Top Banner

of 131

Predicates Sets 110223055946 Phpapp01

Jun 02, 2018

Download

Documents

Chai Jin Ying
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    1/131

    Discrete Mathematics

    Predicates and Sets

    H. Turgut Uyar Ayseg ul Gencata Yayml Emre Harmanc

    2001-2013

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    2/131

    License

    c 2001-2013 T. Uyar, A. Yayml, E. Harmanc

    You are free:

    to Share to copy, distribute and transmit the work

    to Remix to adapt the work

    Under the following conditions:

    Attribution You must attribute the work in the manner specied by the author or licensor (but not in anyway that suggests that they endorse you or your use of the work).

    Noncommercial You may not use this work for commercial purposes.

    Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work onlyunder the same or similar license to this one.

    Legal code (the full license):http://creativecommons.org/licenses/by-nc-sa/3.0/

    http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/
  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    3/131

    Topics

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroduction

    SubsetSet OperationsInclusion-Exclusion

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    4/131

    Topics

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroduction

    SubsetSet OperationsInclusion-Exclusion

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    5/131

    Predicate

    Denition

    predicate (or open statement ): a declarative sentence whichcontains one or more variables, andis not a proposition, butbecomes a proposition when the variables in it

    are replaced by certain allowable choices

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    6/131

    Universe of Discourse

    Denitionuniverse of discourse: U set of allowable choices

    examples:Z: integersN: natural numbersZ+ : positive integersQ: rational numbersR: real numbersC: complex numbers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    7/131

    Universe of Discourse

    Denitionuniverse of discourse: U set of allowable choices

    examples:Z: integersN: natural numbersZ+ : positive integersQ: rational numbersR: real numbersC: complex numbers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    8/131

    Predicate Examples

    Example U = Np (x ): x + 2 is an even integer

    p (5): F p (8): T

    p (x ): x + 2 is not an even integer

    Example U = Nq (x , y ): x + y and x 2y are even integers

    q (11, 3): F , q (14, 4): T

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    9/131

    Predicate Examples

    Example U = Np (x ): x + 2 is an even integer

    p (5): F p (8): T

    p (x ): x + 2 is not an even integer

    Example U = Nq (x , y ): x + y and x 2y are even integers

    q (11, 3): F , q (14, 4): T

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    10/131

    Predicate Examples

    Example U = Np (x ): x + 2 is an even integer

    p (5): F p (8): T

    p (x ): x + 2 is not an even integer

    Example U = Nq (x , y ): x + y and x 2y are even integers

    q (11, 3): F , q (14, 4): T

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    11/131

    Topics

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroduction

    SubsetSet OperationsInclusion-Exclusion

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    12/131

    Quantiers

    Denitionexistential quantier:predicate is true for some values

    symbol: read: there exists

    symbol: !read: there exists only one

    Denitionuniversal quantier:predicate is true for all values

    symbol: read: for all

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    13/131

    Quantiers

    Denitionexistential quantier:predicate is true for some values

    symbol: read: there exists

    symbol: !read: there exists only one

    Denitionuniversal quantier:predicate is true for all values

    symbol: read: for all

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    14/131

    Quantiers

    Denitionexistential quantier:predicate is true for some values

    symbol: read: there exists

    symbol: !read: there exists only one

    Denitionuniversal quantier:predicate is true for all values

    symbol: read: for all

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    15/131

    Quantiers

    existential quantier

    U = {x 1, x 2, . . . , x n }x p (x ) p (x 1) p (x 2) p (x n )

    p (x ) is true for some x

    universal quantier

    U = {x 1, x

    2, . . . , x n }

    x p (x ) p (x 1) p (x 2) p (x n )

    p (x ) is true for all x

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    16/131

    Quantiers

    existential quantier

    U = {x 1, x 2, . . . , x n }x p (x ) p (x 1) p (x 2) p (x n )

    p (x ) is true for some x

    universal quantier

    U = {x 1, x 2, . . . , x n }x p (x ) p (x 1) p (x 2) p (x n )

    p (x ) is true for all x

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    17/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    18/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    19/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    20/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    21/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]

    x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    22/131

    Quantier Examples

    Example

    U = Rp (x ) : x 0q (x ) : x 2 0r (x ) : (x 4)(x + 1) = 0s (x ) : x 2 3 > 0

    are the following expressions true?

