Top Banner

of 27

PPM Surface Plasmon Presentation 2005

Apr 06, 2018

Download

Documents

PHAM BAT THONG
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    1/27

    Surface plasmon nanophotonics:opt ics below the dif fract ion limit

    Albert Polman

    Center for nanophotonicsFOM-Inst itute AMOLF, Amsterdam

    Jeroen KalkmanHans MertensJoan PenninkhofRene de Waele

    Teun van Dillen

    Jen DionneLuke Sweat lockHarry Atwater

    Arj en VredenbergChristina GrafAlfons van Blaaderen

    PPM conference, Ut recht, 10-2-2005

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    2/27

    Optical fiber: long distance communication

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    3/27

    Photonic integrated circuits on silicon

    1 mm

    SiO2/Al2O3/SiO2/Si

    with C. van Dam, M.K. Smit, TUD

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    4/27

    The worlds smallest erbium-doped optical amplifier

    1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB

    Waveguide spiral size: 1 mm2

    minimum bending radius > 50 mAppl. Phys. Lett. 68, 1886 (1996)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    5/27

    From a FOM/ PPM prototype to a 40 M$ company

    SymmorphixSunnyvaleCA, USA

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    6/27

    The first Er laser on Si fully made with CMOS technology

    1500 1550 1600

    -60

    -50

    -40

    -30

    -20

    Signal(dBm)

    Wavelength (nm)

    Single-mode lasing

    with K. Vahala group, CALTECHAppl. Phys. Lett. 84, 1037 (2004)Phys. Rev. A 70, 033803 (2004)

    Nanophoto

    nicmaterials

    group

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    7/27

    Surface plasmon: EM wave at metal-dielect ric interface

    z

    x

    ( )tzkxki zxeEtzxE= 0),,(

    rr

    2/1

    "'

    +=+=

    dm

    dmxxx

    cikkk

    =

    ck

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    8/27

    Dielect ric constants for silver: = + i

    200 400 600 800 1000 1200 1400 1600 1800-150

    -100

    -50

    0

    50

    Measured data:

    '

    "Drude model:

    '"

    Modified Drude model:

    '

    "

    Wavelength (nm)

    '

    bound SP mode: m < -d

    -d

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    9/27

    Re kx

    d

    xck

    Surface plasmons dispersion:

    large k

    small wavelength

    Ar laser:

    vac = 488 nmdiel = 387 nm

    SP= 100 nmAg/ SiO2

    X-ray wavelengthsat optical frequencies

    2/1

    +=

    dm

    dm

    xc

    k

    3.4 eV(360 nm)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    10/27

    SPs can have very long propagat ion distance

    100 m

    High lossin regionof small SP

    Tune SPdispersionwith index

    dielectric

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    11/27

    Photonic integrated circuits on silicon

    1 mm

    SiO2/Al2O3/SiO2/Si

    Plasmonic

    Al

    Opto-electronic integration, (e.g. interconnects)Plamonic nanolithography

    10 m

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    12/27

    Surface plasmons can improve solid state lighting

    interaction between plasmon and radiating dipole

    1450 1500 1550 1600 16500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 5 10 15 20 25

    e-3

    e-2

    e-1

    e0

    Energy (eV)

    NormalizedPLintensity

    Wavelength (nm)

    0.84 0.82 0.8 0.78 0.76

    4I

    15/2

    4I

    13/2

    Silver

    Air

    = 1.0 Er/cm2

    Normalized

    intensity

    Time (ms)

    500 keV Er

    silver

    glass

    glass

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    13/27

    far-fieldemission

    metal

    Wrad

    WSP

    Coupling to surface plasmons

    Wtot = Wrad + WSP

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    14/27

    10-1

    100

    101

    102

    103

    104

    105

    106

    1E-3 0.01 0.1 1 1010

    -1

    100

    101

    102

    103

    104

    105

    0 250 500 750 1000 1250 15000.0

    0.5

    1.0

    1.5

    Wnr

    WSP

    Wrad

    Wtotal

    Er distribution

    Glass

    Silv

    er

    Glass

    Air

    Distance (nm)

    Normal

    ize

    ddecayra

    te

    0.6

    0.8

    1.0

    Wrad

    P

    ower

    k (kglass

    )

    Decay rate as a function of distance to metal

    =1535 nm

    0.0 10.0 20.0 30.0

    0.13534

    0.36788

    1

    2.71828

    Air

    =9.3 ms

    Ag

    =5.8 ms

    ln(normalizedintensity)

    time (ms)

    Decay near Agis faster thanin air

    Appl. Phys. Lett . in press (2005)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    15/27

    Si quantum dots at dif ferent depths: theory & experiment

    0 200 400 600

    1xe-4

    1xe-3

    1xe

    -2

    1xe-1

    1xe0

    Ag

    Air

    PLint

    ens

    ity

    Time (s)

    =750 nm, d=40 nm

    0 100 200 300 400 500 600 7000.0

    1.0

    2.0

    3.0

    4.0

    ExcessSi(1021Si/cm

    3)

    Depth (nm)

    0.8

    1.0

    1.2

    1.4

    1.6

    em=750 nm

    silver-glass interface

    air-glass interface

    Norma

    lizeddecayrate

    0 100 200 300 4000

    1

    2

    3

    Depth (nm)

    em

    =750 nm

    Air

    Ag

    Decayrate(10

    4s

    -1)

    Couplingto SPs

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    16/27

    far-fieldemission

    metal

    recycling of anon-radiativedecay path!

