Top Banner
Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011
13

Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

Jan 20, 2016

Download

Documents

Mercy Chapman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

Practical Strategies forPower-Efficient ComputingTechnologies

Karim Al-Sheraidah

December 8th 2011

Page 2: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

2

Overview

Survey of Power reduction techniques ~8x improvement in power efficiency No performance lose Voltage Scaling Optimum VDD = 0.5V

IBM Blue Gene system

Page 3: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

3

Introduction

The Regime of interest

Page 4: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

4

Introduction cont…

Pactive = Ceff V2 ƒ + Ileak V

Ceff is V dependent

Ceff V2 ∞ V2.5

ƒ is linearly V dependent

ƒ = α(V – V0) V0 ≈ 0.25V

Pactive = αCeff V2 (V – V0) + Ileak V ∞ V3

Page 5: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

5

The Case for Voltage Scaling

Departing from scaling theory

Page 6: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

6

The Case for Voltage Scaling

Optimum VDD = 0.5v

Page 7: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

7

The Case for Voltage Scaling cont…

Optimum VDD = 0.5v

Page 8: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

8

Enablement (1)

Operating Margin improvement

Page 9: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

9

Enablement (2)

Low variability devices

ET-SOI Fin-FET

Page 10: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

10

Enablement (3)

Digital Noise

Resistive: dVR/VDD = IR/VDD ∞ ( VDD – VT)1.5/VDD

Capacitive: dVC/VDD = [CaggVDD/(Cagg + Cvic)]/VDD = Cagg/(Cagg + Cvic)

Inductive: dVL/VDD = [ L ∂I/∂t ]/VDD ∞ (L I)/(VDDҭ) ∞ (VDD – V0)( VDD – VT)1.5/VDD

Page 11: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

11

Enablement (4)

On-Chip Power System

Page 12: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

12

Case study (IBM Blue Gene)

- Top500 HPC from 2004 to 2007

- Operating at 850MHz

- Performance of up to 13.9Tflop

- 4096 parallel processor cores

- Three chip voltage bins

Page 13: Practical Strategies for Power-Efficient Computing Technologies Karim Al-Sheraidah December 8 th 2011.

13

Conclusion

- Power efficiency through voltage scaling.

- Optimum VDD = 0.5v.

- lowering of variability.

- Increasing margin.

- Massive parallelism.

- High integration.