    x [p (x ) r (x )]x [p (x ) q (x )]x [q (x ) s (x )]x [r (x ) s (x )]

    x [r (x ) p (x )]

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    23/131

    Negating Quantiers

    replace with , and with negate the predicate

    x p (x ) x p (x )x p (x ) x p (x )

    x p (x ) x p (x )x p (x ) x p (x )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    24/131

    Negating Quantiers

    replace with , and with negate the predicate

    x p (x ) x p (x )x p (x ) x p (x )

    x p (x ) x p (x )x p (x ) x p (x )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    25/131

    Negating Quantiers

    Theoremx p (x ) x p (x )

    Proof.

    x p (x ) [p (x 1) p (x 2) p (x n )] p (x 1) p (x 2) p (x n ) x p (x )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    26/131

    Negating Quantiers

    Theoremx p (x ) x p (x )

    Proof.

    x p (x ) [p (x 1) p (x 2) p (x n )] p (x 1) p (x 2) p (x n ) x p (x )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    27/131

    Negating Quantiers

    Theoremx p (x ) x p (x )

    Proof.

    x p (x ) [p (x 1) p (x 2) p (x n )] p (x 1) p (x 2) p (x n ) x p (x )

    N i Q i

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    28/131

    Negating Quantiers

    Theoremx p (x ) x p (x )

    Proof.

    x p (x ) [p (x 1) p (x 2) p (x n )] p (x 1) p (x 2) p (x n ) x p (x )

    P di E i l

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    29/131

    Predicate Equivalences

    Theorem

    x [p (x ) q (x )] x p (x ) x q (x )

    Theoremx [p (x ) q (x )] x p (x ) x q (x )

    P di t E i l

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    30/131

    Predicate Equivalences

    Theorem

    x [p (x ) q (x )] x p (x ) x q (x )

    Theoremx [p (x ) q (x )] x p (x ) x q (x )

    Predicate Implications

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    31/131

    Predicate Implications

    Theoremx p (x ) x p (x )

    Theoremx [p (x ) q (x )] x p (x ) x q (x )

    Theoremx p (x ) x q (x ) x [p (x ) q (x )]

    Predicate Implications

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    32/131

    Predicate Implications

    Theoremx p (x ) x p (x )

    Theoremx [p (x ) q (x )] x p (x ) x q (x )

    Theoremx p (x ) x q (x ) x [p (x ) q (x )]

    Predicate Implications

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    33/131

    Predicate Implications

    Theoremx p (x ) x p (x )

    Theoremx [p (x ) q (x )] x p (x ) x q (x )

    Theoremx p (x ) x q (x ) x [p (x ) q (x )]

    Topics

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    34/131

    Topics

    1 PredicatesIntroductionQuantiers

    Multiple Quantiers

    2 SetsIntroduction

    SubsetSet OperationsInclusion-Exclusion

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    35/131

    Multiple Quantiers

    x y p (x , y )x y p (x , y )x y p (x , y )x y p (x , y )

    Multiple Quantier Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    36/131

    Multiple Quantier Examples

    Example

    U = Zp (x , y ) : x + y = 17

    x y p (x , y ):for every x there exists a y such that x + y = 17y x p (x , y ):there exists a y so that for all x , x + y = 17

    what if U = N?

    Multiple Quantier Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    37/131

    Multiple Quantier Examples

    Example

    U = Zp (x , y ) : x + y = 17

    x y p (x , y ):for every x there exists a y such that x + y = 17y x p (x , y ):there exists a y so that for all x , x + y = 17

    what if U = N?

    Multiple Quantier Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    38/131

    Multiple Quantier Examples

    Example

    U = Zp (x , y ) : x + y = 17

    x y p (x , y ):for every x there exists a y such that x + y = 17y x p (x , y ):there exists a y so that for all x , x + y = 17

    what if U = N?