    Wrad

    WSP

    Wrad+WSP

    QE 1

    Turning a slow emitter into a fast emitter

    Applications:

    Fast modulat ion of Er LEDs, Si quantum dot LEDSIncreased quantum eff iciency of solid state emit ters

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    17/27

    Ag

    Erbium ions implanted in silica glass subst rate

    Grat ing etched in sil ica Ag f ilm deposit ed

    SiO2

    Herasil glass - 250 m thick

    350 keV keV Er, 1.21015 cm-2 , 77 KThermal anneal 800 C, 1 hr

    e-beam lithography, dry etchinggrating: p=10701 nm, d=230 nmAg sputter evaporation (t=300 nm)

    pump=488 nm

    Er

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    18/27

    PL intensity as a function of angle (=1534 nm)

    0 20 40 60 80Angle (

    o)

    's'

    's'

    Angle (o)

    0 20 40 60 80

    0

    2

    4

    6

    'p'

    'p'

    PL

    Intensity

    Appl. Phys. Lett. 83, 4137 (2003)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    19/27

    Dispersion of thin-film surface plasmons

    Two surface plasmon modes

    L-

    L-(symm)

    Thinner film:Shorter SPwavelength

    Example:

    HeNe = 633 nmSP = 60 nm

    L+(asymm)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    20/27

    Thin-f ilm surface plasmons: propagat ion length

    More loss forthinner f ilms

    Less loss forthinner f ilms

    L-(symm)

    L+(asymm)

    Challenge: fabricate smooth thin metal f ilms

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    21/27

    Dispersion-controlled plasmonic devices

    0 200 4 00 600 80 0 1000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Y

    Ax

    isTitle

    Distance (nm)

    Plasmonic concentrator

    Si

    Ag

    NC

    Small SPLarge field

    enhancementvgroup=0

    Elect rically pumpedsingle-mode SP source

    Plasmonic lens

    thin section Surface plasmon laser

    Si

    Ag

    NC

    Th l i f i f l i h

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    22/27

    m= 2.2

    Low frequency

    Er

    On resonance

    Er

    The ult imate confinement of light :surface plasmons in metal nanoparticles

    Electromagnet ic energy

    t ransfer well below dif fract ionlimit high int egrat ion densit y:

    t rue nanophot onics

    Surface-enhanced Raman scat t eringSurface-enhanced f luorescencesingle molecule det ect ion

    (S. A. Maier et al .)

    Metal nanopart icles

    Molecules

    SiO2

    nm

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    23/27

    Tuning the plasmon resonance by shape: core-shell colloids

    30 MeV Cu

    31014 cm-2

    Adv. Mater. 16, 235 (2004)

    Au/ SiO2

    500 nm

    400 600 800 1000 1200 1400 1600

    0.6

    0.7

    0.8

    0.9

    1.0

    extinction

    [a.u.]

    [nm]

    SiO2/ Ag

    nm

    Adv. Mater. In press (2005)

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    24/27

    10 nm 30 MeV Si9x1014/ cm2

    s-pol

    p-pol

    Modeling plasmon resonances in particle arrays

    Phys. Rev. B., in press (2005)

    5000-fold enhancementfield concentration: r=3 nm (3 dB)

    Appl. Phys. Lett. 83, 4137 (2003)

    nm

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    25/27

    Nanophot

    onicmaterials

    group

    Final goal: surface plasmon nanophotonic waveguides

    500 nm

    Plasmonics: energy t ransferand confinement of light

    below the dif fract ion limit

    500 nm

    nm

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    26/27

    Group leaders A. Polman K. Kuipers A. Lagendij k W.L. Vos J. Verhoeven

    A. Tip NN (Philips)

    Total staff 45 fte

    Cente

    rforNanophotonics

    Fundamental Reseach & Innovat ionCenter for NanophotonicsFOM-Inst itute AMOLF

    Nanophotonics is a unique field ofresearch because it combines

    a wealth of scientific challengeswith a large variety of

    near-term applications.

    Fundamental

    concept

    Prototype

    component

    Materials

    development

    Transfer to

    industry

    www erbium nlC l i

  • 8/2/2019 PPM Surface Plasmon Presentation 2005

    27/27

    www.erbium.nlConclusions

    mkm mm

    photonics

    plasmonics