Top Banner
KIT The Research University in the Helmholtz Association ELECTROTECHNICAL INSTITUTE (ETI) www.kit.edu Power Electronics for Medium Voltage Grid Applications Topologies and Semiconductors Prof. Dr.-Ing. Marc Hiller
31

Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Apr 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

KIT – The Research University in the Helmholtz Association

ELECTROTECHNICAL INSTITUTE (ETI)

www.kit.edu

Power Electronics for Medium Voltage Grid Applications – Topologies and Semiconductors

Prof. Dr.-Ing. Marc Hiller

Page 2: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

3 Power Electronics for Medium Voltage Grid Applications

The Electrotechnical Institute (ETI)Electrical Drives and Power Electronic Systems

Prof. Dr.-Ing. Marc Hiller16.02.2017

Control Simulation

and Signal processing

Performance

îdn,x(k)

îqn,x(k)

idn,w(k)

iqn,w(k)

uFdn,s(k+1)

uFqn,s(k+1)

nR

nL

nL

nR

Competencies

Electrical and thermal converter design & calculation

Qualification of LV/MV power semiconductors

Topology design (power and control)

Control algorithms for grid and motor applications / Software development

Prototyping: Design, Manufacturing, Test

Test setup design and prototype verification

System architecture Components Devices

Page 3: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

4 Power Electronics for Medium Voltage Grid Applications

Overview

Trends and Challenges

Power Semiconductors for MV Converters

LV & MV Converter Topologies

Application examples

Conclusion

Prof. Dr.-Ing. Marc Hiller16.02.2017

Page 4: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

5 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges

Prof. Dr.-Ing. Marc Hiller16.02.2017

TSO380kV/220kV

TSO380kV/220kV

DSO110/20/0,4kV

DSO110/20/0,4kV

Auxiliary

services

Today: centralized

Auxiliary

services

Future: de-centralized

Large central

power plants “Area power

plant”

In future: the auxiliary services have to be provided by „area power plants“

Page 5: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

8 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges

Prof. Dr.-Ing. Marc Hiller16.02.2017

In the past all major power plants

were connected to the transport

network operated by the TSO

Now wind parks and solar plants

are connected to the distribution

grid of the DSO

Solar mainly in the LV grid (70 %

out of 40 GW)

Wind mainly in MV and HV grid

(approx. 48 GW)

Paradigm shift: From unidirectional

to fluctuating bidirectional power

flows

GGG

110kV

10/20 kV

400V

households

380/220kV

GGGG

G

TSO

DSO

Page 7: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

10 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges – DC for new grid structures

Prof. Dr.-Ing. Marc Hiller16.02.2017

water

treatment plant

storage

water

treatment plant

storage

water

treatment plant

storage

MVDC

MVDC

MVDC

MVDC

MVDC

Page 8: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

11 Power Electronics for Medium Voltage Grid Applications

40,02

47,53

28,49

28,31

21,14

10,8

4,248,97

5,59

Trends and Challenges

Prof. Dr.-Ing. Marc Hiller16.02.2017

Installed power for electrical energy production in Germany (in GW)

total: 195,09 GW

as of 04.10.2016

Source: https://www.energy-charts.de/power_inst_de.htm,

Bundesnetzagentur

Solar

Black coal

Brown coal

Nuclear

Bio

mass Hydro

Wind• thereof 3,89 GW

offshore

Gas

Oil

Page 9: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

12 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges

Prof. Dr.-Ing. Marc Hiller16.02.2017

66,8

1321,5

45,6

38,3

6,1

Renewables

29,5 %

Gas

Black coal

Brown coal

Nuclear

Others

Source: http://www.ag-energiebilanzen.de/28-0-Zusatzinformationen.html

Oil

191,4

78,5

110

150

84,9

5,8

27,5

Bio mass

Hydro

Wind

offshore

Wind

onshore

Waste

Solar

Electrical energy production in Germany 2016 (in TWh)

Total: 648,2 TWh

Page 10: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

13 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges

Aims of the German “Energiewende”

Prof. Dr.-Ing. Marc Hiller16.02.2017

2020 2030 2040 2050

Upgrade of transmission grid

35% of electric power from Renewables

Shutdown of all nuclear power stations

50% of electric power from Renewables

80% of electric power from Renewables

50% reduction of primary energy consumption (compared to 2008)

80-95% reduction of greenhouse gas emissions (compared to 1990)

Page 11: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

14 Power Electronics for Medium Voltage Grid Applications

Trends and Challenges

The Energy transition (Energiewende) leads to

More decentralized and distributed energy production,

More Wind- and PV-Power Plants and Energy storage connected to the LV

(<1kV), MV (<40kV) and HV grid

New requirements for Power Electronics in order to ensure grid stability

(frequency control, voltage control, grid restoration, system & operation

management)

In addition to HVDC systems new developments also address MV applications

with enhanced features, efficiency and reliability.

