Top Banner
PowerPoint File available: http:// bl831.als.lbl.gov/ ~jamesh/powerpoint/ BNL_2011.ppt
93

PowerPoint File available:

Mar 15, 2016

Download

Documents

raven-simmons

PowerPoint File available:. http://bl831.als.lbl.gov/ ~jamesh/powerpoint/ BNL_2011.ppt. Acknowledgements. Ken Frankel Rick Donahue Howard Padmore Alastair MacDowell. 8.3.1 creator: Tom Alber 8.3.1 PRT head: Jamie Cate Center for Structure of Membrane Proteins (PSI) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PowerPoint File available:

PowerPoint File available:

http://bl831.als.lbl.gov/~jamesh/powerpoint/

BNL_2011.ppt

Page 2: PowerPoint File available:

AcknowledgementsKen Frankel Rick Donahue Howard Padmore Alastair MacDowell

8.3.1 creator: Tom Alber 8.3.1 PRT head: Jamie CateCenter for Structure of Membrane Proteins (PSI)

Membrane Protein Expression Center IICenter for HIV Accessory and Regulatory Complexes

W. M. Keck FoundationPlexxikon, Inc.

M D Anderson CRCUniversity of California Berkeley

University of California San FranciscoNational Science Foundation

University of California Campus-Laboratory Collaboration GrantHenry Wheeler

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

Page 3: PowerPoint File available:

The optimum wavelength for macromolecular crystallography

Higher? or Lower?

Page 4: PowerPoint File available:

dose

Johns, H. & Cunningham, J. (1974). The physics of radiology. Thomas Springfield, Illinois.

~1 cm at 1 MeV fNH

Charged Particle Equilibrium (CPE)

Page 5: PowerPoint File available:

satisfiesCPE

collimator crystal

X-ray

e-

violatesCPE

Assume a spherical crystal…

Page 6: PowerPoint File available:

is there a “problem” with violating CPE?

ICRU report 31 “Average Energy Required to Produce an Ion Pair” (1979)

for air: W ~ 30 eV/ion-pair

yet, final ions are thermalized (<0.1 eV each)

Where does 99% of the energy go?

Answer: non-ionizing excitations

Page 7: PowerPoint File available:

Secondary ionization

e-

Page 8: PowerPoint File available:

Secondary ionization

e-

e-

+

Page 9: PowerPoint File available:

Excitation

e-

Page 10: PowerPoint File available:

Excitation

e-

Page 11: PowerPoint File available:

Excitation e-

Page 12: PowerPoint File available:

Excitation

Page 13: PowerPoint File available:

ionizing interactions

e- +

Violating CPE: two kinds of “dose”?

non-ionizing interactions

ICRU report 36 “Microdosimetry” (1984)

Page 14: PowerPoint File available:

Charged Particle Equilibrium (CPE)

Johns, H. & Cunningham, J. (1974). The physics of radiology. Thomas Springfield, Illinois.

skin not burned

Page 15: PowerPoint File available:

Ionization track

Page 16: PowerPoint File available:

particle transport simulationusing MCNP

collimator crystal

X-ray

Page 17: PowerPoint File available:

Where do photons go?

beamstop

Transmitted (98%)

Protein1A x-rays

Page 18: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

Protein1A x-rays

Page 19: PowerPoint File available:

Elastic scattering

Page 20: PowerPoint File available:

Elastic scattering

Page 21: PowerPoint File available:

Inelastic scattering

e-

+

Page 22: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

Protein1A x-rays

Page 23: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

inelastic scattering (7%)

Protein1A x-rays

Page 24: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

inelastic scattering (7%)

Protein1A x-rays

Re-emitted (99%) Absorbed (~0%)

Page 25: PowerPoint File available:

Photoelectric absorption

Page 26: PowerPoint File available:

Photoelectric absorptione-

+

Page 27: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

inelastic scattering (7%)

Protein1A x-rays

Re-emitted (99%) Absorbed (~0%)

Page 28: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

inelastic scattering (7%) Photoelectric (87%)

Protein1A x-rays

Re-emitted (99%) Absorbed (~0%)

Page 29: PowerPoint File available:

Where do photons go?

beamstop

elastic scattering (6%)

Transmitted (98%)

inelastic scattering (7%) Photoelectric (87%)