    Multiple Quantier Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    39/131

    Multiple Quantier Examples

    Example

    U = Zp (x , y ) : x + y = 17

    x y p (x , y ):for every x there exists a y such that x + y = 17y x p (x , y ):there exists a y so that for all x , x + y = 17

    what if U = N?

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    40/131

    u t p e Qua t e s

    Example

    U x = {1, 2}U y = {A, B }

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    41/131

    p Q

    Example

    U x = {1, 2}U y = {A, B }

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    42/131

    p Q

    Example

    U x = {1, 2}U y = {A, B }

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    43/131

    p Q

    Example

    U x = {1, 2}U y = {A, B }

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    Multiple Quantiers

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    44/131

    p

    Example

    U x = {1, 2}U y = {A, B }

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    x y p (x , y ) [p (1, A) p (1, B )] [p (2, A) p (2, B )]

    References

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    45/131

    Required Reading: Grimaldi

    Chapter 2: Fundamentals of Logic2.4. The Use of Quantiers

    Supplementary Reading: ODonnell, Hall, Page

    Chapter 7: Predicate Logic

    Topics

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    46/131

    1 PredicatesIntroductionQuantiers

    Multiple Quantiers

    2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

    Set

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    47/131

    Denition

    set: a collection of elements that aredistinctunorderednon-repeating

    Set Representation

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    48/131

    explicit representationelements are listed within braces: {a1, a2, . . . , an }

    implicit representation

    elements that validate a predicate: {x |x G , p (x )}: empty set

    let S be a set, and a be an elementa S : a is an element of set S a / S : a is not an element of set S

    |S |: number of elements (cardinality)

    Set Representation

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    49/131

    explicit representationelements are listed within braces: {a1, a2, . . . , an }

    implicit representation

    elements that validate a predicate: {x |x G , p (x )}: empty set

    let S be a set, and a be an elementa S : a is an element of set S a / S : a is not an element of set S

    |S |: number of elements (cardinality)

    Set Representation

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    50/131

    explicit representationelements are listed within braces: {a1, a2, . . . , an }

    implicit representation

    elements that validate a predicate: {x |x G , p (x )}: empty set

    let S be a set, and a be an elementa S : a is an element of set S a / S : a is not an element of set S

    |S |: number of elements (cardinality)

    Set Representation

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    51/131

    explicit representationelements are listed within braces: {a1, a2, . . . , an }

    implicit representation

    elements that validate a predicate: {x |x G , p (x )}: empty set

    let S be a set, and a be an elementa S : a is an element of set S a / S : a is not an element of set S

    |S |: number of elements (cardinality)

    Set Representation

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    52/131

    explicit representationelements are listed within braces: {a1, a2, . . . , an }

    implicit representation

    elements that validate a predicate: {x |x G , p (x )}: empty set

    let S be a set, and a be an elementa S : a is an element of set S a / S : a is not an element of set S

    |S |: number of elements (cardinality)

    Explicit Representation Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    53/131

    Example

    {3, 8, 2, 11, 5}11 {3, 8, 2, 11, 5}|{3, 8, 2, 11, 5}| = 5

    Implicit Representation Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    54/131

    Example

    {x |x Z+ , 20 < x 3 < 100} {3, 4}{2x 1|x Z+ , 20 < x 3 < 100} {5, 7}

    Example

    A = {x |x R, 1 x 5}

    Example

    E = {n |n N, k N [n = 2k ]}A = {x |x E , 1 x 5}

    Implicit Representation Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    55/131

    Example

    {x |x Z+ , 20 < x 3 < 100} {3, 4}{2x 1|x Z+ , 20 < x 3 < 100} {5, 7}

    Example

    A = {x |x R, 1 x 5}

    Example

    E = {n |n N, k N [n = 2k ]}A = {x |x E , 1 x 5}

    Implicit Representation Examples

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    56/131

    Example

    {x |x Z+ , 20 < x 3 < 100} {3, 4}{2x 1|x Z+ , 20 < x 3 < 100} {5, 7}

    Example

    A = {x |x R, 1 x 5}

    Example

    E = {n |n N, k N [n = 2k ]}A = {x |x E , 1 x 5}

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    57/131

    There is a barber who lives in a small town.He shaves all those men who dont shave themselves.He doesnt shave those men who shave themselves.

