

10Razliku u načinu izvođenja bilanci možemo prikazati pomoću slijedećeg grafičkog prikaza:

V

U

U

U

I

I

1

2

3

1

2

V

U

U

U

I

I

1

2

3

1

2

u

u

i

i

1

2

1

2

S

U

U

U

1

2

3

ukupanvolumen V

diferencijalvolumena

dV

I

I

1

2

u

u1

2

i

i12

U,I su ulazni i izlazni tokovi za ukupanvolumen

u , i su ulazni i izlazni tokoviza diferencijal volumena

S

Page 11: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

11U bilanci mase sastojka predznak ( + ) dolazi u slučaju kada je tvar

produkt reakcije, a predznak ( - ) kada je tvar reaktant u reakciji. Kod bilance energije predznak ( + ) dolazi kada je reakcija

egzotermna, a predznak ( - ) kada je reakcija endotermna.

Oznaka označava malu ali konačnu promjenu određene veličine,t je oznaka za vrijeme, je oznaka za malu konačnu promjenut je mala konačna promjena vremena(akumulacija S) je mala konačna promjena akumulacije ( sadržaja S)

dt

dF

t

Ft

0lim

Bilance postaju diferencijalne jednadžbe kada se provede granični postupak u kojem konačne diferencije, , postaju infinitezimalne veličine ( odnosno diferencijali, d ).

Page 12: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

12Na primjer, za model s usredotočnim veličinama bilance mase za pojedine supstrate ima ima oblik:

Ni

Ni

NijsV

dt

d

,1 j

j,1 i

j,1 i

V u volumenus eproizvodnj

ili potrosnje brzina

reaktoru u ssupstrata

ijakoncentrac

Vizqprotok

volumniizlazni

pritoku u ssupstrata

ijakoncentrac

Vuqprotok

volumniulazni

Page 13: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

13Opći oblik modela s raspodjeljenim veličinama stanja je:

txyfr

rtyt

,,,

gdje je vektor položaja. r

uz zadano početno stanje: ryrty o

,0

rubne uvjete: tyrty SSr

, i/ili ygrtyr Sr

,

txi ulazne veličine:

Page 14: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

14Klasifikacija modela

Analitički modeli Neanalitički modeli

Regresijski

Neuralne mreže

“Fuzzy logic”

neizražena logika

Ekspertni sustavi

oooo

izvedeni iz

fundamentalnih

zakona fizike, kemije

i biologije

Page 15: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

15Klasifikacija analitičkih modela

Deterministički Stohastički

Distribuirani UsredotočeniPopulacijski

Usredotočeni

DistribuiraniLinearni

Nelinearni

Diskretni

Kontinuirani

Nelinearni Linearni

Dif. jednadžbe

Prijenosne

funkcije

Page 16: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

16Kontinuirani - diskretni modeli

Kontinuirani model sustava 1 reda

txktytydt

d

x(t) y(t)Sustav 1. reda

Zadane veličine:

1) parametri , k

2) početno stanje y(t = 0) = y0

3) ulazna veličina x(t), t [ 0, tf ]

Page 17: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

17

x@t_D:= If@2< t< 8, 1, 0DPlot@x@tD,8t, 0, 10<D

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Model u programskom jeziku:

Wolfram Research “Mathematica”

Page 18: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

18k= 1.0; t =1.2;

NDSolve@8t * y'@tD+y@tD==k * x@tD, y@0D== 0.01<, y,8t, 0, 10<DPlot@Evaluate@y@tD. %D,8t, 0, 10<D

2 4 6 8 10

0.2

0.4

0.6

0.8

1

kontinuirandiskretan

korak

Page 19: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

19Matematički modeli procesa u biotehnologiji

Matematički modeli procesa u biotehnologiji imaju vrlo istaknuti značaj. Na osnovu matematičkih modela analiziraju se:

odzivi mjernih sustava u biotehnološkim procesima,

procjenjuju se parametri i direktno nemjerljiva stanja procesa,

prijenos rezultata iz modela za laboratorijsko mjerilo u poluindustrijsko i industrijsko mjerilo

optimiranje procesa

nadzor ( “ monitoring” ) procesa

očuvanje kakvoće proizvoda

upravljanje ( automatizacija ) procesa

projektiranje novih procesa

Page 20: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

20CONTENTS

1. Systems approach

2. Knowledge and system models

3. Fuzzy logic models

4. Example: Fuzzy logic control of flow rate

5. Neural networks

6. Control structures

7. Neural network control of a chemostat

8. Adaptive neural network fuzzy inference system

9. Computer demo exercises

10. Conclusions

Page 21: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

21

Surroundings

System

xP

xI

y

Process subsystemSP

Control subsystemSC

Systems view of an industrial bioprocess

Page 22: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

22Schematic diagram of mathematical forward M and inverse M-1 models

X Y

M

M-1

Page 23: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

23Graphical representation of "transparency" of mathematical models in relation to knowledge and perception of

complexity of a system.