New circuit topologies and power semiconductors enable promising

solutions to replace or enhance the performance of conventional systems.

Prof. Dr.-Ing. Marc Hiller16.02.2017

Power Electronics and Digitalization are key enablers

Page 12: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

15 Power Electronics for Medium Voltage Grid Applications

Si-based Power Semiconductors for MV Converters

Prof. Dr.-Ing. Marc Hiller16.02.2017

5

3

4

2

1

source : Infineon

max.

turn

-off

curr

ent

[kA

]

source: Infineon

LV IGBT

1 2 3 4 5 6 7 8Blocking voltage [kV]

Thyristor

source : Infineon

source : Infineon

source: ABB

MV IGBT / IGCT

source: Toshiba

Ideal Power

Semiconductor:

Costs:

like 1200/1700V in

terms of [EUR/KW

converter power]

Failure mode:

Conduct-on-fail

enabling better fault

handling and (N+1)

redundant systems

Load cycling

capability:

like Press Pack

package

Page 13: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

16 Power Electronics for Medium Voltage Grid Applications

Si/SiC-based Power Semiconductors for MV Converters

Prof. Dr.-Ing. Marc Hiller16.02.2017

5

3

4

2

1

source : Infineon

max.

turn

-off

curr

ent

[kA

]

source: Infineon

LV IGBT

1 2 3 4 5 6 7 8Blocking voltage [kV]

Thyristor

source : Infineon

source : Infineon

source: ABB

MV IGBT / IGCT

source: Toshiba

SiC MOSFET / IGBT

• Increased switching

frequency

• Lower losses

→ Higher power density

Page 14: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

17 Power Electronics for Medium Voltage Grid Applications

Power Semiconductors for MV Converters - Si-IGBTs

Prof. Dr.-Ing. Marc Hiller16.02.2017

* Source: IHS Power Semiconductor Studies, 2006-2015

Automotive Low voltage Medium voltage

Volume High volume applications Medium volume applications Low volume applications

Voltage <1.2kV 1.2 kV 3.3 kV 4.5 kV 6.5 kV

1.7 kV

Market share *

(only IGBT modules)

36 % 41 % 12 % 6 % 2 % 3 %

Housing Customized, Module Module Module and press-pack

Available products Customized configurations

with DCBs directly connected

to heat sink and integrated

drivers

Single switch, Half-bridge,

Six Pack, Chopper module,

3-Level module

at different voltage/current

ratings

with/without integrated drivers

Single switch, Half-bridge,

Diode-module

at different voltage/current ratings

Integration Low integration costs for DC

link

Moderate integration costs for

busbars, DC link, heat sinks,

(drivers)

High integration costs for

isolation, busbars, DC link, heat

sinks, drivers

Major development

trends

Improved packaging (e.g. Enhanced load cycling capability, increased TJmax)

Enhanced Si devices

SiC, GaN devices

for improved efficiency, higher fS, less passives, improved power density

etc.

Enhanced Si devices, e.g.

Reverse Conducting IGBT

SiC for special applications

(e.g. traction)

Page 15: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

19 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies

û1, f1

1 or 3ph

û2, f2

1 or 3ph

DC/DC

converter

AC/AC

converter

AC/DC rectifier

DC/AC inverter

==

=

=

=

=

-U

U

Page 16: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

20 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies

û1, f1

1 or 3ph

û2, f2

1 or 3ph

DC/DC

converter

AC/AC

converter

AC/DC rectifier

DC/AC inverter

==

=

=

=

=

u3

variable

U4

const.

Page 17: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

21 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies

Converters for Grid and Industrial Applications

Low Voltage (LV) Converters

Current Source Converters

Current Source Inverter (CSI)

Voltage Source Converters

Matrix Converter 2-Level Multilevel (≥3L)

NPC

3L-NPC 3L-TNPC Various 5L

Medium Voltage (MV) Converters

Page 18: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

22 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies – 2-Level

Ud

Ua

2-Level-DC/AC-Converter:

By far the most important

topology up to U=690V

Many power semiconductors

available

Trends:

Higher switching

frequency in order to

reduce filter size

Use of SiC-devices

(future: also: GaN)

Increase in power density

Increased efficiency

ua0

ua0

0

Ud

2

Ud

2-

0

Ud

2

Ud

2-

ωt

ωt

a)

b)