Protein1A x-rays

Re-emitted (~0%) Absorbed (99%)Re-emitted (99%) Absorbed (~0%)

Page 30: PowerPoint File available:

Fluorescence

+

Page 31: PowerPoint File available:

Fluorescence

e-

+

Page 32: PowerPoint File available:

Auger emission

+

Page 33: PowerPoint File available:

Auger emission

++

e-

Page 34: PowerPoint File available:

MCNP cuts off at 1 keV

1 MeV 100 GJ/mol Medical radiation therapy

100 keV 10 GJ/mol Medical imaging

10 keV 1 GJ/mol X-ray crystallography

1 keV 100 MJ/mol S and P K-edges

100 eV 10 MJ/mol “water window”

10 eV 1 MJ/mol C≡C bond

1 eV 100 kJ/mol C-C bond, visible light

100 meV 10 kJ/mol hydrogen bond

10 meV 1 kJ/mol heat (~300 K)

Page 35: PowerPoint File available:

bonding affects absorption

Almkvist, et al. (2010)."K-edge XANES analysis of sulfur compounds: an investigation of the relative intensities using internal calibration", J. Sync. Rad. 17, 683-688.

MCNP model

Page 36: PowerPoint File available:

particle transport simulationusing MCNP

collimator crystal

X-ray

Page 37: PowerPoint File available:

dose reduction with 1 Å radiation

00.10.20.30.40.50.60.70.80.9

1

0.01 0.1 1 10 100 1000

Crystal diameter (µm)

Dos

e ca

ptur

e fr

actio

n

fNH

←???→

1 keV e- pathlength

Page 38: PowerPoint File available:

100 μm crystal vs energy

00.10.20.30.40.50.60.70.80.9

1

1000 10000 100000 1000000

Photon Energy

Dos

e ca

ptur

e fr

actio

n

1 keV 10 keV 100 keV 1 MeV

fNH

Page 39: PowerPoint File available:

dose reduction vs energy

00.10.20.30.40.50.60.70.80.9

1

1000 10000 100000 1000000

100 um20 um5 um1 um

Photon Energy

Dos

e ca

ptur

e fr

actio

n

1 keV 10 keV 100 keV 1 MeV

Page 40: PowerPoint File available:

2 variablesD

ose

capt

ure

frac

tion

Page 41: PowerPoint File available:

Critical escape diameter

02468

101214161820

0 10000 20000 30000 40000 50000

half

Photon Energy (eV)

Cry

stal

dia

met

er (µ

m)

Page 42: PowerPoint File available:

Critical escape diameter

02468

101214161820

0 10000 20000 30000 40000 50000

half90%

Photon Energy (eV)

Cry

stal

dia

met

er (µ

m)

Page 43: PowerPoint File available:

Critical escape diameter

0.1

1

10

100

1000

10000

1000 10000 100000 1000000 10000000

half90%

Photon Energy

Cry

stal

dia

met

er (µ

m)

1 keV 10 keV 100 keV 1 MeV 10 MeV

Page 44: PowerPoint File available:

Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = Ibeam re2

Vxtal

Vcell

λ3 LωVcell

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 45: PowerPoint File available:

Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = Ibeam re2

Vxtal

Vcell

λ3 LωVcell

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 46: PowerPoint File available:

Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = Ibeam re2

Vxtal

Vcell

λ3 LωVcell

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 47: PowerPoint File available:

Dose Formula

dose - absorbed energy (Gy)

Ibeam - incident (photons/s/μm2 )

texp - exposure time (s)

λ - x-ray wavelength (in Å)

dose ≈ Ibeam ·texp λ2

2000

Page 48: PowerPoint File available:

Dose Formula

Dmax - maximum dose (Gy)

Ibeam - incident (photons/s/μm2 )

tdataset - accumulated exposure time (s)

λ - x-ray wavelength (in Å)

Dmax ≈ Ibeam ·tdatasetλ2

2000

Page 49: PowerPoint File available:

Dose Formula

Dmax - maximum dose (Gy)

Ibeam - incident (photons/s/μm2 )

tdataset - accumulated exposure time (s)

R - radius of crystal

Ten - transmission of a sphere ~ exp(-μen·2R)

- density of crystal

Eph - photon energy

qe - electron charge

Dmax = Ibeam ·tdataset

3qeEph

4R(1-Ten)