Neural networks

Fuzzy models

Analytical models

System complexity

Knowledge

X Y

Page 24: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

24Objectives in modeling

Analytical models

Process analysis: studies of reaction mechanisms, kinetics, parameter estimation

Process design

Process optimization

Process control

Process on-line monitoring

Input - output models

Process on-line monitoring

Process control

Page 25: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

25Fuzzy logic models

In fuzzy logic models input and output spaces are covered or appro-ximated with discourses of fuzzy sets labeled as linguistic variables

For example, if Ai X is an i-th fuzzy set it is defined as an ordered pair:

fAi ttXtxtxtxA ,0,,

where x(t) is a scalar value of an input variable at time t, and A is called a membership function which is a measure of degree of mem-bership of x(t) to Ai expressed as a scalar value between 0 and 1.

Typical membership functions have a form of a bellshaped or Gaussian, triangular, square, truncated ramp and other forms

Page 26: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

26Gaussian membership functions

Page 27: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

27

X

Input space of physical variables

Input space of linguistic variables

AX

Output space of linguistic variables

AY

Output space of physical variables

Y

Logical rules with linguistic variables

Fuzzy Logic Inference Systems

( Mamdani Model )

Page 28: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

28Input output relationships are modeled by fuzzy inference system, FIS.It is based on fuzzy logic reasoning which is a superset of classical Boolean logic rules for crisp sets. Elementary logic operations with fuzzy sets are:

fuzzy intersection or conjunction ( Boolean AND )

xxTxAxA AjAiji ,A typical choice of T-norm operator is a minimum function corresponding to Boolean AND, i.e.:

xAxAxAANDxA jiji ,minand standard choice to Boolean OR and NOT:

xAxAxAORxA jiji ,max

xAxANOT 1

Page 29: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

29Process of mapping scalar between input and output sets by Fuzzy Inference System.

Fuzzification Fuzzy inference Defuzzification

x(t)y(t)

Page 30: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

30Sugeno (1988) Fuzzy Inference System

X

Space of input variables (numbers)

AX

Space of input logic variables

Z

Space of singelton MF (numbers)

Y

Space of output variables (numbers)

Developed for process modeling and identification.

Application in adaptive neural fuzzy logic systems ANFIS

Logic relations

Page 31: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

31

In Sugeno FIS for fuzzy inference polynomial Pn approximation is applied

Y = Pn ( Z ), usually a linear model is used

Y = C1 Z + Co , C1 and Co are constants

Mapping to scalar variables is obtained by averaging

y = WT Y

Page 32: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

32Example: Fuzzy logic control of flow rate

For example, consider a fuzzy logic model of control of a flow rate ( position of a valve piston) based on input values of temperature T and pH

flow ratevalve position

T

pH Q

BIOPROCESS

FUZZY LOGIC MODEL

Page 33: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

33FIS model Q=f(T,pH)

FUZZYRULES

INPUTSPACE OFLINGUISTICVARIABLES

FUZZIFICATION

OUTPUTSPACE OFLINGUISTICVARIABLES

DEFUZZIFI-CATION

FUZZY INFERENCE SYSTEM

INPUT DATA T(t) pH(t)

OUTPUT DATA Q(t)

AGGREGATION

Page 34: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

34

T

T

T

LOW T

GOOD T

HIGH T

T(t)

pH

pH

pH

LOW pH

GOOD pH

HIGH pH

pH(t)

Page 35: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

35List of the fuzzy rules for control of valve position

IF T is low AND pH is low OR good THEN valve is half open IF T is low AND pH is low THEN valve is open IF T is high AND pH is high THEN valve is closed IF T is high AND pH is low THEN valve half open IF T is good AND pH is good THEN valve half open

Page 36: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

36Membership function of the fuzzy sets in the output space

CLOSED HALF CLOSED

VALVE

VALVE

VALVE

OPEN

Page 37: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

37Aggregation of fuzzy consequents from fuzzy inference system FIS into a single fuzzy variable output

(t)

VALVE

y(t) = valve position

FIS rules

Aggregation to output

dxx

dxxxty

~

~)(

centroid

Page 38: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

38Schematic representation of a neurone with a sigmoid activation function

O

x1

x3

x2

xi

xN

ACTIVATION

0

0,2

0,4

0,6

0,8

1

1,2

-6 -4 -2 0 2 4 6

INPUTOUTPUT

)exp(1

1)(

ssf

Page 39: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

39Schematic diagram of a feedforward multilayer perceptron

Y3

Y2

Y1

X1

X2

X3

X4

I H O

Page 40: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

40Model equations

k

TtytyE

2

1

)1(

1

)1()1(

1

)1(lN

i

lj

li

lijl

lN

i

lj

li

lij

lj koWnetkoWfko

jiji W

EW

,,

Methods of adaptation:

On-line back propagation of error with use of momentum term

Batch wise use of conjugate gradients ( Ribiere-Pollack, Leveberg-Marquard)

Page 41: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

41NN models for process control

NNARX: Regressor vector:

Tkbka nntuntuntytyt 11

Predictor: ,,1 tNNttyty

NNOE: Regressor vector:

Tkbka nntuntuntytyt 11

Predictor:

,tNNty

Page 42: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

42Inverse neural network control

PROCESSNN-1

XI Y

n

Input information on referencetransients of output variables

Compensation of process noise ?