Page 19: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

23 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies

Converters for Grid and Industrial Applications

Low Voltage (LV) Converters

Current Source Converters

Current Source Inverter (CSI)

Voltage Source Converters

Matrix Converter 2-Level Multilevel (≥3L)

NPC

3L-NPC 3L-TNPC Various 5L

Medium Voltage (MV) Converters

Page 20: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

24 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

LV Converter Topologies – 2-Level vs. 3-Level

ua0

ua0

0

Ud

2

Ud

2-

0

Ud

2

Ud

2-

ωt

ωt

a)

b)

+1

-1 +1

-1 +1

-1

Ud

Ud

2

Ud

2

asa

sb

sc

b

c

uaN

ubN

ucN

ua0

N

0

0

0

uc0

ub0

0

+1

-1 +1

-1 +1

-1

0Ud

Ud

2

Ud

2

asc

sb

sc

b

c

uaN

ubN

ucN

ua0

uc0

ub0N

Page 21: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

25 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

MV Converter Topologies

Medium Voltage (MV) Converters

AC/AC Direct

Converter

Matrix Converter

Cyclo Converter (Thyristor)

DC link Converter

Current Source

Converters

Current Source Inverter

(PWM-CSI)

Load Commutated Inverter (LCI)

Voltage Source

Converters

2LevelMultilevel

(≥3L)

NPC

3L-NPC 3L-TNPC 5L-ANPC

Flying Cap (FC)

5L-ANPC 5L-SMC 4L-FC

Cell basedInverters(Split DC

link)

Modular Multilevel

Converters

Series ConnectedH-Bridge

Converters

Page 22: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

26 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

MV Converter Topologies

Ud

Ud

2

Ud

2

Ud

Ud

2

Ud

2

Ud

Ud

2

Ud

2

Ud

4

3L-NPC with n=1 3L-NPC with n=2 5L-ANPC with n=2 und

Floating CapacitorExample:

Ud=5 kV

5 levels in Line-

to-line voltage

Example:

Ud=10 kV

5 levels

Example:

Ud=10 kV

9 levels

L1

N

P

Vd

Arm

L2 L3

X2

X1

vZ1

vZ2

L

L

Single module

+

-X2

X1

VSM

VX21

T11

T12

CSM

Modular Multilevel

Converter

Example:

Ud=10 kV

17 levels

Page 23: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

27 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller16.02.2017

MV Converter Topologies – 3L-NPC & MMC

L1

N

P

Vd

Arm

L2 L3

X2

X1

vZ1

vZ2

L

L

3L-NPC Modular

Multilevel

Converter

(MMC)

Single module

+

-X2

X1

VSM

VX21

T11

T12

CSM

Motor

3~Ud

Ud

2

Ud

2

Modular Multilevel Converter

Modules can be operated independently from each other

Simple and easy series connection of modules enabling very high

voltages (n=6..400)

Use of state-of-the-art components independently from the voltage, e.g.

< 14 kVAC: 1,7kV-IGBT-Modules; 1,2kV-film caps

> 14 kVAC: 3,3kV-IGBT-Modules; 2kV-film caps

Page 24: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

28 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – 5L-NPP

Prof. Dr.-Ing. Marc Hiller16.02.2017

Ud

Ud

2

Ud

2

Ud

4

5L-ANPC with n=2 and

Floating Capacitor

Example:

Ud=10 kV

9 levels in Line-

to-line voltage

Ud

Ud

2

Ud

2

Ud

4

Ud

4

5L-NPP with n=4..6

(2 stacked 3L-NPP)

Example:

Ud=10 kV

9 levels

Source: GE

Page 25: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

29 Power Electronics for Medium Voltage Grid Applications

Power Semiconductors for MV Converters - Si-IGBTs

Prof. Dr.-Ing. Marc Hiller16.02.2017

* Source: IHS Power Semiconductor Studies, 2006-2015

Automotive Low voltage Medium voltage

Volume High volume applications Medium volume applications Low volume applications

Voltage <1.2kV 1.2 kV 3.3 kV 4.5 kV 6.5 kV

1.7 kV

Market share *

(only IGBT modules)

36 % 41 % 12 % 6 % 2 % 3 %

Housing Customized, Module Module Module and press-pack

Available products Customized configurations

with DCBs directly connected

to heat sink and integrated

drivers

Single switch, Half-bridge,

Six Pack, Chopper module,

3-Level module

at different voltage/current

ratings

with/without integrated drivers

Single switch, Half-bridge,

Diode-module

at different voltage/current ratings

Integration Low integration costs for DC

link

Moderate integration costs for

busbars, DC link, heat sinks,

(drivers)

High integration costs for

isolation, busbars, DC link, heat

sinks, drivers

Major development

trends

Improved packaging (e.g. Enhanced load cycling capability, increased TJmax)

Enhanced Si devices

SiC, GaN devices

for improved efficiency, higher fS, less passives, improved power density

etc.