    Does the barber shave himself?

    yes but he doesnt shave men who shave themselves nono but he shaves all men who dont shave themselves yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    58/131

    There is a barber who lives in a small town.He shaves all those men who dont shave themselves.He doesnt shave those men who shave themselves.

    Does the barber shave himself?

    yes but he doesnt shave men who shave themselves nono but he shaves all men who dont shave themselves yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    59/131

    There is a barber who lives in a small town.He shaves all those men who dont shave themselves.He doesnt shave those men who shave themselves.

    Does the barber shave himself?

    yes but he doesnt shave men who shave themselves nono but he shaves all men who dont shave themselves yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    60/131

    let S be the set of sets that are not an element of themselvesS = {A|A / A}

    Is S an element of itself?

    yes but the predicate is not valid nono but the predicate is valid yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    61/131

    let S be the set of sets that are not an element of themselvesS = {A|A / A}

    Is S an element of itself?

    yes but the predicate is not valid nono but the predicate is valid yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    62/131

    let S be the set of sets that are not an element of themselvesS = {A|A / A}

    Is S an element of itself?

    yes but the predicate is not valid nono but the predicate is valid yes

    Set Dilemma

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    63/131

    let S be the set of sets that are not an element of themselvesS = {A|A / A}

    Is S an element of itself?

    yes but the predicate is not valid nono but the predicate is valid yes

    Topics

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    64/131

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    65/131

    DenitionA B x [x A x B ]

    set equality:A = B (A B ) (B A)proper subset:A B (A B ) (A = B )

    S [ S ]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    66/131

    DenitionA B x [x A x B ]

    set equality:A = B (A B ) (B A)proper subset:A B (A B ) (A = B )

    S [ S ]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    67/131

    DenitionA B x [x A x B ]

    set equality:A = B (A B ) (B A)proper subset:A B (A B ) (A = B )

    S [ S ]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    68/131

    DenitionA B x [x A x B ]

    set equality:A = B (A B ) (B A)proper subset:A B (A B ) (A = B )

    S [ S ]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    69/131

    not a subset

    A B x [x A x B ] x [x A x B ] x [(x A) (x B )] x [(x A) (x B )]

    x [(x A) (x / B )]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    70/131

    not a subset

    A B x [x A x B ] x [x A x B ] x [(x A) (x B )] x [(x A) (x B )]

    x [(x A) (x / B )]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    71/131

    not a subset

    A B x [x A x B ] x [x A x B ] x [(x A) (x B )] x [(x A) (x B )]

    x [(x A) (x / B )]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    72/131

    not a subset

    A B x [x A x B ] x [x A x B ] x [(x A) (x B )] x [(x A) (x B )]

    x [(x A) (x / B )]

    Subset

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    73/131

    not a subset

    A B x [x A x B ] x [x A x B ] x [(x A) (x B )] x [(x A) (x B )]

    x [(x A) (x / B )]

    Power Set

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    74/131

    Denitionpower set: P (S )the set of all subsets of a set, including the empty setand the set itself

    if a set has n elements, its power set has 2n elements

    Power Set

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    75/131

    Denitionpower set: P (S )the set of all subsets of a set, including the empty setand the set itself