Page 43: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

43Inverse neural network control coupled with a PID feedback loop

NN-1 PROCESS

PID

XI

nY

+

-

-

Page 44: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

44Internal model control structure

+-

NN -1PROCESS

NN

n1 n2

n3

xI

Y-

Page 45: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

45Chemostat as a single input single output SISO system

CHEMOSTAT

NN

D S

XSM

SMSXSS

S ccK

cYccD

dt

dc

0

XSM

SMX

X ccK

ccD

dt

dc

XXSM

SMPX

P cDccK

cY

dt

dc

Page 46: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

46CHEMOSTAT SISO MODELS

)1(),(,1,1 kDkDkckcNNkc SSS

)(),1(,,11 1 kDkckckcNNkD sSS

NN

NN-1

Page 47: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

47Responses of concentration of substrate chemostat to a sine perturbation of reference concentration obtained with direct inverse control. Reference signal is plotted as a solid curve and response is dotted. Frequency of perturbations are A: 0,0125 min-1; B: 0,025 min-1; C: 0,2 min-1; D: 0,1 min-1

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200 0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200 0

1

2

3

4

5

6

7

8

9

10

A B

C D

Page 48: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

48Responses of substrate (s), dilution rate (D), product (p), and biomass (x) under direct inverse neural network control. Reference signal is a series of square impulses of substrate. The chemostat responses are dotted lines and the reference is a solid line.

0 20 40 60 80 100 120 140 160 180 200 3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

s D

p x

Page 49: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

49Responses of substrate under direct inverse neural (….)

network control and internal model (….) control .

0 20 40 60 80 100 120 140 160 180 200 0

2

4

6

8

10

12

Page 50: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

50Comparison of direct inverse neural network control and internal model neural network control with 7,5% relative standard noise in substrate measurement

S

Time (min)

0 200100

Page 51: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

51NN from B. yeast production in deep jet bioreactor (Podravka)

1-run2-run3-run

15 h15 h15 h

Measured NN model

EtOH

Page 52: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

52Adaptive neuro fuzzy inference system ANFIS

Integration of neural networks with fuzzy logic modeling.

ANFIS does not require prior selection of fuzzy logic variables

ANFIS does not require prior logic inference rules

ANFIS requires only sets of input and output training data ( like for NN modeling )

ANFIS has Sugeno structure of fuzzy logic systems

Page 53: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

53ANFIS provides fuzzy logic clustering of data to artificial linguistic variables.

ANFIS provides adaptive membership functions for definition of association of data to linguistic variables (fuzzy variables).

ANFIS provides combinatorial generation of logical relations for mapping between input and output fuzzy sets.

ANFIS provides adaptation of parameters in Sugeno mapping.

ANFIS provides back propagation method for adaptation of model to training data.

Page 54: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

54ANFIS model of chemostat D(k)=f [ Sref,S(k),S(k-1)]

and

or

not

input

Input MF

rules

output MF

Sugeno i/o mapping

output

Sref

S(k)

S(k-1)D(k)

Page 55: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

55DemoDEMO PROGRAMS

Page 56: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

56ConclusionsNeural networks NN and Fuzzy logic inference (FIS) systems are very practical methods for modelling and control of bioprocesses.

Advanced computer supported instrumentation for physical, chemical and biological variables provide large data banks applicable for training NN and FIS models.

NN and FIS are best suited for on-line monitoring, soft identification and nonlinear multivariable adaptive control.

Unlike analytical models, NN and FIS can be developed without “a priori” fundamental knowledge of a process.

Analytical models are “very expensive” to develop, but they are the most valuable engineering tool.

Page 57: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

57NN and FIS can integrate knowledge in a very general form. Information from on-line instruments, image analysis and human experience can be easily incorporated.

Analytical models are excellent for extrapolation in the entire process space, while NN and FIS are the best at interpolation in the training set and need to be tested for extrapolation outside training.

Integration of NN and FIS into Adaptive Neural Fuzzy Inference Systems ANFIS leads to models which combine the best properties of NN and FIS.

ANFIS are highly adaptive like NN, they are transparent for logical rules like FIS, automatically generate linguistic variables and logical rules, and are trained to extensive process data.

Page 58: PREHRAMBENO -BIOTEHNOLOŠKI  FAKULTET

58

Model verification of NN, FIS and ANFIS is the most important step before their application in laboratory and industrial practice.