Enhanced Si devices, e.g.

Reverse Conducting IGBT

SiC for special applications

(e.g. traction)

Page 26: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

30 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – Modular Multilevel Converter

Prof. Dr.-Ing. Marc Hiller16.02.2017

Source: Siemens

Application example:

12 MW network interconnection

between 50 Hz onshore grid and 6,6/10

kV / 60 Hz ship grid featuring:

24-pulse diode front end

Low harmonics with filterless design

High control bandwidth

Page 27: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

31 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – Modular Multilevel Converter

Prof. Dr.-Ing. Marc Hiller16.02.2017

Source: Siemens

Application example:

VSC based static frequency converter for the AC

railway grid supply (<120MW) featuring

Modular design, scalable voltage, i.e. power

High efficiency

High availability

Low harmonics

Power semiconductors:

IGBT-modules with VCES=3,3-6,5 kV (single n=1)

Press Pack-IGBT with VCES=4,5kV: future ?

Press Pack-IGCT: future ?

Advantages:

Filterless, highly modular

Lower costs due to standard (no) transformers

Ua1 Ua2 Ua3

Ue1

Ue2

Page 28: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

32 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – Modular Multilevel Converter

Prof. Dr.-Ing. Marc Hiller16.02.2017

Source: Siemens, ABB

Application example:

VSC based

HVDC and

SVC converters

featuring

Scalable voltage, i.e. power

High efficiency

High availability

Low harmonics

Power semiconductors:

IGBT-modules with VCES=3,3-6,5kV (single n=1)

Press Pack-IGBT with VCES=4,5kV (series conn. n=8)

Press Pack-IGCT with VDRM=3,3..6,5..9kV

Advantages:

Filterless, highly modular

Grid services (reactive power, black start etc.)

Possible disadvantages:

Higher losses compared to line commutated technology

Page 29: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

33 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – Modular Multilevel Converter

Prof. Dr.-Ing. Marc Hiller16.02.2017

Source: Siemens

Application example:

VSC based HVDC converter for long

distance energy transmission featuring

Scalable voltage, i.e. power

High efficiency

High availability

Low harmonics

Power semiconductors:

IGBT-modules with VCES=3,3-6,5 kV (single n=1)

Press Pack-IGBT with VCES=4,5kV (series conn. n=6-8)

Press Pack-IGCT: future ?

Advantages:

Filterless, highly modular

Grid services (reactive power, black start etc.)

Disadvantages:

Higher losses compared to line commutated HVDC

Page 30: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

34 Power Electronics for Medium Voltage Grid Applications

MV Converter Topologies – Modular Multilevel Converter

Prof. Dr.-Ing. Marc Hiller16.02.2017

Source: Siemens

Application example:

VSC based HVDC converter for long

distance energy transmission featuring

Scalable voltage, i.e. power

High efficiency

High availability

Low harmonics

Self-commutated HVDC transmission (Example:

Sylwin1):

DC-voltage: U=640 kV

DC-current: I=1350 A

Pnom=865MW

Topology

Modular Multilevel Converter (MMC) with app. 2000

cells per converter station (using 4,5kV-IGBT-

Modules)

Page 31: Power Electronics for Medium Voltage Grid Applications ... · 14 Power Electronics for Medium Voltage Grid Applications Trends and Challenges The Energy transition (Energiewende)

Electrotechnical Institute (ETI)

www.eti.kit.edu

35 Power Electronics for Medium Voltage Grid Applications

Prof. Dr.-Ing. Marc Hiller

Conclusion / Outlook

01.02.2017

Trends:

Future converter generations will have to meet market requirements

based on common drive architecture and platform solutions

in order to reduce complexity and material costs (e.g. power

semiconductors, copper, steel) and

maximize modularity.

The high modularity and the usage of standard components (e.g. LV

IGBTs, SiC devices) will enable worldwide manufacturing and sourcing

Increased demand for AC (and DC) grid applications

Multilevel Converters will be a key technology for applications in

MVDs, Energy transmission & distribution, Regenerative energy sources

Grid integration of renewable energy sources and storage devices,

Energy transmission & distribution in the LV, MV and HV range,

LV and MV Drives