    if a set has n elements, its power set has 2n elements

    Example of Power Set

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    76/131

    Example

    P ({1, 2, 3}) = {,{1}, {2}, {3},{1, 2}, {1, 3}, {2, 3},{1, 2, 3}

    }

    Topics

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    77/131

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroductionSubset

    Set OperationsInclusion-Exclusion

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    78/131

    complement

    A = {x |x / A}

    intersectionA B = {x |(x A) (x B )}

    if A B = then A and B are disjoint

    unionAB = {x |(x A) (x B )}

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    79/131

    complement

    A = {x |x / A}

    intersectionA B = {x |(x A) (x B )}

    if A B = then A and B are disjoint

    unionAB = {x |(x A) (x B )}

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    80/131

    complement

    A = {x |x / A}

    intersectionA B = {x |(x A) (x B )}

    if A B = then A and B are disjoint

    unionAB = {x |(x A) (x B )}

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    81/131

    differenceA B = {x |(x A) (x / B )}

    A B = A B symmetric difference :A B = {x |(x AB ) (x / A B )}

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    82/131

    differenceA B = {x |(x A) (x / B )}

    A B = A B symmetric difference :A B = {x |(x AB ) (x / A B )}

    Set Operations

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    83/131

    differenceA B = {x |(x A) (x / B )}

    A B = A B symmetric difference :A B = {x |(x AB ) (x / A B )}

    Cartesian Product

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    84/131

    DenitionCartesian product :

    A B = {(a, b )|a A, b B }A B C N = {(a, b , . . . , n)|a A, b B , . . . , n N }

    |A B C N | = |A| | B | | C | | N |

    Cartesian Product

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    85/131

    DenitionCartesian product :

    A B = {(a, b )|a A, b B }A B C N = {(a, b , . . . , n)|a A, b B , . . . , n N }

    |A B C N | = |A| | B | | C | | N |

    Cartesian Product Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    86/131

    ExampleA = {a1.a2, a3, a4}B = {b 1, b 2, b 3}

    A B = {(a1, b 1), (a1, b 2), (a1, b 3),(a2, b 1), (a2, b 2), (a2, b 3),(a3, b 1), (a3, b 2), (a3, b 3),(a4, b 1), (a4, b 2), (a4, b 3)

    }

    Equivalences

    D bl C l t

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    87/131

    Double Complement

    A = A

    CommutativityA B = B A AB = B A

    Associativity(A B ) C = A (B C ) (AB ) C = A (B C )

    IdempotenceA A = A AA = A

    InverseA A = AA = U

    Equivalences

    D bl C l t

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    88/131

    Double Complement

    A = A

    CommutativityA B = B A AB = B A

    Associativity(A B ) C = A (B C ) (AB ) C = A (B C )

    IdempotenceA A = A AA = A

    InverseA A = AA = U

    Equivalences

    Double Complement

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    89/131

    Double Complement

    A = A

    CommutativityA B = B A AB = B A

    Associativity(A B ) C = A (B C ) (AB ) C = A (B C )

    IdempotenceA A = A AA = A

    InverseA A = AA = U

    Equivalences

    Double Complement

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    90/131

    Double Complement

    A = A

    CommutativityA B = B A AB = B A

    Associativity(A B ) C = A (B C ) (AB ) C = A (B C )

    IdempotenceA A = A AA = A

    InverseA A = AA = U

    Equivalences

    Double Complement

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    91/131

    Double Complement

    A = A

    CommutativityA B = B A AB = B A

    Associativity(A B ) C = A (B C ) (AB ) C = A (B C )

    IdempotenceA A = A AA = A

    InverseA A = AA = U

    Equivalences

    Identity

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    92/131

    Identity

    A U = A A = A

    DominationA = AU = U

    DistributivityA (B C ) = ( A B ) (A C ) A (B C ) = ( AB ) (AC )

    AbsorptionA (AB ) = A A (A B ) = A

    DeMorgans LawsA B = AB AB = A B

    Equivalences

    Identity

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    93/131

    Identity

    A U = A A = A

    DominationA = AU = U

    DistributivityA (B C ) = ( A B ) (A C ) A (B C ) = ( AB ) (AC )

    AbsorptionA (AB ) = A A (A B ) = A

    DeMorgans LawsA B = AB AB = A B

    Equivalences

    Identity

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    94/131

    Identity

    A U = A A = A

    DominationA = AU = U

    DistributivityA (B C ) = ( A B ) (A C ) A (B C ) = ( AB ) (AC )

    AbsorptionA (AB ) = A A (A B ) = A

    DeMorgans LawsA B = AB AB = A B

    Equivalences

    Identity

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    95/131

    Identity

    A U = A A = A

    DominationA = AU = U

    DistributivityA (B C ) = ( A B ) (A C ) A (B C ) = ( AB ) (AC )