Page 50: PowerPoint File available:

Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = Ibeam re2

Vxtal

Vcell

λ3 LωVcell

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 51: PowerPoint File available:

Darwin’s Formula

Dmax - maximum dose (kGy)

tdataset - accumulated exposure (s)

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = re2

Vxtal

Vcell

2 λ LωVcell

Dmax

tdataset

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 52: PowerPoint File available:

Darwin’s Formula

Dmax - maximum dose (kGy)

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

2π - rotation range (radians)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

P A | F(hkl) |2I(hkl) = re2

Vxtal

Vcell

2 λ L2πVcell

Dmax

Darwin, C. G. (1914)."The theory of X-ray reflexion. Part I", Philos. Mag. 27, 315-333.

Page 53: PowerPoint File available:

Holton & Frankel (2010) Acta D 66 393-408.

Page 54: PowerPoint File available:

Holton & Frankel (2010) Acta D 66 393-408.

Page 55: PowerPoint File available:

Where:IDL - average damage-limited intensity (photons/hkl) at a given resolution105 - converting R from μm to m, re from m to Å, ρ from g/cm3 to kg/m3 and MGy to Gyre - classical electron radius (2.818 x 10-15 m/electron)h - Planck’s constant (6.626 x 10-34 J∙s)c - speed of light (299792458 m/s)fdecayed - fractional progress toward completely faded spots at end of data setρ - density of crystal (~1.2 g/cm3)R - radius of the spherical crystal (μm)λ - X-ray wavelength (Å)fNH - the Nave & Hill (2005) dose capture fraction (1 for large crystals)nASU - number of proteins in the asymmetric unitMr - molecular weight of the protein (Daltons or g/mol)VM - Matthews’s coefficient (~2.4 Å3/Dalton)H - Howells’s criterion (10 MGy/Å)θ - Bragg anglea

2 - number-averaged squared structure factor per protein atom (electron2)Ma - number-averaged atomic weight of a protein atom (~7.1 Daltons)B - average (Wilson) temperature factor (Å2)μ - attenuation coefficient of sphere material (m-1)μen - mass energy-absorption coefficient of sphere material (m -1)

Self-calibrated damage limit

22

sphere2

4425 sin2expsin

4cos301

)2(Tsin2ln

5.0f

f109

2 BM

f

θθ

,R,μT θ ,μ,R λH

VMnλρR

hcrI

a

a

ensphereMrASUNH

decayedeDL

Holton & Frankel (2010) Acta D 66 393-408.

Page 56: PowerPoint File available:

minimum required crystal size

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000

photon energy (keV)

crys

tal d

iam

eter

(mic

rons

)

2 A perfect lysozyme

wavelength dependencecr

ysta

l dia

met

er (μ

m)

Å

Minimum size for complete data set

fNH = 1

Page 57: PowerPoint File available:

Where:IDL - average damage-limited intensity (photons/hkl) at a given resolution105 - converting R from μm to m, re from m to Å, ρ from g/cm3 to kg/m3 and MGy to Gyre - classical electron radius (2.818 x 10-15 m/electron)h - Planck’s constant (6.626 x 10-34 J∙s)c - speed of light (299792458 m/s)fdecayed - fractional progress toward completely faded spots at end of data setρ - density of crystal (~1.2 g/cm3)R - radius of the spherical crystal (μm)λ - X-ray wavelength (Å)fNH - the Nave & Hill (2005) dose capture fraction (1 for large crystals)nASU - number of proteins in the asymmetric unitMr - molecular weight of the protein (Daltons or g/mol)VM - Matthews’s coefficient (~2.4 Å3/Dalton)H - Howells’s criterion (10 MGy/Å)θ - Bragg anglea

2 - number-averaged squared structure factor per protein atom (electron2)Ma - number-averaged atomic weight of a protein atom (~7.1 Daltons)B - average (Wilson) temperature factor (Å2)μ - attenuation coefficient of sphere material (m-1)μen - mass energy-absorption coefficient of sphere material (m -1)

Self-calibrated damage limit

22

sphere2

4425 sin2expsin

4cos301

)2(Tsin2ln

5.0f

f109

2 BM

f

θθ

,R,μT θ ,μ,R λH

VMnλρR

hcrI

a

a

ensphereMrASUNH

decayedeDL

Holton & Frankel (2010) Acta D 66 393-408.