    AbsorptionA (AB ) = A A (A B ) = A

    DeMorgans LawsA B = AB AB = A B

    Equivalences

    Identity

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    96/131

    Identity

    A U = A A = A

    DominationA = AU = U

    DistributivityA (B C ) = ( A B ) (A C ) A (B C ) = ( AB ) (AC )

    AbsorptionA (AB ) = A A (A B ) = A

    DeMorgans LawsA B = AB AB = A B

    DeMorgans Laws

    P f

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    97/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    P f

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    98/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    P f

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    99/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    100/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    101/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    102/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    103/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    DeMorgans Laws

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    104/131

    Proof.

    A B = {x |x / (A B )}= {x | (x (A B ))}

    = {x | ((x A) (x B ))}= {x | (x A) (x B )}= {x |(x / A) (x / B )}= {x |(x A) (x B )}

    = {x |x AB }= AB

    Example of Equivalence

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    105/131

    TheoremA (B C ) = ( A B ) (A C )

    Equivalence Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    106/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    107/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

    P f

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    108/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

    P f

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    109/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    110/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    111/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Equivalence Example

    Proof

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    112/131

    Proof.

    (A B ) (A C ) = ( A B ) (A C )= ( A B ) (AC )= (( A B ) A) ((A B ) C ))= ((A B ) C ))= ( A B ) C = A (B C )= A (B C )

    Topics

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    113/131

    1 PredicatesIntroductionQuantiersMultiple Quantiers

    2 SetsIntroductionSubset

    Set OperationsInclusion-Exclusion

    Principle of Inclusion-Exclusion

    |AB | = |A| + |B | | A B |

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    114/131

    | | | | | | | ||AB C | =|A| + |B | + |C | (|A B | + |A C | + |B C |) + |A B C |

    Theorem

    |A1 A2 An | =i

    |Ai | i , j

    |Ai A j |

    +i , j , k

    |Ai A j Ak |

    + 1n 1 |Ai A j An |

    Principle of Inclusion-Exclusion

    |AB | = |A| + |B | | A B |

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    115/131

    | | | | | | | ||AB C | =|A| + |B | + |C | (|A B | + |A C | + |B C |) + |A B C |

    Theorem

    |A1 A2 An | =i

    |Ai | i , j

    |Ai A j |

    +i , j , k

    |Ai A j Ak |

    + 1n 1 |Ai A j An |

    Principle of Inclusion-Exclusion

    |AB | = |A| + |B | | A B |

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    116/131

    | | | | | | | ||AB C | =|A| + |B | + |C | (|A B | + |A C | + |B C |) + |A B C |

    Theorem

    |A1 A2 An | =i

    |Ai | i , j

    |Ai A j |

    +i , j , k

    |Ai A j Ak |

    + 1n 1 |Ai A j An |

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    117/131

    Example (sieve of Eratosthenes)

    a method to identify prime numbers2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    18 19 20 21 22 23 24 25 26 27 28 29 302 3 5 7 9 11 13 15 17

    19 21 23 25 27 29

    2 3 5 7 11 13 1719 23 25 29

    2 3 5 7 11 13 17

    19 23 29

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    118/131

    Example (sieve of Eratosthenes)

    a method to identify prime numbers2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    18 19 20 21 22 23 24 25 26 27 28 29 302 3 5 7 9 11 13 15 17

    19 21 23 25 27 29

    2 3 5 7 11 13 1719 23 25 29

    2 3 5 7 11 13 17

    19 23 29

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    119/131

    Example (sieve of Eratosthenes)

    a method to identify prime numbers2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    18 19 20 21 22 23 24 25 26 27 28 29 302 3 5 7 9 11 13 15 17

    19 21 23 25 27 29

    2 3 5 7 11 13 1719 23 25 29

    2 3 5 7 11 13 17

    19 23 29

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    120/131

    Example (sieve of Eratosthenes)

    a method to identify prime numbers2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    18 19 20 21 22 23 24 25 26 27 28 29 302 3 5 7 9 11 13 15 17

    19 21 23 25 27 29

    2 3 5 7 11 13 1719 23 25 29

    2 3 5 7 11 13 17

    19 23 29

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    121/131

    Example (sieve of Eratosthenes)

    a method to identify prime numbers2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

    18 19 20 21 22 23 24 25 26 27 28 29 302 3 5 7 9 11 13 15 17

    19 21 23 25 27 29

    2 3 5 7 11 13 1719 23 25 29

    2 3 5 7 11 13 17

    19 23 29

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    122/131

    Example (sieve of Eratosthenes)

    number of primes between 1 and 100

    numbers that are not divisible by 2, 3, 5 and 7A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

    |A2 A3 A5 A7 |

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    123/131

    Example (sieve of Eratosthenes)

    number of primes between 1 and 100

    numbers that are not divisible by 2, 3, 5 and 7A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

    |A2 A3 A5 A7 |

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    124/131

    Example (sieve of Eratosthenes)

    number of primes between 1 and 100

    numbers that are not divisible by 2, 3, 5 and 7A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

    |A

    2 A

    3 A

    5 A

    7 |

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    125/131

    Example (sieve of Eratosthenes)

    |A2| = 100/ 2 = 50

    |A3| = 100/ 3 = 33|A5| = 100/ 5 = 20|A7| = 100/ 7 = 14

    |A2 A3 | = 100/ 6 = 16

    |A2 A5 | = 100/ 10 = 10|A2 A7 | = 100/ 14 = 7|A3 A5 | = 100/ 15 = 6|A3 A7 | = 100/ 21 = 4

    |A5 A7 | = 100/ 35 = 2

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    126/131

    Example (sieve of Eratosthenes)

    |A2| = 100/ 2 = 50

    |A3| = 100/ 3 = 33|A5| = 100/ 5 = 20|A7| = 100/ 7 = 14

    |A2 A3 | = 100/ 6 = 16

    |A2 A5 | = 100/ 10 = 10|A2 A7 | = 100/ 14 = 7|A3 A5 | = 100/ 15 = 6|A3 A7 | = 100/ 21 = 4

    |A5 A7 | = 100/ 35 = 2

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    127/131

    Example (sieve of Eratosthenes)

    |A2 A3 A5| = 100/ 30 = 3|A2 A3 A7| = 100/ 42 = 2|A2 A5 A7| = 100/ 70 = 1|A3 A5 A7| = 100/ 105 = 0

    |A2 A3 A5 A7 | = 100/ 210 = 0

    Inclusion-Exclusion Example

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    128/131

    Example (sieve of Eratosthenes)

    |A2 A3 A5| = 100/ 30 = 3|A2 A3 A7| = 100/ 42 = 2|A2 A5 A7| = 100/ 70 = 1|A3 A5 A7| = 100/ 105 = 0

    |A2 A3 A5 A7 | = 100/ 210 = 0

    Inclusion-Exclusion Example

    E l ( i f E t th )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    129/131

    Example (sieve of Eratosthenes)

    |A2 A3 A5 A7 | = (50 + 33 + 20 + 14)

    (16 + 10 + 7 + 6 + 4 + 2)

    + (3 + 2 + 1 + 0) (0)= 78

    number of primes: (100 78) + 4 1 = 25

    Inclusion-Exclusion Example

    E l ( i f E t th )

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    130/131

    Example (sieve of Eratosthenes)

    |A2 A3 A5 A7 | = (50 + 33 + 20 + 14) (16 + 10 + 7 + 6 + 4 + 2)+ (3 + 2 + 1 + 0) (0)= 78

    number of primes: (100 78) + 4 1 = 25

    References

    Required Reading: Grimaldi

  • 8/10/2019 Predicates Sets 110223055946 Phpapp01

    131/131

    Required Reading: GrimaldiChapter 3: Set Theory

    3.1. Sets and Subsets3.2. Set Operations and the Laws of Set Theory

    Chapter 8: The Principle of Inclusion and Exclusion8.1. The Principle of Inclusion and Exclusion

    Supplementary Reading: ODonnell, Hall, Page

    Chapter 8: Set Theory