Page 58: PowerPoint File available:

minimum required crystal size

0

0.5

1

1.5

2

2.5

3

1 10 100 1000 10000

photon energy (keV)

crys

tal d

iam

eter

(mic

rons

)

2 A perfect lysozyme

Lysozyme with MCNPNave-Hill effect

wavelength dependencecr

ysta

l dia

met

er (μ

m)

Å

Minimum size for complete data set

Page 59: PowerPoint File available:

minimum required crystal size

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

0 5 10 15 20 25 30 35 40 45 50

photon energy (keV)

crys

tal d

iam

eter

(mic

rons

)

2 A perfect lysozyme

Lysozyme with MCNP Nave-Hill effect

wavelength dependencecr

ysta

l dia

met

er (μ

m)

Å

Minimum size for complete data set

Page 60: PowerPoint File available:

minimum required crystal size

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

0 5 10 15 20 25 30 35 40 45 50

photon energy (keV)

crys

tal d

iam

eter

(mic

rons

)

3.5 A perfect xtal 100 kDa protein

2 A perfect lysozyme

Lysozyme with MCNP Nave-Hill effect

wavelength dependencecr

ysta

l dia

met

er (μ

m)

Å

Å

Minimum size for complete data set

Page 61: PowerPoint File available:

0.1

1

10

100

100.0 1000.0 10000.0 100000.0 1000000.0 10000000.0

molecular mass

crys

tal d

iam

eter

(um

)

no escape

MCNP

molecular weight

crys

tal d

iam

eter

(μm

)

100 Da 1 kDa 10 kDa 100 kDa 1 MDa 10 MDa

Minimum size for complete data set

1 ÅX-rays

2 Åspots

B = 24

50% solvent

Page 62: PowerPoint File available:

Prediction:

Exploiting Nave-Hill effect will require multi-crystal datasets

Page 63: PowerPoint File available:

Other reasons for high energy

room temperature

Page 64: PowerPoint File available:
Page 65: PowerPoint File available:

Zero-parallax microscope

pinhole

mirror

microscope

Page 66: PowerPoint File available:

High energy compresses pattern

2 Å data

2 Å data

Page 67: PowerPoint File available:

Example Room-temperature Data

• lysozyme

• 50 μm beam

• 37 Gy/s (0.775 Å)

• 30s exposures at 20C

• 90° of data, 97% complete

• I/ = 1.5 at 1.9 Å

• Rmerge 18% (overall) 5% (low)

• ΔB same as 20 min at 100K

B factor-2

-4

-6

scale vs batch

2

1

0

Page 68: PowerPoint File available:

high energy myth: less background

elastic background/spot intensity ratio is wavelength-independent!

Page 69: PowerPoint File available:

photon energy (eV)

norm

aliz

ed fi

gure

of m

erit

obliquityeffect

Page 70: PowerPoint File available:

high energy myth: less background

elastic background/spot intensity ratio is wavelength-independent!

However: inelastic and fluorescence are less, as is absorption

Page 71: PowerPoint File available:

Other reasons for high energy

room temperature

high pressure?

Page 72: PowerPoint File available:

Room temperature damage rates

0

0.5

1

1.5

2

2.5

0.0001 0.001 0.01 0.1 1 10

Southworth-Davies (lyso)Barker (native)Barker (additives)Blake & Phillips (1962)lysozyme (unpublished)

dose rate (kGy/s)

dose

at h

alf i

nten

sity

(MG

y)

Page 73: PowerPoint File available:

Room temperature damage rates

0

0.5

1

1.5

2

2.5

0.0001 0.001 0.01 0.1 1 10

powdered lysozymeSouthworth-Davies (lyso)Cheresov (lipid)Barker (native)Barker (additives)Blake & Phillips (1962)lysozyme (unpublished)

dose rate (kGy/s)

dose

at h

alf i

nten

sity

(MG

y)

Page 74: PowerPoint File available:

Room temperature damagehas a size dependence?

Page 75: PowerPoint File available:

Radiation Damage “scale factor”

F2 alone

cannot

explain

change

in overall

scale!

Page 76: PowerPoint File available:

Darwin’s Formula

I(hkl) - photons/spot (fully-recorded)

Ibeam - incident (photons/s/m2 )

re - classical electron radius (2.818x10-15 m)

Vxtal - volume of crystal (in m3)

Vcell - volume of unit cell (in m3)

λ - x-ray wavelength (in meters!)

ω - rotation speed (radians/s)

L - Lorentz factor (speed/speed)

P - polarization factor

(1+cos2(2θ) -Pfac∙cos(2Φ)sin2(2θ))/2

A - absorption factor

exp(-μxtal∙lpath)

F(hkl) - structure amplitude (electrons)

C. G. Darwin (1914)

P A | F(hkl) |2I(hkl) = Ibeam re2

Vxtal

Vcell

λ3 LωVcell

Page 77: PowerPoint File available:

“scale factor” implies that damaging motions are larger than unit cell

Room temperature damagehas a size dependence?

high pressure will hold it together?

suggests micro-fracture mechanism of spot fading

Page 78: PowerPoint File available:

Radiation Damage prediction

3

exposureps2

kdamage

data

large displacements cannot be faster than the speed of sound

Page 79: PowerPoint File available:

Timescales of radiation damage

Garret et. al. (2005) Chem. Rev. 105, 355-389

Page 80: PowerPoint File available:

Two types of reactions

Garret et. al. (2005) Chem. Rev. 105, 355-389

nonhomogeneous

homogeneous

Page 81: PowerPoint File available:

Timescales of radiation damage

Garret et. al. (2005) Chem. Rev. 105, 355-389

LCLS

ALSbunch

Page 82: PowerPoint File available:

Room temperature damage rates

0

0.5

1

1.5

2

2.5

0.0001 0.001 0.01 0.1 1 10

powdered lysozymeSouthworth-Davies (lyso)Barker (native)Barker (additives)Blake & Phillips (1962)lysozyme (unpublished)

dose rate (kGy/s)

dose

at h

alf i

nten

sity

(MG

y)

Page 83: PowerPoint File available:

Room temperature damage rates

0.01

0.1

1

10

100

1000

0.0001 0.1 100 100000 1E+08 1E+11 1E+14 1E+17 1E+20

powdered lysozymeSouthworth-Davies (lyso)Cheresov (lipid)Barker (native)Barker (additives)Blake & Phillips (1962)lysozyme (unpublished)Chapman (2011)

dose rate (kGy/s)

dose

at h

alf i

nten

sity

(MG

y)

Page 84: PowerPoint File available:

Nozzle ground to provide large X-ray diffraction angle

Droplets freeze at 106 o/sec.in vacuumto vitreousice if cryoprotectantadded.

Hand-grinding to micron gives large take-off anglefor X-rays ! D. DePonte

X-rays

5 microns

Flow rate 12 microliters per minute.

An environmental SEM image of operating protein-beam injector for LCLS.

Page 85: PowerPoint File available:

What about very low energy?

Page 86: PowerPoint File available:

sample shadow on detector

Cu

Page 87: PowerPoint File available:

sample shadow on detector

Page 88: PowerPoint File available:

X-ray of cryo stream

Page 89: PowerPoint File available:

low-energy X-rays

Cu

λ=2d sinθ

2.5 Å data with 5 Å X-rays

International Tables for Crystallography, Vol. C, 2nd ed., chapter 6.3

Page 90: PowerPoint File available:

Detecto

r Detector

Detecto

r Detector

d = 2.5 Å d = 2.5 Å

d = 2.5 Åd = 2.5 Å

sam

ple

inje

ctor

Mirr

ors

Mirr

ors

λ = 5 Åd = 2.5 Å

h,k,l

-h,-k,-l

CollidingBeamAnomalousMeasurement

Page 91: PowerPoint File available:

0 20 40 60 80 100

Anomalous differences are resilient to non-isomorphism

Riso (%)

1.0

0.8

0.6

0.4

0.2

0

Cor

rela

tion

Coe

ffici

ent o

f ΔF a

no

100 x 100 lysozyme PDBs

Page 92: PowerPoint File available:

The optimum wavelength for macromolecular crystallography

Maximize data/damage → 15-50 keV

Turn the crank → 12.68 keV

Native element phasing → 2-2.5 keV

the future: multi-crystal data sets

Page 93: PowerPoint File available:

PowerPoint File available:

http://bl831.als.lbl.gov/~jamesh/powerpoint/

BNL_2011.ppt